Low Power Discretes Data Book

1989

LOW POWER DISCRETES
 DATA BOOK

9 Siliconix

Siliconix incorporated reserves the right to make changes in the circuitry or specifications at any time without notice and assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

Warning Regarding Life Support Applications

Siliconix products are not sold for applications in any medical equipment intended for use as a component of any life support system unless a specific written agreement pertaining to such intended use is executed between the manufacturer and Siliconix. Such agreement will require the equipment manufacturer either to contract for additional reliability testing of the Siliconix parts and/or to commit to undertake such testing as a part of its manufacturing process. In addition, such manufacturer must agree to indemnify and hold Siliconix harmless from any claims arising out of the use of the Siliconix parts in life support equipment.

Stresses listed under "Absolute Maximum Ratings" may be applied (one at a time) to devices without resulting in permanent damage. This is a stress rating only and not subject to production testing. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.

TABLE OF CONTENTS

Section 1. General Information
Device Ordering Information 1-1
Hi-Rel Process Capabilities 1-2
Section 2. Cross Reference 2-1
Section 3. Selector Guide
Introduction to Selector Guide 3-1
JFET Selector Guide 3-2
Low Power MOS Selector Guide 3-35
Section 4. JFETs
Introduction to JFETs 4-1
2N3819 4-2
2N3956 Series 4-4
2N4091 Series - JANTX, JANTXV 4-6
$2 N 4117$ Series 4-8
2N4220 Series 4-11
2N4338 Series 4-14
2N4391 Series 4-17
2N4416 Series 4-19
2N4856 Series - JANTX, JANTXV 4-21
2N4856A Series 4-24
2N4867 Series 4-27
2N5114 Series 4-30
2N5114 Series - JANTX, JANTXV 4-32
2N5196 Series 4-34
2N5432 Series 4-37
2N5460 Series 4-39
2N5484 Series 4-42
2N5564 Series 4-44
2N5638 Series 4-46
2N5911 Series 4-48
2N6905 Series 4-50
2N6908 Series 4-52
BF244 Series 4-54
BF245 Series 4-56
BSR56 Series 4-58
CRO22 Series 4-60
CRR0240 Series 4-62
DPAD1 Series 4-64
Section 4. JFETs (Cont'd)
$J 105$ Series 4-66
$J 108$ Series 4-68
J111 Series 4-71
J111A Series 4-73
J174 Series 4-75
J201Series 4-78
J210 Series 4-81
J230 Series 4-83
J270 Series 4-85
J304 Series 4-87
J308 Series 4-89
J500 Series 4-91
J552 4-93
J553 Series 4-95
JPAD5 Series 4-97
JR135V Series 4-99
M440 Series 4-101
M5911 Series 4-103
P1086 Series 4-105
PAD1 Series 4-107
PN4091 Series 4-109
PN4117 Series 4-111
PN4302 Series 4-114
PN4391 Series 4-116
PN4416 Series 4-118
SST108 Series 4-120
SST111 Series 4-122
SST174 Series 4-124
SST201Series 4-127
SST270 Series 4-130
SST308 Series 4-132
SST404 Series 4-134
SST440 Series 4-136
SST4091 Series 4-138
SST4391 Series 4-140
SST4416 4-142
SST4859 Series 4-144
SST5114 Series 4-146
SST5912 4-148
SST6908 Series 4-150
SSTDPAD5 Series 4-152
SSTPAD5 Series 4-154
Section 4. JFETs (Cont'd)
U290 Series 4-156
U308 Series 4-158
U350 4-160
U401 Series 4-162
U421 Series 4-165
U430 Series 4-168
U440 Series 4-170
U443 Series 4-172
U1897 Series 4-174
VCR2N, VCR4N, VCR7N, VCR3P 4-176
Section 5. DMOS
Introduction to DMOS 5-1
2N7104 Series 5-2
2N7105 Series 5-4
2N7116 Series 5-6
SD210DE Series 5-8
SD211DE Series 5-10
SD/SST2100 Series 5-12
SD5000 Series 5-14
SD5400 Series 5-16
Si8901 Series 5-18
SST211 Series 5-20
Section 6. Low Power MOS
Introduction to Low Power MOS 6-1
2N6659 6-2
2N6660 6-4
2N6660 JANTX, JANTXV 6-6
2N6661 6-8
2N6661 JANTX, JANTXV 6-10
2N7000 6-12
2N7001 6-14
2N7002 6-16
2N7007 6-18
2N7008 6-20
3N163 Series 6-22
BS107 6-24
BS170 6-26
BS208 6-28
BS250 6-30
BSS89 6-32
BSS92 6-34
Section 6. Low Power MOS (Cont'd)
BSS129 6-36
MFE823 6-38
ND2012 Series 6-40
ND2020 Series 6-42
ND2406 Series 6-44
ND2410 Series 6-46
TP0610 Series 6-48
VN40AFD 6-51
VN46AFD 6-53
VN66 Series 6-55
VN67 Series 6-57
VN88 Series 6-59
VN9OAB 6-61
VN0300 Series 6-63
VN0603 Series 6-65
VN0605T 6-67
VN0610L, VN10KE, VN10KM 6-69
VNO610LL, VN10LE, VN10LM 6-71
VN0808 Series 6-73
VN1206B, VN1206D 6-75
VN1206L, VN1206M 6-77
VN1210 Series 6-79
VN1706B, VN1706D 6-81
VN1706L, VN1706M 6-83
VN1710 Series 6-85
VN2010 Series 6-87
VN2222KM, VN2222L 6-89
VN2222LL, VN2222LM 6-91
VN2406B, VN2406D 6-93
VN2406L, VN2406M 6-95
VN2410 Series 6-97
VN4012 Series 6-99
VN45350 Series 6-101
VN50300 Series 6-103
VP0300 Series 6-105
VP0610 Series 6-107
VP0808 Series 6-110
VP1008 Series 6-112
VP2020 Series 6-114
VP2410 Series 6-116
VQ1000 Series 6-118
VQ1001 Series 6-120
Section 6. Low Power MOS (Cont'd)
VQ1004 Series 6-122
VQ1006 Series 6-124
VQ2000 Series 6-126
VQ2001 Series 6-128
VQ2004 Series 6-130
VQ2006 Series 6-132
VQ3001 Series 6-134
VQ7254 Series 6-136
Section 7. Performance Curves
DMCA/B 7-1
DMCD 7-5
MRA 7-9
NBB 7-12
NCB 7-16
NCL 7-22
NH 7-25
NIP 7-30
NKL 7-35
NKM 7-38
NKO 7-41
NNR 7-44
NNT 7-48
NNZ 7-52
NPA 7-56
NQP 7-60
NRL 7-64
NT 7-69
NVA 7-73
NZB 7-77
NZF 7-82
PSCIA 7-87
PSCIB 7-91
VDDQ20 7-95
VDDV24 7-99
VNDB24 7-103
VNDN24 7-108
VNDO50 7-113
VNDP06 7-118
VNDQ03 7-123
VNDQ06 7-128
VNDQ09 7-133
Section 7. Performance Curves (Cont'd)
VNDQ12 7-138
VNDQ20 7-143
VNDS06 7-148
VNDV40 7-153
VNMA06 7-158
VNMAO9 7-163
VPDQ20 7-168
VPDS06 7-173
VPDV10 7-178
VPDV24 7-183
VPMH03 7-188
VRMA 7-193
Section 8. Package Outlines 8-1
Section 9. Applications
LPD-1: An Introduction to FETs 9-1
LPD-2 Understanding JFET Parameters 9-9
LPD-3: FET Biasing 9-17
LPD-4: High JFET Gate Input Resistance Serves Well - If You Can Utilize it 9-29
LPD-5: Audio-Frequency Noise Characteristics of Junction FETs 9-33
LPD-6: JFETs for Video Amplifiers 9-42
LPD-7: Designing Junction FET Input Op Amps 9-53
LPD-8: Preventing Latch-Up in Monolithic Dual JFETs 9-73
LPD-9: Applications for the 2N6908 Series JFET Amplifier 9-76
LPD-10: Analog Switching Using FETs 9-81
LPD-11: Subnanosecond Switching With DMOS FETs 9-100
LPD-12: High-Speed Depletion-Mode DMOS FET for Small-Signal Applications 9-107
LPD-13: DMOS - Understanding the Body Effect 9-112
LPD-14: Designing FET Balanced Mixers for High Dynamic Range 9-114
LPD-15: The FET Constant-Current Source 9-146
LPD-16: Low-Power MOSFETs for "Smart" Telephones 9-149
LPD-17: P-Channel MOSFETs The Best Choice For High-Side Switching 9-154
LPD-18: Depletion-Mode MOSFETs Expand Circuit Opportunities 9-157
LPD-19: Applying MOSFETs in Low Voltage Circuits 9-163
LPD-20: An Ultra-Broadband Analog Switch 9-167
LPD-21: A High Quality Audio Crosspoint Switch 9-170
Section 10. Worldwide Sales Offices and Distributors 10-1

ALPHA-NUMERIC INDEX

2N3819	4-2	2N4861	4-21	2N5566	4-44	BF244B	4-54
2N3956	4-4	2N4861A	4-24	2N5638	4-46	BF244C	4-54
2N3957	4-4	2N4867	4-27	2N5639	4-46	BF245A	4-56
2N3958	4-4	2N4867A	4-27	2N5640	4-46	BF245B	4-56
2N4091	4-6	2N4868	4-27	2N5911	4-48	BF245C	4-56
2N4092	4-6	2N4868A	4-27	2N5912	4-48	BS107	6-24
2N4093	4-6	2N4869	4-27	2N6660	6-2	BS170	6-26
2N4117	4-8	2N4869A	4-27	2N6660	6-4	BS208	6-28
2N4117A	4-8	2N5114	4-30	2N6660 JAN	6-6	BS250	6-30
2N4118	4-8	2N5114JAN	4-32	2N6660 JANTX	6-6	BSR56	4-58
2N4118A	4-8	2N5114JANTX	4-32	2N6660 JANTXV	6-6	BSR57	4-58
2N4119	4-8	2N5114JANTXV	4-32	2N6661	6-8	BSR58	4-58
2N4119A	4-8	2N5115	4-30	2N6661 JAN	6-10	BSS89	6-32
2N4220	4-11	2N5115JAN	4-32	2N6661 JANTX	6-10	BSS92	6-34
2N4220A	4-11	2N5115JANTX	4-32	2N6661 JANTXV .	6-10	BSS129	6-36
2N4221	4-11	2N5115JANTXV	4-32	2N6905	4-50	CR022	4-60
2N4221A	4-11	2N5116	4-30	2N6906	4-50	CR024	4-60
2N4222	4-11	2N5116JAN	4-32	2N6907	4-50	CR027	4-60
2N4222A	4-11	2N5116JANTX	4-32	2N6908	4-52	CR030	4-60
2N4338	4-14	2N5116JANTXV	4-32	2N6909	4-52	CR033	
2N4339	4-14	2N5196	4-34	2N6910	4-52	CR039	
2N4340	4-14	2N5197	4-34	2N7000	6-12	CR043	4-60
2N4341	4-14	2N5198	4-34	2N7001	6-14	CR047	$4-60$ $4-60$
2N4391	4-17	2N5199	4-34	2N7002	6-16	CR062	4-60
2N4392	4-17	2N5432	4-37	2N7007	6-18	CR068	4-60
2N4393	4-17	2N5433	4-37	2N7008	6-20	CR075	4-60
2N4416	4-19	2N5434	4-37	2N7104	5-2	CR082	4-60
2N4416A	4-19	2N5460	4-39	2N7105	5-4	CR091	4-60
2N4856	4-21	2N5461	4-39	2N7106	5-2	CR100	4-60
2N4856A	4-24	2N5462	4-39	2N7107	5-4	CR110	4-60
2N4857	4-21	2N5463	4-39	2N7108	5-2	CR120	4-60
2N4857A	4-24	2N5464	4-39	2N7109	5-4	CR130	4-60
2N4858	4-21	2N5465	4-39	2N7116	5-6	CR140	4-60
2N4858A	4-24	2N5484	4-42	2N7117	5-6	CR150	4-60
2N4859	4-21	2N5485	4-42	2N7118	5-6	CR160	4-60
2N4859A	4-24	2N5486	4-42	3N163	6-22	CR180	4-60
2N4860	4-21	2N5564	4-44	3N164	6-22	CR200	4-60
2N4860A	4-24	2N5565	4-44	BF244A	4-54	CR220	4-60

CR240	4-60	J202	4-78	JR170V	4-99	SD210	5-8
CR270	4-60	J203	4-78	JR200V	4-99	SD211	5-10
CR300	4-60	J204	4-78	JR220V	4-99	SD212	5-8
CR330	4-60	J210	4-81	JR240V	4-99	SD213	5-10
CR360	4-60	J211	4-81	M440	4-101	SD214	5-8
CR390	4-60	J212	4-81	M441	4-101	SD215	5-10
CR430	4-60	J230	4-83	M5911	4-103	SD2100	5-12
CR470	4-60	J231	4-83	M5912	4-103	SD5000	5-14
CR530	4-60	J232	4-83	MFE823	6-38	SD5001	5-14
CRRO240	4-62	J270	4-85	ND2012E	6-40	SD5002	5-14
CRR0360	4-62	J271	4-85	ND2012L	6-40	SD5400	5-16
CRR0560	4-62	J304	4-87	ND2020E	6-42	SD5401	5-16
CRR0800	4-62	J305	4-87	ND2020L	6-42	SD5402	5-16
CRR1250	4-62	J308	4-89	ND2406B	6-44	Si8901	5-18
CRR1950	4-62	J309	4-89	ND2406L	6-44	SST108	4-120
CRR2900	4-62	J310	4-89	ND2410B	6-46	SST109	4-120
CRR4300	4-62	J500	4-91	ND2410L	6-46	SST110	4-120
DPAD1	4-64	J501	4-91	P1086	4-105	SST111	4-122
DPAD2	4-64	J502	4-91	P1087	4-105	SST112	4-122
DPAD5	4-64	J503	4-91	PAD1	4-107	SST113	4-122
DPAD10	4-64	J504	4-91	PAD10	4-107	SST174	4-124
DPAD20	4-64	J505	4-91	PAD100	4-107	SST175	4-124
DPAD50	4-64	J506	4-91	PAD2	4-107	SST176	4-124
DPAD100	4-64	J507	4-91	PAD20	4-107	SST177	4-124
$J 105$	4-66	J508	4-91	PAD5	4-107		
$J 106$	4-66	J509	4-91	PAD50	4-107		7
$J 107$	4-66	J510	4-91	PN4091	4-109	SST203	4-127
$J 108$	4-68	J511	4-91	PN4092	4-109	SST211	$4-127$ $5-20$
$J 109$	4-68	J552	4-93	PN4093	4-109	SST213	5-20
J110	4-68	J553	4-95	PN4117	4-111	SST215	5-20
J110A	4-68	$J 554$	4-95	PN4117A	4-111	SST270	4-130
$J 111$	4-71	J555	4-95	PN4118	4-111	SST271	4-130
J111A	4-73	J556	4-95	PN4118A	4-111	SST308	4-132
$J 112$	4-71	J557	4-95	PN4119	4-111	SST309	4-132
J112A	4-73	JPAD5	4-97	PN4119A	4-111	SST310	4-132
$J 113$	4-71	JPAD10	4-97	PN4302	4-114	SST404	4-134
J113A	4-73	JPAD20	4-97	PN4303	4-114	SST405	4-134
J174	4-75	JPAD50	4-97	PN4304	4-114	SST406	4-134
$J 175$	4-75	JPAD100	4-97	PN4391	4-116	SST440	4-136
J176	4-75	JPAD200	4-97	PN4392	4-116	SST441	4-136
J177	4-75	JPAD500	4-97	PN4393	4-116	SST2100	5-12
J201 .	4-78	JR135V	4-99	PN4416	4-118	SST4091	4-138

SST4092	4-138	U403	4-162	VN1206M	6-77	VP0300B	6-105
SST4093	4-138	U404	4-162	VN1210L	6-79	VP0300L	6-105
SST4391	4-140	U405	4-162	VN1210M	6-79	VP0300M	6-105
SST4392	4-140	U406	4-162	VN1706B	6-81		
SST4393	4-140	U421	4-165	VN1706D	6-81		
SST4416	4-142	U422	4-165	VN1706L	6-83		
SST4859	4-144	U423	4-165	VN1706M	6-83	VP0610T	6-107
SST4860	4-144	U424	4-165	VN1710L	6-85	VP0808B	6-110
SST4861	4-144	U425	4-165	VN1710M	6-85	VP0808L	6-110
SST5114	4-146	U426	4-165	VN2010LL	6-87	VP0808M	6-110
SST5115	4-146	U430	4-168	VN2020L	6-87	VP1008B	6-112
SST5116	4-146	U431	4-168	VN2222KM	6-89	VP1008L	6-112
SST5912	4-148	U440	4-170	VN2222L	6-89	VP1008M	6-112
SST6908	4-150	U441	4-170	VN2222LL	6-91		
SST6909	4-150	U443	4-172	VN2222LM	6-91		
SST6910	4-150	U444	4-172	VN2406B	6-93	VP2410B	6-116
SSTDPAD5	4-152	U1897	4-174	VN2406D	6-93	VP2410L	6-116
SSTDPAD10	4-152	U1898	4-174	VN2406L	6-95	VQ1000J	6-118
SSTDPAD20	4-152	U1899	4-174	VN2406M	6-95	VQ1000P	6-118
SSTDPAD50	4-152	VCR2N	4-176	VN2410L	6-97	VQ1001J	6-120
SSTDPAD100	4-152	VCR3P	4-176	VN2410M	6-97	VQ1001P	6-120
SSTPAD5	4-154	VCR4N	4-176	VN3515L	6-99	VQ1004J	6-122
SSTPAD10	4-154	VCR7N	4-176	VN4012B	6-99	VQ1004P	6-122
SSTPAD20	4-154	VN0300B	6-63	VN4012L	6-99	Q1004P	22
SSTPAD50	4-154	VN0300L	6-63	VN40AFD	6-51	VQ1006J	6-124
SSTPAD100	4-154	VN0300M	6-63	VN45350L	6-101	VQ1006P	6-124
SSTPAD200	4-154	VN0603L	6-65	VN45350T	6-101	VQ2000J	6-126
SSTPAD500	4-154	VN0603T	6-65	VN46AFD	6-53	VQ2000P	6-126
TL0610L	6-48	VN0605T	6-67	VN50300L	6-103	VQ2001J	6-128
TP0610E	6-48	VN0610L	6-69	VN50300T	6-103	VQ2001P	6-128
TP0610T	6-48	VN0808L	6-73	VN610LL	6-71	VQ2004J	6-130
U290	4-156	VN0808M	6-73	VN66AD	6-55	VQ2004P	6-130
U0291	4-156	VN10KE	6-69	VN66AFD	6-55	VQ2006J	6-132
U308	4-158	VN10KM	6-69	VN67AB	6-57		22
U309	4-158	VN10LE	6-71	VN67AD	6-57	VQ2006P	6-132
U310	4-158	VN10LM	6-71	VN67AFD	6-57	VQ3001J	6-134
U350	4-160	VN1206B	6-75	VN88AD	6-59	VQ3001P	6-134
U401	4-162	VN1206D	6-75	VN88AFD	6-59	VQ7254J	6-136
U402	4-162	VN1206L	6-77	VN90AB	6-61	VQ7254P	6-136

NUMERIC-ALPHA INDEX

DPAD	4-64	SSTPAD50	4-154	J111A	4-73	BS208	6-28
PAD1	4-107	SSTDPAD50	4-152	SST111	4-122	SD210	5-8
DPAD2	4-64	BSR56	4-58	$J 112$	4-71	J210	4-81
PAD2	4-107	CR056	4-60	J112A	4-73	J211	4-81
VCR2N	4-176	BSR57	4-58	SST112	4-122	SD211	5-10
VCR3P	4-176	BSR58	4-58	$J 113$	4-71	SST211	5-20
VCR4N	4-176	CR062	4-60	J113A	4-73	J212	4-81
DPAD5	4-64	VN66AD	6-55	SST113	4-122	SD212	5-8
JPAD5	4-97	VN66AFD	6-55	CR120	4-60	SD213	5-10
PAD5	4-107	VN67AB	6-57	BSS129	6-36	SST213	5-20
SSTPAD5	4-154	VN67AD	6-57	CR130	4-60	SD214	5-8
SSTDPAD5	4-152	VN67AFD	6-57	JR135V	4-99	SD215	5-10
VCR7N	4-176	CR068	4-60	CR140	4-60	SST215	5-20
PAD10	4-107	CR075	4-60	CR150	4-60	CR220	4-60
DPAD10	4-64	CR082	4-60	CR160	4-60	JR220V	4-99
JPAD10	4-97	VN88AD	6-59	3N163	6-22	J230	4-83
VN10KE	6-69	VN88AFD	6-59	3N164	6-22	J231	-83
VN10KM	6-69	BSS89	6-32	BS170	6-26	J232	-83
VN1OLE	6-71	VN90AB	6-61	JR170V	4-99	CR240	4-60
VN1OLM	6-71	CR091	4-60	J174	4-75	CRR0240	4-62
SSTPAD10	4-154	BSS92	6-34	SST174	4-124	JR240V	4-99
SSTDPAD10	4-152	CR100	4-60	J175	4-75	BF244A	
DPAD20	4-64	DPAD100	4-64	SST175	4-124	BF	
JPAD20	4-97	JPAD100	4-97	J176	4-75	BF244C	-54
PAD20	4-107	PAD100	4-107	SST176	4-124	BF245B	5
SSTPAD20	4-154	SSTPAD100	4-154	J177	4-75	BF245	
SSTDPAD20	4-152	SSTDPAD100	4-152	SST177	4-124	BS250	6-30
CR022	4-60	J105	4-66	CR180	4-60	J270	4-85
CR024	4-60	$J 106$	4-66	CR200	4-60	CR270	4-60
CR027	4-60	BS107	6-24	JPAD200	4-97	SST270	4-130
CR030	4-60	$J 107$	4-66	JR200V	4-99	J271	4-85
CR033	4-60	$J 108$	4-68	SSTPAD200	4-154	SST271	4-130
CR039	4-60	SST108	4-120	J201	4-78	U290	4-156
VN40AFD	6-51	J109	4-68	SST201	4-127	U291	4-156
CR043	. 4-60	SST109	4-120	J202	4-78	VN0300B	6-63
VN46AFD	6-53	CR110	4-60	SST202	4-127	VP0300B	6-105
CR047	. 4-60	$J 110$	4-68	J203	4-78	CR300	4-60
DPAD50	. 4-64	J110A	4-68	SST203	4-127	VN0300LO	6-63
JPAD50	. 4-97	SST110	4-120	J204	4-78	VN0300M	6-63
PAD50 . . .	4-107	J111..	4-71	SST204 . .	4-127	VP0300L	6-105

VP0300M	6-105	$J 500$	4-91	VQ1001J	6-120	VP2020E	6-114
J304	4-87	JPAD500	4-97	VQ1001P	6-120	VP2020L	6-114
J305	4-87	SSTPAD500	4-154	VQ1004J	6-122	SD2100	5-12
J308	4-89	J501	4-91	VQ1004P	6-122	SST2100	5-12
SST308	4-132	J502	4-91	VQ1006J	6-124	VN2222KM	6-89
U308	4-158	J503	4-91	VQ1006P	6-124	VN2222L	6-89
J309	4-89	J504	4-91	VP1008B	6-112	VN2222LL	6-91
SST309	4-132	J505	4-91	VP1008L	6-112	VN2222LM	6-91
U309	4-158	J506	4-91	VP1008M	6-112	ND2406B	6-44
J310	4-89	J507	4-91	P1086	4-105	ND2406L	6-44
SST310	4-132	J508	4-91	P1087	4-105	VN2406B	6-93
U310	4-158	J509	4-91	VN1206B	6-75	VN2406D	6-93
CR330	4-60	J510	4-91	VN1206D	6-75	VN2406L	6-95
U350	4-160	J511	4-91	VN1206L	6-77	VN2406M	6-95
CRR0360	4-62	CR530	4-60	VN1206M	6-77	ND2410B	6-46
CR390	4-60	J552	4-93	VN1210L	6-79	ND2410L	6-46
U401	4-162	J553	4-95	VN1210M	6-79	VN2410M	
U402	4-162	J554	4-95	CRR1250	4-62	VP2410B	6-116
U403	4-162	J555	4-95	VN1706B	6-81	VP2410L	6-116
SST404	4-134	J556	4-95	VN1706D	6-81	CRR2900	4-62
U404	4-162	J557	4-95	VN1706L	6-83	VQ3001J	6-134
SST405	4-134	CRR0560	4-62	VN1706M	6-83	VQ3001P	6-134
U405	4-162	VN0603L	6-65	VN1710L	6-85	VN3515L	6-99
SST406	4-134	VN0603T	6-65	VN1710M	6-85	2N3819	4-2
U406	4-162	VN0605T	6-67	U1897	4-174	2N3956	4-4
U421	4-165	TP0610E	6-48	U1898	4-174	2N3957	4-4
U422	4-165	TP0610L	6-48	U1899	4-174	2N3958	4-4
U423	4-165	TP0610T	6-48	CRR1950	4-62	VN4012B	6-99
U424	4-165	VN0610L	6-69	VQ2000J	6-126	VN4012L	6-99
U425	4-165	VN0610LL	6-71	VQ2000P	6-126	2N4091	4-6
U426	4-165	VP0610E	6-107	VQ2001J	6-128	PN4091	4-109
CR430	4-60	VP0610L	6-107	VQ2001P	6-128	SST4091	4-138
U430	4-168	VP0610T	6-107	VQ2004J	6-130		
U431	4-168	CRR0800	4-62	VQ2004P	6-130	PN4092	$\begin{aligned} & 4-109 \\ & 4-138 \end{aligned}$
M440	4-101	VP0808B	6-110	VQ2006 J	6-132	2N4093	4-6
SST440	4-136	VN0808L	6-73	VQ2006P	6-132	PN4093	4-109
M441	4-101	VN0808M	6-73	VN2010L	6-87	SST4093	4-138
SST441	4-136	VP0808L	6-110	ND2012E	6-40	PN4116	4-118
U441	4-170	VP0808M	6-110	ND2012L	6-40	2N4117	4-8
U443	4-172	MFE823	6-38	ND2020E	6-42	2N4117A	4-8
U444	4-172	VQ1000J	6-118	ND2020L	6-42	PN4117	4-111
CR470	4-60	VQ1000P	6-118	VN2020L	6-87	PN4117A	4-111

2N4118	4-8	2N4857	4-21	SST5116	4-146	2N6661 JAN	6-10
2N4118A	4-8	2N4857A	4-24	2N5196	4-34	2N6661 JANTX	6-10
PN4118	4-111	2N4858	4-21	2N5197	4-34	2N6661 JANTX	6-10
PN4118A	4-111	2N4858A	4-24	2N5198	4-34	2N6905	
2N4119	4-8	2N4859	4-21	2N5199	4-34	2N6906	
2N4119A	4-8	2N4859A	4-24	SD5400	5-16		
PN4119	4-111	SST4859	4-144	SD5401	5-16		
PN4119A	4-111	2N4860	4-21	SD5402	5-16	2N6908	4-52
2N4220	4-11	2N4860A	4-24	2N5432	4-37	SST6908	-150
2N4220A	4-11	SST4860	4-144	2N5433	4-37	2N6909	4-52
2N4221	4-11	2N4861	4-21	2N5434	4-37	SST6909	150
2N4221A	4-11	2N4861A	4-24	2N5460	4-39	2N6910	4-52
2N4222	4-11	SST4861	4-144	2N5461	4-39	SST6910	4-150
2N4222A	4-11	2N4867	4-27	2N5464	4-39	2N7000	6-12
CRR4300	4-62	2N4867A	4-27	2N5462	4-39	2N7001	14
PN4302	4-114	2N4868	4-27	2N5465	4-39	2N7002	16
PN4303	4-114	2N4868A	4-27	2N5484	4-42	2N7007	
PN4304	4-114	2N4869	4-27	2N5485	4-42		
2N4338	4-14	2N4869A	4-27	2N5486	4-42	2N7008	6-20
2N4339	4-14	SD5000	5-14	2N5564	4-44	2N7104	
2N4340	4-14	SD5001	5-14	2N5565	4-44	2N7105	
2N4341	4-14	SD5002	5-14	2N5566	4-44	2N7106	5-2
2N4391	4-17	2N5114	4-30	2N5638	4-46	2N7107	5-4
PN4391	4-116	2N5114JAN	4-32	2N5639	4-46	2N7108	5-2
SST4391	4-140	2N5114JANTX	4-32	2N5640	4-46	2N7109	5-4
2N4392	4-17	2N5114JANTXV	4-32	2N5911	4-48	2N7116	6
PN4392	4-116	SST5114	4-146	M5911	4-103	2N7117	
SST4392	4-140	2N5115	4-30	2N5912	4-48	2N7118	
2N4393	4-17	2N5115JAN	4-32	M5912	4-103		
PN4393	4-116	2N5115JANTX	4-32	SST5912	4-148		
SST4393	4-140	2N5115JANTXV	4-32	2N6659	6-2	VQ7254P	6-136
2N4416	4-19	SST5115	4-146	2N6660	6-4	Si8901	5-18
2N4416A	4-19	2N5116	4-30	2N6660 J	6-6	VN45350L	6-101
SST4416	4-142	2N5116JAN	4-32	2N6660 J	6-6	VN45350T	6-101
2N4856	4-21	2N5116JANTX	4-32	2N6660	6-6	VN50300L	6-103
2N4856A	4-24	2N5116JANTXV	4-32	2N6661	6-8	VN50300T	6-103

General Information

Cross Reference

Selector Guide

JFETs
DMOS
Low Power MOS
Performance Curves
Package Outlines
Applications
Worldwide Sales Offices and Distributors

LOW POWER DISCRETES DEVICE ORDERING INFORMATION

TECHNOLOGYIDESIGN PREFIX-DEVICE FAMILY

BF -European Transistor Standard Diode TO-92
Cased FET
CR \quad-Si Standard N-Channel Current Regulator
CRR -Si Standard N-Channel Current Regulator
DM \quad-Si Special DMOS FET
DN -Si Dual N-Channel JFET
FN $\quad-\mathrm{Si} \mathrm{N}$-Channel JFET
DPAD -Si Standard Dual JFET Diode
J -Si Standard TO-92 Cased FET
JR \quad-SI Standard Current Limiter
JPAD -SI Standard JFET Diode
MU -Si Special MOSFET
ND \quad-Si Standard Low Power MOS
PAD -Si Standard JFET Diode
PN -SI Standard TO-92 Cased FET
SD \quad-Si Standard DMOS FET
SST -Surface Mount Device
U -Si Standard FET
V -Si Standard or Special Low Power MOS
VCR -Si Standard N - and P-Channel Voltage Controlled Resistors
$2 N \quad-J E D E C$-Registered Device
3N -JEDEC-Registered Device

PROCESS OPTION

-1 Contact Factory - 750B Visual, Mil-STD-750 Processing (JANTXV)
-2 Contact Factory - 750B Visual, MIL-STD-750 Processing (JANTX)

3 Contact Factory - 750B Visual, MIL-STD-750, Group B and C

PACKAGE
-05 Std TO-92 Lead Formed to TO-5 Pin Circle
-18 Std TO-92 with Center Lead Formed Toward Flat in TO-18 Pin Circle
-TR Tape and Reel Available on TO-92 FETs
-TA Tape and Ammo Pack Available on TO-92 FETs
-T1, T2 Tape and Reel Available on SOT-23, SOT-143 and SOIC Products

Hi-Rel Process Capabilities

INTRODUCTION

For over twenty years Siliconix has actively participated in the Military/Hi-Rel marketplace. The company has been a preferred source supplier on numerous major military programs with Low Power Discrete (LPD) devices designed into land, air, sea and space systems.

LPD products are logical choices in Military/Hi Rel applications for several reasons. There are performance benefits to be gained using LPD devices which cannot be matched with any other existing technology. LPD devices are inherently radiation-hardened, as high as $6 \times 10^{5} \mathrm{RAD}(\mathrm{Si})$. They perform reliably at cryogenic temperatures proving they can operate as a "Focal Plane Preamp" at a liquid helium temperature of $35^{\circ} \mathrm{K}$.

The LPD business unit is dedicated to serving the Military/Hi-Rel market and does so in five basic ways: QPL (Qualified Parts List) devices, CECC devices, Standard Hi-Rel Process Flows, Hi-Rel "Specials", and Lockheed Monitored Line devices.

QPL Devices (See Figure 1)

For ease of delivery and in keeping with the government trend towards standardized devices, the LPD product line offers 16 QPL devices (with more QPL quals in progress). These are products qualified under Military Specification Mil-S-19500, the General Specification for Semiconductor Devices. Parts are purchased by specifying the appropriate Government Designation on the purchase order. The LPD business unit is continuously evaluating the devices within its product line for candidates as additional QPL devices. Wherever a significant need is demonstrated, the LPD Business Unit is committed to addressing that need by seeking QPL approval from DESC.

CECC Devices (See Figure 2)

CECC 50000 is the European system of electronic component approval in which product is released to internationally agreed detail specifications conforming to CECC rules. QPL listed products are built on an approved line by a manufacturer who must comply with defined standards relating to organization, facilities and quality assurance procedures.

Throughout Europe CECC approved components are preferred items for all military and aerospace programmes.

Standard Hi-Rel Processes (See Figure 3)

Where a QPL device does not exist, LPD offers the next best thing with its $-1,-2$ and LP3 process flows. The -1 process flow provides many of the 100% screening steps for a JANTXV-level device as called out in Mil-S-19500. U.S. Build is included. The -2 provides many of the 100% screening steps for a JANTX-level device as called out in Mil-S-19500.

The LP3 process flow provides 100\% processing similar to Mil-S-19500 for a JANTX-level device using Mil-S-750 test methods. Group A, B, and C testing is included. Portions of the 100% screening and/or the Quality Conformance Inspection testing may be performed at any of Siliconix' worldwide facilities.

Use of these standard processes can eliminate the need for a costly source control drawing. The processes can be performed on any hermetic packaged LPD device. Devices are ordered by adding the -1, -2, -LPD3 as a suffix to the standard part type (i.e. 2N5432-1, 2N5432-2, 2N5432-LP3).

9 Siliconix

Hi-Rel "Specials"

Where QPL, CECC, $-1,-2$ and LP3 won't do, LPD can provide processing based upon a customer source control drawing or detail specification. Siliconix has built a reputation in the industry for its skill in manufacturing such devices commonly referred to as "Specials". All Mil-S-19500/Mil-Std-750 requirements through JANTXVlevel processing can be provided. Baseline control, a "must" in many Military/Hi-Rel applications, is offered. Our dedicated Program Management group can provide the coordination necessary to commandeer the more complex specials through the factory.

Lockheed Monitored Line

Siliconix also offers Lockheed-monitored line parts. This means on-line process monitoring by a resident team of quality \& reliability engineers. With approval from the U.S. Air Force, this service can be used by any aerospace company or government agency.

Conclusion

Since 1964 Siliconix has been regarded as a steady, reliable supplier to the Military/Hi-Rel market. We intend to carry this reputation into the future by providing Military/Hi-Rel service you can rely on for many years to come.

Figure 1

LOW POWER DISCRETE QUALIFIED PARTS LIST (QPL)

Products Qualified as Standard Devices under Military Specification
Mil-S-19500: Semiconductor Devices, General Specification For

LOW POWER DISCRETE CECC 50000 - QUALIFIED DEVICES

Additional Product Options for European Customers

At this time, member countries of the CECC (Cenelec Electronic Components Committee) are Belgium, Denmark, Germany, France, Ireland, Italy, the Netherlands, Norway, Sweden, Switzerland and the United Kingdom.

Specific device types are individually qualified against a fixed detail specification which has been approved by the British Standards Institute (BSI) acting as the national supervising agency on behalf of CECC.

The CECC 50000 scheme is administered in the UK by the BSI. The UK-generated specifications are prefixed with the letters BS.

A number of industry preferred standard device types are now qualified and the following detail specifications are available:

Type Number
2N3824
2N4391/2/3
2N4856A/7A/8A
2N4220/1/2
2N6659/60/6I
2N5564/65/66

BS Specification
BS CECC 50 012-008
BS CECC 50 012-004
BS CECC 50 012-006
BS CECC 50 012-009
BS CECC 50 012-016
BS CECC 50 012-024

Type Number
U430/U431 BS CECC 50 012-025
2N5432/3/4 BS CECC 50 012-026
VQ1001 BS CECC 50 012-040
CR022 through CR062
CR068 through CR150
CR160 through CR530

BS Specification

BS CECC 50 013-001
BS CECC 50 013-002
BS CECC 50 013-003

Each of the approved types is now available with additional screening options, including high temperature reverse bias burn-in, of either 48,72 or 168 hours duration. Screening details are appended to the detail specification and conform to appendix VI of the European Standard CECC 50000 ISSUE 3.

Product is released with a BS CECC certificate of conformity and will have been submitted to:

1. Group A sample inspection (lot by lot)-quality assessment tests, assuring product conforms to electrical specification.
2. Group B sample inspection (lot by lot)-reliability tests, including package related tests and 168 hours electrical endurance, to identify potential early failures.
3. Group C sample inspection (periodic - 3 monthly)-long term reliability tests including 1000 hours of high temperature storage and electrical endurance.

Data from the inspection tests is available to the customer in the form of CTRs (certified test records).
Manufacturing of BS CECC product is carried out in the Siliconix UK facility located in Morriston, Swansea SA6 6NE, South Wales.

In addition to BS CECC approved product, the Siliconix UK facility can provide internationally recognized high-reliability screening options on standard products. These include Mil-750 and custom screening options.

JAN, JANTX or JANTXV processing for certain JEDEC-registered FETs can also be supplied.
For additional information and details of new/pending approvals, inquiries may be directed to the nearest sales office.

Figure 3
LPD PROCESS OPTIONS HI-REL PROCESS FLOWS

Figure 4

COMMERCIAL/INDUSTRIAL PROCESS FLOWS

Worldwide Sales Offices and Distributors

CROSS REFERENCE

Siliconix Direct Replacement

Siliconix Similar Replacement

Suggestions are based on the similarity of mechanical and electrical characteristics, as reported in the manufacturer's published data. Interchangeability is not guaranteed. Before selecting a device as a substitute, compare the specifications.

Suggestions are based on the similarity of electrical characteristics, as reported in the manufacturer's published data. Interchangeablity is not guaranteed, as these parts may have different pin configurations. Before selecting a device as a substitute, compare the specifications. For devices not shown in this guide, or for additional information, the user should contact the nearest Siliconix sales office.

Part Number	Siliconıx Direct Replacement	Siliconix Similar Replacement	Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement
AM0610LL	VN0610LL		BSS110		TP0610L
AM10LM	VN10LM		BSS124		VN4012L
AM2222LL	VN2222LL		BSS129	BSS129	
AM2222LM	VN2222LM		BSS138		VNO603T
A5T3821		2N4220	BSS83		SST213
A5T3822		2N4221	BSS84		TP0610T
A5T3823		2N4222	BSS89	BSS89	
A5T3824		2N4220	BSS92	BSS92	
A5T5460		2N5460	BSS98		VN0603L
A5T5461		2N5461	BST70		VN0808L
A5T5462		2N5462	BST72A		VN0808L
BFQ10	U401		BSV78	2N4856	
BFQ11	U401		BSV79	2N4857	
BFQ12	U402		BSV80	2N4858	
BFQ13	U403		BS107	BS107	
BFQ14	U404		BS107P	VN2010L	
BFQ15	U405		BS170	BS170	
BFQ16	U405		BS208	BS208	
BFR30		SST203	BS250	BS250	
BFR31		SST202	CIL-1300		J502
BFT10	SST202		CIL-1301		J505
BFT10SM	SST202		CIL-1302		J507
BFT11	SST230		CIL-1303		J509
BFT11SM	SST230		CIL-1304		J510
BFT46	SST4338		CIL-1305		J511
BFW13	2 N 4867		CIL-250		J511
BF244A	BF244A		CIL-251		J511
BF244B	BF244B		CL1020	CR100	
BF244C	BF244C		CL1520	CR150	
BF256LA		2N5485	CL2210	CR022	
BF256LB		2N5485	CL2220	CR220	
BF256LC		2N5486	CL3310	CR033	
BSD10	SD2100		CL3320	CR330	
BSD12	SD2100		CL4710	CR047	
BSD20	SST2100		CL4720	CR470	
BSD212	SD212DE		CL6810	CR068	
BSD213	SD213DE		CRR0240	CRR0240	
BSD214	SD214DE		CRR0360	CRR0360	
BSD215	SD215DE		CRR0560	CRR0560	
BSD22	SST2100		CRR0800	CRR0800	
BSJ174	J174		CRR1250	CRR1250	
BSJ175	J175		CRR1950	CRR1950	
BSJ176	J176		CRR2900	CRR2900	
BSJ177	$J 177$		CRR4300	CRR4300	
BSR174	SST174		CR022	CR022	
BSR175	SST175		CR024	CR024	
BSR176	SST176		CR027	CR027	
BSR177	SST177		CR030	CR030	
BSR56	BSR56		CR033	CR033	
BSR57	BSR57		CR039	CR039	
BSR58	BSR58		CR043	CR043	
BSR66		VN0606M	CR047	CR047	
BSR67		VN0808M	CR056	CR056	
BSR76		VN2410M	CR062	CR062	
BSS100		VN1206L	CR068	CR068	
BSS101		VN2406L	CR075	CR075	

Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement	Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement
CR082	CR082		E201	J201-18	
CR091	CR091		E202	J202-18	
CR100	CR100		E203	J203-18	
CR110	CR110		E204	J204-18	
CR120	CR120		E210	J210-18	
CR130	CR130		E211	J211-18	
CR140	CR140		E212	J212-18	
CR150	CR150		E230	J230-18	
CR160	CR160		E231	J231-18	
CR180	CR180		E232	J232-18	
CR200	CR200		E270	J270-18	
CR220	CR220		E271	J271-18	
CR240	CR240		E300		J212-18
CR270	CR270		E304	J304-18	
CR300	CR300		E305	J305-18	
CR330	CR330		E308	J308-18	
CR360	CR360		E309	J309-18	
CR390	CR390		E310	J310-18	
CR430	CR430		E400	U410	
CR470	CR470		E401	$\cup 411$	
CR530	CR530		E402	$\cup 412$	
C3141		PAD10	E410	U410	
C3142		PAD50	E411	U411	
C3143		PAD100	E412	U412	
C3144		PAD500	E420		U440
DPAD1	DPAD1		E421		U441
DPAD10	DPAD10		E430		$\cup 430$
DPAD100	DPAD100		E431		$\cup 431$
DPAD2	DPAD2		E500	J500	
DPAD20	DPAD20		E501	J501	
DPAD5	DPAD5		E502	J502	
DPAD50	DPAD50		E503	$J 503$	
DU4339		2N6907A	E504	J504	
DU4340	2N6907A		E505	J505	
ECG312		2 N 4416	E506	J506	
ECG451		J210	E507	J507	
ECG452	2 N4416		FE0654A		J210
ECG456		2N4221	FE0654B		J210
ECG457	J204		FE0654C		J202
ECG464		3N164	FN4117	2 N 4117	
ECG466	2N4091		FN4117A	2N4117A	
ECG467	J111		FN4118	2N4118	
EPAD100	JPAD100		FN4118A	2N4118A	
EPAD200	JPAD200		FN4119	2N4119	
EPAD50	JPAD50		FN4119A	2N4119A	
EPAD500	JPAD500		FN4392	2N4392	
ESM25	U234		FN4393	2N4393	
ESM25A	U233		FT704	3N163	
ESM4091	PN4091		IMF3954		2N5146
ESM4092	PN4092		IMF3954A		2N5146
ESM4093	PN4093		IMF3955		2N5197
ESM4302	PN4302		IMF3955A		2N5196
ESM4303	PN4303		IMF3956	2N3956	
ESM4304	PN4304		IMF3957	2N3957	
E100	J203-18		IMF3958	2N3958	
E101	J201-18		IMF5911	2N5911	
E102	J202-18		IMF5912	2N5912	
E103	J203-18		IMF6485	U405	
E105	J105-18		ITE3066		J202
E106	J106-18		1 1TE3067		J201
E107	J107-18		ITE3068		J201
E108	J108-18		ITE4091		$J 111$
E109	J109-18		ITE4092		$J 112$
E110	J110-18		ITE4093		J113
E111	J111-18		1 IE4117		PN4117
E111A	J111A-18		1 TE4118		PN4118
E112	J112-18		1 IE4119		PN4119
E112A	J112A-18		ITE4338		J201
E113	J113-18		ITE4339		J204
E113A	J113A-18		ITE4340		J202
E114	J114-18		ITE4341		J204
E174	J174-18		ITE4391	PN4391-18	
E175	J175-18		1 IE4392	PN4392-18	
E176	J176-18		ITE4393	PN4393-18	
E177	J177-18		ITE4416	PN4416-18	

Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement	Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement
1 TE4867		2N4867	J230-18	J230-18	
ITE4868		2N4868	J231	J231	
1 ITE4869		2N4869	J231-18	J231-18	
IT100	2N5116		J232	J232	
IT101	2N5114		J232-18	J232-18	
IT108	2N5486		J270	J270	
IT109	U310		J270-18	J270-18	
IT1700	3N163		J271	J271	
IVN6002CND	VN40AD		J271-18	J271-18	
IVN6300ANF	VNO808M		J300		J212
JPAD10	JPAD10		J300-18		J212-18
JPAD100	JPAD100		J300A		J210
JPAD20	JPAD20		J300B		J211
JPAD200	JPAD200		J300C		J211
JPAD5	JPAD5		J300D		J212
JPAD50	JPAD50		J304	J304	
JPAD500	JPAD500		J304-18	J304-18	
JR135V	JR135V		J305	$J 305$	
JR170V	JR170V		J305-18	J305-18	
JR200V	JR200V		J308	J308	
JR220V	JR220V		J308-18	J308-18	
JR240V	JR240V		J309	J309	
J105	$J 105$		J309-18	J309-18	
J105-18	J105-18		J310	J310	
J106	$J 106$		J310-18	J310-18	
J106-18	J106-18		J401	U401	
J107	J107		J402	U402	
J107-18	J107-18		$J 403$	U403	
J108	J108		J404	U404	
J108-18	J108-18		J405	U405	
J109	$J 109$		J406	U406	
J109-18	J109-18		J4091	PN4091	
J110	$J 110$		$J 4092$	PN4092	
J110-18	J110-18		$J 4093$	PN4093	
J110A	J110A		J410	U410	
J111	$J 111$		J411	U411	
J111-18	J111-18		J412	U412	
J111A	J111A		J4302	PN4302	
$J 112$	$J 112$		J4303	PN4303	
J112-18	J112-18		J4391	PN4391	
J112A	J112A		J4392	PN4392	
J113	$J 113$		J4393	PN4393	
J113-18	J113-18		J4416	PN4416	
J113A	J113A		J500	J500	
J114	J114		J501	J501	
J114-18	J114-18		J502	J502	
J1401	U401		J503	J503	
J1402	U402		J504	J504	
J1403	U403		J505	J505	
J1404	U404		J506	J506	
J1405	U405		J507	J507	
J1406	U406		J508	J508	
J174	J174		J509	J509	
J174-18	J174-18		J510	J510	
J175	J175		J5103	2N5485	
J175-18	J175-18		J5104	2N5485	
J176	$J 176$		J511	J511	
J176-18	J176-18		J552	J552	
$J 177$	$J 177$		J553	J553	
J177-18	J177-18		J554	J554	
J201	J201		J555	J555	
J201-18	J201-18		J556	J556	
J202	J202		J557	J557	
J202-18	J202-18		J9100	J552	
J203	J203		KE4091		PN4091
J203-18	J203-18		KE4092		PN4092
J204	J204		KE4093		PN4093
J204-18	J204-18		KE4220		J202
J210	J210		KE4222		J203
J210-18	J210-18		KE4391		PN4391
J211	J211		KE4392		PN4392
J211-18	J211-18		KE4393		PN4393
J212	J212		KE4416		PN4416
J212-18	J212-18		KK4416-18	PN4416-18	
J230	J230		K114		J211

Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement	Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement
K114-18		J211-18	MFE2012	2N5432	
K210-18	J210-18		MFE3069	2N4341	
K211-18	J211-18		MFE3459	2N4339	
K300-18	J210-18		MFE3460	2N4338	
K304-18	J304-18		MFE3821	2N4220	
K305-18	J305-18		MFE3822	2N4221	
K308-18	J308-18		MFE910		VN10KE
K309-18	J309-18		MFE9200		VN2406L
K310-18	J310-18		MK10		J212
LDF603	2N4221A		MMBFJ111	SST111	
LD014CNC		JR240V	MMBFJ112	SST112	
LSJ33A		$J 113$	MMBFJ113	SST113	
LS3069		J203	MMBFJ113	SST113	
LS3070		J202	MMBFJ174	SST174	
LS3071		J201	MMBFJ174	SST174	
LS3458		J232	MMBFJ175	SST175	
LS3487		J201	MMBFJ175	SST175	
LS3819		J204	MMBFJ176	SST176	
LS3821		J202	MMBFJ176	SST176	
LS3822		J305	MMBFJ177	SST177	
LS3921		2N4220	MMBFJ177	SST177	
LS3967		J304	MMBFJ309	SST309	
LS3968		J305	MMBFJ309	SST309	
LS3969		J230	MMBFJ310	SST310	
LS4220		J202	MMBFJ310	SST310	
LS4221		J305	MMBFU310	SSTU310	
LS4223		J305	MMBF170		2N7002
LS4224		J305	MMBF4391	SST4391	
LS4339		J201	MMBF4392	SST4392	
LS4340		J202	MMBF4393	SST4393	
LS4341		J203	MMBF4416	SST4416	
LS4391		J111	MMBF4860	SST4860	
LS4392		J112	MMBF4861	SST4861	
LS4393		J113	MMBF5457	SST5457	
LS4416		PN4416	MMBF5459	SST5459	
LS4856		J111	MMBF5460	SST5460	
LS4857		J112	MMBF5461	SST5461	
LS4858		J113	MMBF5462	SST5462	
LS4859		J111	MMBF5463	SST5463	
LS4860		J112	MMBF5484	SST5484	
LS4861		J113	MMBF5485	SST5485	
LS5103		J305	MMBF5486	SST5486	
LS5104		J305	MMT3823	2N4222	
LS5105		J304	MPF10LM		VN10LM
LS5245		J304	MPF102		J304
LS5246		J305	MPF103		J202
LS5247		J304	MPF104		J202
LS5248		J304	MPF105		J203
LS5358		J202	MPF106	2N5485	
LS5359		J202	MPF107	2N5486	
LS5360		J305	MPF108		$J 304$
LS5362		J304	MPF109		J304
LS5363		J304	MPF110	2N3819	
LS5364		J304	MPF111		$J 304$
LS5391		J231	MPF112		J304
LS5392		J305	MPF203	J310	
LS5394		J305	MPF4150		VN1706L
LS5395		J304	MPF4391	PN4391-18	
LS5396		J304	MPF4392	PN4392-18	
LS5457		J305	MPF4393	PN4393-18	
LS5458		J305	MPF6660		2N6660
LS5459		J305	MPF6661		2N6661
LS5484		J305	MPF820	J212	
LS5485		J305	MPF910		VN10LM
LS5486		J304	MPF9200		VN2406L
LS5556		J320	MPF9200		VN2406L
LS5557		J231	MPF970	$J 174$	
LS5558		J232	MPF971	$J 176$	
LS5638		J111	M163	3N163	
LS5639		J112	M164	3N164	
LS5640		$J 113$	M440	M440	
MEF101		J203	M441	M441	
MEM511		3N163	M5911	M5911	
MFE2010	2N5434		M5912	M5912	
MFE2011	2N5433		ND2012L	ND2012L	

Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement	Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement
ND2020E	ND2020E		PN4391	PN4391	
ND2020L	ND2020L		PN4391-18	PN4391-18	
ND2406L	ND2406L		PN4392	PN4392	
ND2410B	ND2410B		PN4392-18	PN4392-18	
ND2410L	ND2410L		PN4393	PN4393	
NF3819		J212-188	PN4393-18	PN4393-18	
NF4302	2N4302		PN4416	PN4416	
NF4303	2N4303		PN4856		2N4856
NF4304	2N4304		PN4857		2N4857
NF4445	2N5432		PN4858		2N4858
NF4446	2N5433		PN4859		2N4859
NF4447	2N5432		PN4860		2N4860
NF4448	2N5433		PN4861		2N4861
NF500	2N4416		PN5114		2N5114
NF501	2N4416		PN5115		2N5115
NF506	2N4416		PN5116		2N5116
NF510	2N4393		PN5432		2N5432
NF5102	J230		PN5433		2N5433
NF511	2N4393		PN5434		2N5434
NF5163	2N5163		P1086	P1086	
NF520	2N4339		P1086-18	P1086-18	
NF521	2N4339		P1086E	P1086	
NF522	2N4339		P1087	P1087	
NF523	2N4340		P1087E	P1087	
NF530	2N4341		SDF1001		J108
NF531	2N4339		SDF1002		J109
NF532	2N4341		SDF1003		J110
NF533	2N4339		SDF500		2N5196
NF5457	J202		SDF501		2N5197
NF5458	J202		SDF502		2N3956
NF5459	J20359		SDF503		2N3957
NF5484	2N5484		SDF504		2N3958
NF5485	2N5485		SDF505		2N5196
NF5486	2N5486		SDF506		2N5197
NF550		2N5566	SDF507		2N3956
NF5555	2N5555		SDF508		2N3957
NF5638	2N5638		SDF509		2N3958
NF5639	2N5639		SDF510		2N5196
NF5640	2N5640		SDF511		2N5197
NF5653	2N5653		SDF512		2N3956
NF5654	2N5654		SDF513		2N3957
NF580	2N5432		SDF514		2N3958
NF581	2N5432		SD210DE	SD210DE	
NF582	2N5433		SD210EE	SD210DE	
NF583	2N5434		SD2100	SD2100	
NF584	2N5433		SD211DE	SD211DE	
NF585	2N4859		SD211EE	SD211DE	
NOS100B		ND2410B	SD212DE	SD212DE	
NOS101B		ND2410B	SD212EE	SD212DE	
NOS102B		ND2410B	SD213DE	SD213DE	
NPC108	J304		SD213EE	SD213DE	
NPC108A	J304		SD214DE	SD214DE	
PMBF4391	SST4391		SD214EE	SD214DE	
PMBF4392	SST4392		SD215DE	SD215DE	
PMBF4393	SST4393		SD50001	SD50001	
PN4091	PN4091		SD5000J	SD5000N	
PN4092	PN4092		SD5000N	SD5000N	
PN4093	PN4093		SD50011	SD50011	
PN4117	PN4117		SD5001J	SD5001N	
PN4117A	PN4117A		SD5001N	SD5001N	
PN4118	PN4118		SD50021	SD50021	
PN4118A	PN4118A		SD5002J	SD5002N	
PN4119	PN4119		SD5002N	SD5002N	
PN4119A	PN4119A		SD5200,		SD5000
PN4120	PN4120		SD5200N		SD5000N
PN4120A	PN4120A		SD5400CY	SD5400CY	
PN4220		PN4302	SD5401CY	SD5401CY	
PN4221		PN4303	SD5402CY	SD5402CY	
PN4222		PN4304	SI8901A	SI8901A	
PN4302	PN4302		Sl8901Y	SI8901Y	
PN4302-18	PN4302-18		SK3112		J231
PN4303	PN4303		SK3746/326		J305
PN4303-18	PN4303-18		SK3834/132		J211
PN4304	PN4304		SK3977/456		2N4421
PN4304-18	PN4304-18		SK9072/452		2N4416

Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement	Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement
SK9148/461		2N5199	TD5906	$\cup 422$	
SK9160/462		2N4869	TD5907	U424	
SK9161/457		J305	TD5908	U425	
SK9162/467	.	2N4391	TD5909	$\cup 426$	
SK9163/466		2N4991	THJJ105	J105CHP	
SK9460/458		J230	THJJ106	J106CHP	
SO4391	SST4391		THJJ107	J107CHP	
SO4392	SST4392		THJJ108	J108CHP	
504393	SST4393		THJJ109	J109CHP	
SO4416	SST4416		THJJ110	J110CHP	
SSTDPAD100	SSTDPAD100		THJJ111	J111CHP	
SSTDPAD20	SSTDPAD20		THJJ111A	J111ACHP	
SSTDPAD5	SSTDPAD5		THJJ112	J112CHP	
SSTDPAD50	SSTDPAD50		THJJ112A	J112ACHP	
SST108	SST108		THJJ113	J113CHP	
SST109	SST109		THJJ113A	J113ACHP	
SST110	SST110		THJJ174	J174CHP	
SST111	SST111		THJJ175	J175CHP	
SST112	SST112		THJJ176	J176CHP	
SST113	SST113		THJJ177	J177CHP	
SST174	SST174		THJJ201	J201CHP	
SST175	SST175		THJJ202	J202CHP	
SST176	SST176		THJJ203	J203CHP	
SST177	SST177		THJJ210	J210CHP	
SST201	SST201		THJJ211	J211CHP	
SST202	SST202		THJJ212	J212CHP	
SST203	SST203		THJJ230	J230CHP	
SST204	SST204		THJJ231	J231CHP	
SST211	SST211		THJJ232	J232CHP	
SST213	SST213		THJJ270	J270CHP	
SST215	SST215		THJJ271	J271CHP	
SST270	SST270		THJJ300A		J212CHP
SST271	SST271		THJJ300B		J210CHP
SST308	SST308		THJJ300C		J211CHP
SST309	SST309		THJJ304	J304CHP	
SST310	SST310		THJJ305	J305CHP	
SST404	SST404		THJJ308	J308CHP	
SST405	SST405		THJJ309	J309CHP	
SST406	SST406		THJJ310	J310CHP	
SST4091	SST4091		THJP1086	P1086CHP	
SST4092	SST4092		THJP1087	P1087CHP	
SST4093	SST4093		THJU290	U290CHP	
SST4338	SST4338		THJU291	U291CHP	
SST4339	SST4339		THJU304	U304CHP	
SST4340	SST4340		THJU305	U305CHP	
SST4341	SST4341		THJU306	U306CHP	
SST440	SST440		THJU308	U308CHP	
SST441	SST441		THJU309	U309CHP	
SST4416	SST4416		THJU310	U310CHP	
SST4856	SST4856		THJU401	U401CHP	
SST4857	SST4857		THJU402	U402CHP	
SST4858	SST4858		THJU403	U403CHP	
SST4859	SST4859		THJU404	U404CHP	
SST4860	SST4860		THJU405	U405CHP	
SST4861	SST4861		THJU406	U406CHP	
SST5460	SST5460		THJ4091	2N4091CHP	
SST5461	SST5461		THJ4092	2N4092CHP	
SST5462	SST5462		THJ4093	2N4093CHP	
SST5463	SST5463		THJ4117	2N4117CHP	
SST5464	SST5464		THJ4118	2N4118CHP	
SST5465	SST5465		THJ4119	2N4119CHP	
SST5484	SST5484		THJ4220	2 N 4220 CHP	
SST5485	SST5485		THJ4221	2N4221CHP	
SST5486	SST5486		THJ4222	2N4222CHP	
SST5912	SST5912		THJ4223		2N4222CHP
SST6908	SST6908		THJ4224		2N4222CHP
SST6909	SST6909		THJ4292	2N4392CHP	
SST6910	SST6910		THJ4293	2 N 4393 CHP	
SST6911		SST6908	THJ4338	2N4338CHP	
SU2098	2N5197		THJ4339	2 N 4339 CHP	
SU2098B	2N5196		THJ4340	2N4340CHP	
TD5902	U421		THJ4341	2N4341CHP	
TD5903	U422		THJ4391	2N4391CHP	
TD5904	U423		THJ4416	2N4416CHP	
TD5905	U421		THJ4416A	2N4416ACHP	

Part Number	Siliconix Direct Replacement	Siliconlx Similar Replacement	Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement
THJ4856	2N4856CHP		TMPF4393	SST4393	
THJ4856A	2N4856ACHP		TMPF4416	SST4416	
THJ4857	2N4857CHP		TMPF4416	SST4416	
THJ4857A	2N4857ACHP		TMPF4416A		SST4416
THJ4858	2N4858CHP		TMPF4856	SST4856	
THJ4858A	2N4858ACHP		TMPF4856A	SST4856A	
THJ4859	2N4859CHP		TMPF4857	SST4857	
THJ4859A	2N4859ACHP		TMPF4857A	SST4857A	
THJ4860	2 N 4860 CHP		TMPF4858	SST4848	
THJ4860A	2N4860ACHP		TMPF4858A	SST4848A	
THJ4861	2N4861CHP		TMPF4859	SST4859	
THJ4861A	2N4861ACHP		TMPF4859A	SST4859A	
THJ4867	2N4767CHP		TMPF4860	SST4860	
THJ4868	2N4868CHP		TMPF4860A	SST4860A	
THJ4869	2N4869CHP		TMPF4861	SST4861	
THJ5018	2N5114CHP		TMPF4861A	SST4861A	
THJ5019	2N5114CHP		TMPF5114	SST5114	
THJ5046	2N5196CHP		TMPF5115	SST5115	
THJ5047	2N5199CHP		TMPF5116	SST5116	
THJ5114	2N5114CHP		TMPF5457	SST5457	
THJ5115	2N5115CHP		TMPF5458	SST5458	
THJ5116	2N5116CHP		TMPF5459	SST5459	
THJ5199	2N5199CHP		TMPF5460	SST5460	
THJ5432	2N5432CHP		TMPF5461	SST5461	
THJ5433	2N5433CHP		TMPF5462	SST5462	
THJ5434	2N5434CHP		TMPF5484	SST5484	
THJ5457	J202CHP		TMPF5485	SST5485	
THJ5458	J202CHP		TMPF5486	SST5486	
THJ5459	J203CHP		TNO1O2N2		VNO300B
THJ5484	2N5484CHP		TNO1O2N3		VN0300L
THJ5485	2N5485CHP		TNO520N2		VN2406B
THJ5486	2N5486CHP		TNO520N3		VN2410L
THJ5638	2N5638CHP		TN0524N3		VN2410L
THJ5639	2N5639CHP		TN4117A	2N4117A	
THJ5640	2N5640CHP		TN4118A	2N4118A	
THJ5911	2N5911CHP		TP0610E	TP0610E	
THJ5912	2N5912CHP		TP0610L	TP0610L	
TIS14	2N4416		TP0610T	TP0610T	
TIS88A	2N4416A		UCX1702		3N164
TMF5911	2N5911CHP		UC155		U309
TMF5912	2N5912CHP		UC155E		J309
TMPFJ111	SST111		UC155W		J309
TMPFJ112	SST112		UC1700		3N163
TMPFJ113	SST113		UC210		2N4416
TMPFJ174	SST174		UC2130		2N5196
TMPFJ175	SST175		UC240	2N4869	
TMPFJ176	SST176		UC241		2N4221
TMPFJ177	SST177		UC250		2N4091
TMPFJ201	SST201		UC251	2N4392	
TMPFJ202	SST202		UC452		2N4392
TMPFJ203	SST203		UC588		PN4416
TMPFJ210	SST210		UC703		2N4221
TMPFJ211	SST211		UC705		U310
TMPFJ212	SST212		UC707		2N4856
TMPFJ270	SST270		UC714		2N4222
TMPFJ271	SST271		UC755		2N4341
TMPFJ300		SST212	UC756		2N4341
TMPFJ304	SST304		UC758		J202
TMPFJ305	SST305		U1177	2N4220A	
TMPFJ308	SST308		U1325	2N4222	
TMPFJ309	SST309		U183	2N4416	
TMPFJ310	SST310		U1837	U1837	
TMPFU304	SST304		U1837-18	U1837-18	
TMPFU310	SST310		U1837E	U1837	
TMPF3819	SST4416		U184	2N4416	
TMPF3820		SST270	U1897	U1897	
TMPF4091	SST4856		U1897-18	U1897-18	
TMPF4092	SST4857		U1897E	U1897-18	
TMPF4093		SST4856	U1898	U1898	
TMPF4338		SST201	U1898-18	U1898-18	
TMPF4339		SST204	U1898E	U1898-18	
TMPF4340		SST202	U1899	U1899	
TMPF4341		SST203	U1899-18	U1899-18	
TMPF4391	SST4391		U1899E	U1899-18	
TMPF4392	SST4392		U197	2N4338	

Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement	Part Number	Slliconix Direct Replacement	Siliconix Similar Replacement
U198	2N4340		U444	4444	
U199		2N4341	U508	CRR0240	
U1994		J304	VCR2N	VCR2N	
U1994E		J304-18	VCR3P	VCR3P	
U200		2N4393	VCR4N	VCR4N	
U201		2N4392	VCR5P	VCR3P	
U202		2N4391	VCR7N	VCR7N	
U2047E	PN4416-18		VNO104N5	VN66AD	
U2134		2N5199	VNO104N6		
U231	2N5197		VNO104N7		VQ1004P
U232	2N5198		VN0106N5	VN66AD	
U233	2N5199		VN0106N6		VQ1004J
U234	2N5199		VN0106N7		VQ1004P
U235	2N5199		VN0106N9		VN10LE
U240	2N5432		VN0116N2		VN1706B
U241	2N5433		VN0116N3		VN1710L
U242	2N5432		VN0116N5	VN1706D	
U243	2N5433		VN0120N2		VN2406B
U248	U42402		VNO120N3		VN2410L
U249	U424		VN0120N5	VN2406D	
U250	U425		VN0216N2		VN1706B
U251	U426		VN0216N3		VN1706L
U257	M5912		VN0216N5		VN1706D
U280		2N5197	VN0220N2		VN2406B
U281		2N5197	VN0220N3		VN2406L
U282		2N5198	VN0220N5		VN2406D
U283		2N5198	VN0300B	VN0300B	
U284		2N5199	VN0300D	VN0300D	
U285		2N5199	VN0300L	VN0300L	
U290	U290		VN0300M	VN0300M	
U291	U291		VN0350N3		VN3515L
U295		U290	VN0535N2		VN4012B
U296		U291	VN0535N3		VN3515L
U300		2N5114	VN0540N2		VN4012B
U3000	2N4341		VN0540N3		VN4012L
U3001	2N4339		VN0603L	VN0603L	
U3002	2N4338		VN0603L	VN0603L	
U301		2N5115	VN0603T	VN0603T	
U3010	2N4341		VN0606L	VN0606L	
U3011	2N4340		VN0606M	VN0606M	
U3012	2N4338		VN0606T	VN0605T	
U304	2N5114		VN0610L	VN0610L	
U305	2N5115		VN0610LL	VN0610LL	
U306	2N5116		VN0808L	VN0808L	
U308	U308		VN0808M	VN0808M	
U309	U309		VN10KE	VN10KE	
U310	U310		VN10KM	VN10KM	
U311	U310		VN10KMA	VN10KM	
U312		U309	VN10KN3		VN10LM
U320		2N5432	VN10KN9		VN10LE
U321		2N5434	VN10LE	VN10LE	
U322		2N5432	VN10LM	VN10LM	
U350	U350		VN1008L	VN1008L	
U401	U401		VN1206B	VN1206B	
U402	U402		VN1206D	VN1206D	
U403	U403		VN1206L	VN1206L	
U404	U404		VN1206M	VN1206M	
U405	U405		VN1210L	VN1210L	
U406	U406		VN1210M	VN1210M	
U410	U410		VN1304N2		VN1206B
U411	U411		VN1304N3		VN1206L
U412	U412		VN1304N6		VQ1004J
U421	U421		VN1304N7		VQ1004P
U422	U422		VN1306N2		VN1206B
$\cup 423$	U423		VN1306N3		VN1206L
U424	U424		VN1306N6		VQ1004 J
U425	U425		VN1306N7		VQ1004P
U426	$\cup 426$		VN1310N2		VN1206B
U427	U427		VN1310N3		VN1206L
U428	U428		VN1316N2		VN4012B
U430	U430		VN1316N3		BS107
U431	U431		VN1320N2		VN4012B
$\cup 440$	U440		VN1320N3		BS107
U441	U441		VN1706B	VN1706B	
U443	U443		VN1706D	VN1706D	

Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement	Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement
VN1706L	VN1706L		VP2410L	VP2410L	
VN1706M	VN1706M		VQ1000CJ	VQ1000J	
VN1710L	VN1710L		VQ1000CP	VQ1000P	
VN1710M	VN1710M		VQ1000J	VQ1000J	
VN2010L	VN2010L		VQ1000N6	VQ1000J	
VN2020L	VN2020L		VQ1000N7	VQ1000P	
VN2222KM	VN2222KM		VQ1000P	VQ1000P	
VN2222L	VN2222L		VQ1000P-7	VQ1000P-7	
VN2222LL	VN2222LL		VQ1000P/883	VQ1000P-7	
VN2222LM	VN2222LM		VQ1001G	VQ1001P	
VN2406B	VN2406B		VQ1001J	VQ1001J	
VN2406D	VN2406D		VQ1001P	VQ1001P	
VN2406L	VN2406L		VQ1004J	VQ1004J	
VN2406M	VN2406M		VQ1004P	VQ1004P	
VN2410L	VN2410L		VQ1006J	VQ1006J	
VN2410M	VN2410M		VQ1006P	VQ1006P	
VN30AB		VN35AB	VQ2000J	VQ2000J	
VN35AB	VN35AB		VQ2000P	VQ2000P	
VN35AK	VN35AB		VQ2001G	VQ2001P	
VN3515L	VN3515L		VQ2001J	VQ2001J	
VN40AD	VN40AD		VQ2001P	VQ2001P	
VN40AF		VN40AFD	VQ2004J	VQ2004J	
VN4010B		VN4012B	VQ2004P	VQ2004P	
VN4010L		VN4012L	VQ2006J	VQ2006J	
VN4012B	VN4012B		VQ2006P	VQ2006P	
VN4012L	VN4012L		VQ3001G	VQ3001P	
VN46AD	VN46AD		VQ3001J	VQ3001J	
VN46AF		VN46AFD	VQ3001N6	VQ3001J	
VN50300L	VN50300L		VQ3001N7	VQ3001P	
VN50300 T	VN50300T		VQ3001P	VQ3001P	
VN66AD	VN66AD		VQ7254J	VQ7254J	
VN66AF		VN66AFD	VQ7254N6	VQ7254J	
VN67AA		VN67AB	VQ7254N7	VQ7254P	
VN67AB	VN67AB		VQ7254P	VQ7254P	
VN67AD	VN67AD		VQ7254P-7	VQ7254P-7	
VN67AF		VN67AFD	VQ7254P/883	VQ7254P-7	
VN67AK		VN67AB	ZVN01A2A	VNO300L	
VN80AF		VN80AFD	ZVN01A2L	VN0300L	
VN88AD	VN88AD		ZVN0102A	VN0300L	
VN88AF		VN88AFD	ZVN0102B	VN0300B	
VN89AA		VN99AB	ZVN0102L	VN0300L	
VN89AB	VN99AB		ZVN0104B	VN67AB	
VN89AD	VN89AD		ZVN0104L	VN46AD	
VN89AF		VN89AFD	ZVN0106L	VN66AD	
VN90AA		VN90AB	ZVN0108L	VNB8AD	
VN90AB	VN90AB		ZVN0109B	2N6661	
VN98AJ		VN99AB	ZVN0109L		VN88AD
VN98AK	2N6661		ZVN0110A	VN1206L	
VN99AB	VN99AB		ZVN0110B	VN1206B	
VN99AK		VN99AB	ZVN0110L	VN1206D	
VP0104N3		TP0610L	ZVN0114A	VN1706L	
VP0104N6		VQ2004J	ZVN0116A	VN1706L	
VP0104N9		TP0610E	ZVN0116B	VN1706B	
VP0106N3		TP0610L	ZVN0117TA	VN1710L	
VP0106N9		TP0610E	ZVN0120A	VN2410L	
VP0116N2		VP2020B	ZVN0120A	VN2410L	
VP0116N3		VP2020L	ZVN1304A	VN2222L	
VP0120N2		VP2020B	ZVN1304B	VN67AB	
VP0120N3		VP2020L	ZVN1306A	VN0610L	
VP0204N2	VP0808B		ZVN1306B	VN67AB	
VP0300B	VP0300B		ZVN1308A	VN1210L	
VP0300L	VP0300L		ZVN1308B	VN1210B	
VP0300M	VP0300M		ZVN1309A	VN2410L	
VP0610E	VP0610E		ZVN1310A	VN2406L	
VP0610L	VP0610L		ZVN1314A	VN2410L	
VP0610T	VP0610T		ZVN1316A	VN2410L	
VP0808B	VP0808B		ZVN1320A	VN2410L	
VP0808L	VP0808L		ZVN1404A	VN0610L	
VP0808M	VP0808M		ZVN1404B	VN67AB	
VP1008B	VP1008B		ZVN1406A	VN0610L	
VP1008L	VP1008L		ZVN1406B	VN67AB	
VP1008M	VP1008M		ZVN1408A	VN2410L	
VP2020E	VP2020E		ZVN1409A	VN2410L	
VP2020L	VP2020L		ZVN1414A	VN2410L	
VP2410B	VP2410B		ZVN1416A	VN2410L	

Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement	Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement
ZVN1420A	VN2020L		2N3088	2N4338	
ZVN2115A	VN1710L		2N3088A	2N4338	
ZVN2115B	VN1710B		2N3089	2N4338	
ZVN3302A	VN0300L		2N3089A	2N4338	
ZVN3302B	VN0300B		2N3112		J270
ZVN3304A	VN1206L		2N3277		J276
ZVN3304B	VN1206B		2N3278		J276
ZVN3306B		VN1206B	2N3328		J176
ZVN3310A		VN1206L	2N3329		J176
ZVN530A	VN3515L		2N3330		$J 176$
ZVN535A	VN3515L		2N3331		$J 176$
ZVN540A	VN4012L		2N3332		J176
ZVP0120A		BSS92	2N3365	2N4340	
ZVP1306A		TP0610L	2N3366	2N4338	
ZVP1306B		TP0610B	2N3367	2N4338	
ZVP1308A		BSS92	2N3368	2N4341	
ZVP1320A		BSS92	2N3369	2N4339	
ZVP1408B	VP0808B		2N3370	2N4340	
ZVP1409B	VP1008B		2N3376		J201
ZVP1410B	VP1008B		2N3378		J270
ZVP3306A		TP0610L	2N3380		$J 176$
1N5283		CRO22	2N3382		$J 176$
1N5284		CR024	2N3384		J175
1N5285		CR027	2N3386	2N5116	
1N5286		CR030	2N3436	2N4341	
1N5287		CR033	2N3437	2N4340	
1N5288		CR039	2N3438	2N4338	
1N5289		CR043	2N3452	2N4340	
1N5290		CR047	2N3453	2N4338	
1N5291		CR056	2N3454		J201
1N5292		CR062	2N3455	2N4340	
1N5293		CR068	2N3456	2N4338	
1N5294		CR075	2N3457	2N4338	
1N5295		CR082	2N3458	2N4341	
1N5296		CR091	2N3466		2N4220
1N5297		CR100	2N3684		2N4221
1N5298		CR110	2N3684A		2N4221
1N5299		CR120	2N3685		2N4220
1N5300		CR130	2N3685A		2N4220
1N5301		CR140	2N3686		2N4220
1N5302		CR150	2N3686A		2N4220
1N5303		CR160	2N3819	2N3819	
1N5304	,	CR180	2N3819-18	2N3819-18	
1N5305		CR200	2N3820	J270	
1N5306		CR220	2N3821	2N4220	
1N5307		CR240	2N3822	2N4221	
1N5308		CR270	2N3823	2N4222	
1N5309		CR300	2N3824	2N4220	
1N5310		CR330	2N3909	2N3909	
1N5311		CR360	2N3909A	2N3909A	
1N5312		CR390	2N3921		U401
1N5313		CR430	2N3922		U402
1N5314		CR470	2N3954		2N5196
2N2386		J270	2N3954A		2N5194
2N2386A		J270	2N3955		2N5197
2N2497		J270	2N3955A	2N3955A	
2N2498		J270	2N3956	2N3956	
2N2499		J270	2N3957	2N3957	
2N2500		J270	2N3958	2N3958	
2N2606		$J 176$	2N3966		2N4416
2N2607		$J 176$	2N3967	2N4221	
2N2841		J270	2N3967A	2N4221	
2N2842		J270	2N3968	2N4340	
2N2843		J270	2N3968A	2N4340	
2N2844		J270	2N3969	2N4339	
2N3066	2N4340		2N3969A	2N4339	
2N3067	2N4338		2N3970	2N4391	
2N3068	2N4338		2N3971	2N4391	
2N3069	2N4341		2N3972	2N4393	
2N3070	2N4339		2N3993	2N5116	
2N3071	2N4338		2N4084		$\cup 402$
2N3084	2N4340		2N4085		U404
2N3085	2N4340		2N4091	2N4091	
2N3086	2N4340		2N4091A	2N4091	
2N3087	2N4340		2N4092	2N4092	

Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement	Part Number	Siliconix Direct Replacement	Slliconix Similar Replacement
2N4092A	2N4092		2N5163	JII3-18	
2N4093	2N4093		2N5196	2N5196	
2N4093A	2N4093		2N5197	2N5197	
2N4094	2N4856		2N5198	2N5198	
2N4095	2N4857		2N5199	2N5199	
2N4117	2 N 4117		2N5245	J304-18	
2N4117A	2N4117A		2N5246	J305-18	
2N4118	2N4118		2N5247	MPF109-18	
2N4118A	2N4118A		2N5248	2N5486	
2N4119	2N4119		2N5257	J202	
2N4119A	2N4119A		2N5258	J202	
2N4120	3N163		2N5259	J202	
2N4220	2N4220		2N5358		2N4339
2N4220A	2N4220A		2N5359		2N4339
2N4221	2N4221		2N5360	2N4340	
2N4221A	2N4221A		2N5361		2N4341
2N4222	2N4222		2N5362		2N4341
2N4222A	2N4222A		2N5363	2N4222A	
2N4223		2N4222	2N5364		2N4222
2N4223A		2N4222	2N5391	2N4867A	
2N4224		2 N 4222	2N5392	2N4868A	
2N4224A		2N4222	2N5393	2N4869A	
2N4267	3N163		2N5394	2N4869A	
2N4302	PN4302-18		2N5395	2N4869A	
2N4303	PN4303-18		2N5396	2N4869A	
2N4304	PN4304-18		2N5397	U310	
2N4338	2N4338		2N5398		J212
2N4339	2N4339		2N5432	2N5432	
2N4340	2N4340		2N5433	2N5433	
2N4341	2N4341		2N5434	2N5434	
2N4391	2N4391		2N5452		2N5196
2N4392	2 N 4392		2N5453		2N5198
2N4393	2N4393		2N5454		2N5199
2N4416	2N4416		2N5456		2N4340
2N4416A	2N4416A		2N5457	J202	
2 N 4417		SST4416	2N5458	J202	
2N4445	2N5432		2N5459	J203	
2N4446	2N5433		2N5460	2N4560	
2N4447	2N5432		2N5461	2N5461	
2N4448	2N5432		2N5462	2N5462	
2N4856	2N4856		2N5463	2N5463	
2N4856A	2N4856A		2N5464	2N5464	
2 N 4857	2N4857		2N5465	2N5465	
2N4857A	2N4857A		2N5484	2N5484	
2N4858	2N4858		2N5485	2N5485	
2N4858A	2N4858A		2N5486	2N5486	
2N4859	2N4859		2N5515		2N5196
2N4859A	2N4859A		2N5516		2N5197
2N4860	2N4860		2N5517		2N5198
2N4860A	2N4860A		2N5518		2N5199
2N4861	2N4861		2N5519		2N5199
2N4861A	2N4861A		2N5520		2N5196
2N4867	2 N 4867		2N5521		2N5197
2N4867A	2N4867A		2N5522		2N5198
2N4868	2N4868		2N5523		2N5199
2N4868A	2N4868A		2N5524		2N5199
2N4869	2N4869		2N5543		2N5197
2N4869A	2N4869A		2N5544		2N5197
2N4977	2N5432		2N5545		2N5199
2N4978	2N5433		2N5546		2N5198
2N4979	2N5434		2N5547		2N5199
2N5018		2N5114	2N5549		2N4392
2N5019	2N5116		2N5556	2N4339	
2N5045	2N5196		2N5557		2N4340
2N5046	2N5198		2N5558		2N4341
2N5047	2N5199		2N5561	U401	
2N5078		J211	2N5562	U402	
2N5103	2N4416		2N5563	U404	
2N5104	2N4416		2N5564	DN5564	
2N5105	2N4416		2N5564	2N5564	
2N5114	2N5114		2N5565	DN5565	
2N5115	2N5115		2N5565	2N5565	
2N5116	2N5116		2N5566	DN5566	
2N5158	2N5434		2N5566	2N5566	
2N5159	2N5433		2N5567	DN5567	

9 Siliconix

Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement	Part Number	Sillconix Direct Replacement	Siliconix Similar Replacement
2N5592	2N4341		2N7104	2N7104	
2N5593	2N4341		2N7105	2N7105	
2N5594	2N4341		2N7106	2N7106	
2N5638	2N5638		2N7107	2N7107	
2N5638-18	2N5638-18		2N7108	2N7108	
2N5639	2N5639		2N7109	2N7109	
2N5639-18	2N5639-18		2N7116	2N7116	
2N5640	2N5640		2N7117	2N7117	
2N5640-18	2N5640-18		2SK103		SST201
2N5647	2N4117A		2SK104E		PN4302
2N5648	2N4117A		2SK104F		PN4302F
2N5649	2N4117A		2SK104H		PN4302
2N5653	J112		2SK104J		PN4303
2N5654		J111	2SK105E		2N4220
2N5668		MPF108	2SK105F		2N4220
2N5669		MPF108	2SK105H		2N4221
2N5670		MPF108	2SK105J		2N4221
2N5902		U404	2SK107		J304
2N5903		U424	2SK108		PN4392
2N5904		U425	2SK109		U406
2N5905		U426	2SK11	2N4220	
2N5906		U421	2SK113		2N4393
2N5907		U421	2SK117		2N4341
2N5908		U421	2SK118		2N4340
2N5909		U423	2SK119		2N4340
2N5911	2N5911		2SK12		2N4220A
2N5912	2N5912		2SK120		2N5484
2N5949	U1837-18		2SK121		J210
2N5950	U1837-18		2SK123		SST201
2N5951	U1837-18		2SK125		J310
2N5952	J305-18		2SK127		2N4221
2N5953	J305-18		2SK128		J232
2N6451	2N4393		2SK13		2N4340
2N6452	2N4393		2SK136		J232
2N6453	2N4393		2SK141		2N4221
2N6454	2 N 4393		2SK148		2N5485
2N6483	U401		2SK149		J309
2N6484	U402		2SK15		2N4220A
2N6485	U404		2SK150		U405
2N6659	2N6659		2SK154		2N5485
2N6659/750	2N6659-5		2SK155		J309
2N6660	2N6660		2SK156A		PN4118
2N6660/750	2N6660-5		2SK156B		PN4119
2N6661	2N6661		2SK156C		PN4119
2N6661/750	2N6661-5		2SK157		SST202
2N6661JAN	2N6661JAN		2SK158		2N4340
2N6661JANTX	2N6661JANTX		2SK16H		2N4221
2N6661JANTXV	2N6661JANTXV		2SK16HA		2N4220
2N6905	2N6905		2SK16HB		2N4221
2N6905A	2N6905A		2SK16HC		2N4221
2N6906	2N6906		2SK160		SST202
2N6906A	2N6906A		2SK161		2N5485
2N6907	2N6907		2SK163		J113
2N6907A	2N6907A		2SK165		J309
2N6908	2N6908		2SK168D		2N5485
2N6909	2N6909		2SK168E		J304
2N6910	2N6910		2SK168F		2N5486
2N6911		2N6908	2SK17		J230
2N7000	2N7000		2SK18		2N3958
2N7001	2N7001		2SK18A		2N3958
2N7002	2N7002		2SK184		2N4221
2N7003		VN50300T	2SK185		2N5566
2N7007	2N7007		2SK186		J232
2N7008	2N7008		2SK19BL		J309
2N7009		VN50300L	2SK19GR		J304
2N7019		VP0610T	2SK19Y		2N5485
2N7019	VP0610T		2SK192ABL		2N5486
2N7020	ND2020		2SK192AGR		2N5484
2N7022	VN4012B		2SK192AY		2N5484
2N7023	VP2020E		2SK193EF		2N5484
2N7024	ND2410B		2SK193FF		2N5484
2N7025	TP0610L		2SK193KF		2N5484
2N7026	TP0610T		2SK193LF		2N5484
2N7027	TP0610E		2SK193MF		2N5485
2N7030	VP2410B		2SK193PF		2N5484

Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement	Part Number	Siliconix Direct Replacement	Siliconix Similar Replacement
2SK193UF		J201	2SK35		J210
2SK195E		2N5484	2SK362		$\cup 1899$
2SK195F		2N5484	2SK363		U1897
2SK195H		2N5484	2SK364		U1898
2SK195J		2N5485	2SK365		U1899
2SK197C		SST202	2SK366		U1898
2SK197D		SST4416	2SK369		U1898
2SK197E		SST4416	2SK37		2N5484
2SK198		2N4221	2SK370		J109
2SK199		2N5485	2SK372		U1897
2SK208		SST202	2SK374		2N4341
2SK209		SST4416	2SK376		PN4119
2SK210BL		SST309	2SK377		SST201
2SK210GR		SST4416	2Sk381		JII3
2SK210Y		SST4416	2Sк389		SST405
2SK211		SST4416	2SK39		PN4119
2SK212C		2N5484	2SK39A		PN4119
2SK212D		2N5484	2SK40		2N4339
2SK212E		2N5484	2SK40B		2N4339
2SK212F		2N5484	2SK40C		2N4340
2SK217C		SST202	2SK40D		J231
2SK217D		SST4416	2SK404		2N5485
2SK217E		SST4416	2SK41		2N5486
2SK222		J232	2SK41C		2N5484
2SK23A-8		2N5485	2SK41D		2N5484
2SK23A-9		2N4416A	2SK41E		2N5484
2SK238K14		SST202	2SK41F		2N5485
2SK238K15		SST202	2SK42		2N5484
2SK238K16		SST4416	2SK422		VN67AB
2SK238K17		SST4416	2SK425		SST4416
2SK24		J203	2 SK 426		SST4416
2SK242C		SST202	2SK43		J232
2SK242D		SST202	2SK43S		J113
2SK242E		SST4416	2SK43S-D		J113
2SK242F		SST4416	2SK44		J230
2SK246BL		2N4221	2SK45		2N4220A
2SK246GR		2N4221	2SK46		J230
2SK247P		J230	2SK46		2N5484
2SK247Q		J230	2SK48	2N4220	2N5484
2SK247R		J231	2SK489	2N4220	2N5484
2SK247S		J232	2SK49E		2N5484
2SK25		2N5486	2SK49F		2N5484
2SK266		PN4119A	$2 \mathrm{SK49H}$		2N5484
2SK292		2N5484	2SK507		J308
2SK30		J210	2SK508		SST308
2SK30AGR		2N4341	2SK54		2N5484
2SK30AO		2N4339	2SK54B		2N5484
2SK30AR		2N4338	2SK54C		2N5484
2SK30ATM		J211	2 SK 55		2N5485
2SK30AY		2N4340	2SK55D		2N5485
2SK301P		J230	2SK55E		2N5485
2SK301Q		J231	2SK56		2N5484
2SK301R		J232	2 SK 57		2N5484
2SK301S		J203	2SK58		U441
2SK303C		SST204	2SK59		2N4867
2SK303D		SST204	2 KK61		2N5484
2SK303E		SST202	$2 \mathrm{SK65}$		J201
2SK303F		SST203	2SK66		J231
2SK314		2N4416A	2SK67		SST201
2SK315E		2N5484	2SK67A		SST201
2SK315F		2N5485	2SK68		2N4221
2SK315G		J211	2SK68A		2N4221
2SK323		SST203	2SK72		2N5158
2SK33		J304	2SK83		2N5484
2SK330BL		J203	2SK84		J231
2SK330GR		J202	2SK93		PN4119
2Sк330Y		J202	2SK94		SST202
2SK331		SST201	2SK97		SST406
2SK334		SST201	3N163	3N163	
2SK34	PN4302		3N164	3N164	

This Cross Reference material is accurate to the best knowledge and belief of Siliconix incorporated. Since individual circuit design and layout can influence device performance, the purchaser must be responsible for the ultimate selection and determination of interchangeability.

General Information
 Cross Reference

Selector Guide

Low Power MOS
Performance Curves
Package Outlines
Applications
Worldwide Sales Offices and Distributors

SELECTOR GUIDE

INTRODUCTION

Low Power Discrete selector guides have been provided to assist design engineers in a number of ways. With their help selecting the proper JFET or MOSFET can be reduced to a minimum.

First, curve and bar graphs have been constructed to allow you to rapidly gain an understanding of how our geometries have been characterized to provide a wide range of design alternatives. Once a geometry which has the desired characteristics has been identified, you can then turn to the typical performance curves (section 7). Here a more detailed curve set and a list of representative part numbers is provided. Turning to the appropriate data sheet and confirming specifications completes the selection process.

Secondly, a listing of individual device types with their key electrical parameters has been provided for all three product line segments. To aid in selecting a JFET, for example, the list has been broken out by major applications. In fact the user can select JFETs optimized for lowleakage, low-noise, high-gain, high-frequency, and general purpose amplification, as well as nand p-channel analog switches, current limiting, low leakage diodes, voltage controlled resistors, and specialty JFET circuits. Similar lists are also provided for our lateral DMOS and Low Power MOS product line segments.

All in all Siliconix is confident one of its low power products will find a home in you next application. When system performance is at stake the proper sue of discrete components often is the difference between design success or failure. Through the use of the selector guides, this decision is faster and more reliable.

Cutoff Voltage vs. Drain Current

Cutoff Voltage vs. On-Resistance

JFETS
N-CHANNEL GEOMETRY TYPICALS

Noise Voltage vs. Geometry

Cutoff Voltage vs. Drain Current

P-CHANNEL GEOMETRY TYPICALS

JFET AMPLIFIERS

LOW LEAKAGE JFET AMPLIFIERS

			Dss							
PART \#	$V_{\text {(BR)GSS }}$ (V)	MIN	${ }_{(\mathrm{mA})^{\mathrm{MAX}}}$	$\begin{aligned} & \text { IGSS } \\ & \text { (pA) } \end{aligned}$	$\begin{gathered} \mathrm{g}_{\mathrm{fs}} \\ (\mathrm{mS}) \end{gathered}$	$\begin{aligned} & \text { gos } \\ & (\mu \mathrm{S}) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {rss }} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{gathered} e_{n} \\ (n V) \end{gathered}$	OFFSET

SOT-23

SST201	-57	0.2	1	-2	0.5	-	4.5	1.3	6	-
SST202	-57	0.9	4.5	-2	1	-	4.5	1.3	6	-
SST203	-57	4	20	-2	1.5	-	4.5	1.3	6	-
SST204	-57	0.2	3	-2	6	-	4.5	1.3	6	-

TO-18

2N4338	-57	0.2	0.6	-2	0.6	5	5	1.5	6	-
2N4339	-57	0.5	1.5	-2	0.8	15	5	1.5	6	-
2N4340	-57	1.2	3.6	-2	1.3	30	5	1.5	6	-
2N4341	-57	3	9	-2	2	60	5	1.5	6	-

TO-72

2N4117	-70	0.03	0.09	-0.2	0.07	3	1.2	0.3	15	-
2N4117A	-70	0.03	0.09	-0.2	0.07	3	1.2	0.3	15	-
2N4118	-70	0.08	0.24	-0.2	0.08	5	1.2	0.3	15	-
2N4118A	-70	0.08	0.24	-0.2	0.08	5	1.2	0.3	15	-
2N4119	-70	0.2	0.6	-0.2	0.1	10	1.2	0.3	15	-
2N4119A	-70	0.2	0.6	-0.2	0.1	10	1.2	0.3	15	-
2N4867	-57	0.4	1.2	-2	0.7	1.5	4.5	1.3	6	-
2N4867A	-57	0.4	1.2	-2	0.7	1.5	4.5	1.3	6	-
2N4868	-57	1	3	-2	1	4	4.5	1.3	6	-
2N4868A	-57	1	3	-2	1	4	4.5	1.3	6	-
2N4869	-57	2.5	7.5	-2	1.3	10	4.5	1.3	6	-
2N4869A	-57	2.5	7.5	-2	1.3	10	4.5	1.3	6	-

LOW LEAKAGE JFET AMPLIFIERS (Cont'd)

PART \#	$V_{(B R) G S S}$ (V)	MIN ${ }^{1}$	MAX	$\begin{aligned} & \text { IGSS } \\ & \text { (pA) } \end{aligned}$	$\begin{gathered} \mathrm{g}_{\mathrm{fs}} \\ (\mathrm{mS}) \end{gathered}$	$\begin{aligned} & \text { gos } \\ & (\mu \mathrm{S}) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \text { (pF) } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{rss}} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{gathered} e_{n} \\ (n V) \end{gathered}$	$\begin{aligned} & \text { OFF- } \\ & \text { SET } \end{aligned}$
TO-78										
U421	-60	0.06	1	-0.6	0.6	4	1.4	0.7	30	10
U422	-60	0.06	1	-0.6	0.6	4	1.4	0.7	30	15
U423	-60	0.06	1	-0.6	0.6	4	1.4	0.7	30	25
U424	-60	0.06	1.8	-0.8	0.6	4	1.4	0.7	30	10
U425	-60	0.06	1.8	-0.8	0.6	4	1.4	0.7	30	15
U426	-60	0.06	1.8	-0.8	0.6	4	1.4	0.7	30	25

TO-92

J201
J202
J203
J204
J230
J231
J232
PN4117
PN4117A
PN4118
PN4118A
PN4119
PN4119A
PN4302
PN4303
PN4304

-57	0.2	1	-2	0.5	-	4.5	1.3	6	-
-57	0.9	4.5	-2	1	-	4.5	1.3	6	-
-57	4	20	-2	1.5	-	4.5	1.3	6	-
-57	0.2	3	-2	0.5	-	4.5	1.3	6	-
-57	0.7	3	-2	1	-	4.5	1.3	14	-
-57	2	6	-2	1.5	-	4.5	1.3	14	-
-57	5	10	-2	2.5	-	4.5	1.3	14	-
-70	0.03	0.09	-0.2	3	1.3	0.4	1.3	-	-
-70	0.03	0.09	0.2	3	1.3	0.4	15	-	-
-70	0.08	0.24	-0.2	5	1.3	0.4	15	-	-
-70	0.08	0.24	0.2	5	1.3	0.4	15	-	-
-70	0.2	0.6	-0.2	10	1.3	0.4	15	-	-
-70	0.2	0.6	0.2	10	1.3	0.4	15	-	-
-57	0.5	5	-1	1	50	4.5	1.3	6	-
-57	4	10	-1	2	50	4.5	1.3	6	-
-57	0.5	15	-1	1	50	4.5	1.3	6	-

LOW NOISE JFET AMPLIFIERS

TO-206AC (TO-52)

-2	14	250	4	1.9	6	-
-2	14	250	4	1.9	6	-
-2	14	250	4	1.9	6	-

LOW NOISE JFET AMPLIFIERS (Cont'd)

TO-71

2N6905	-55	0.5	10	-2	4	4	4	1.5	10	5
2N6906	-55	0.5	10	-2	4	4	4	1.5	10	10
2N6907	-55	0.5	10	-2	4	4	4	1.5	10	25
U401	-58	0.5	10	-2	4	5	4	1.5	10	5
U402	-58	0.5	10	-2	4	5	4	1.5	10	10
U403	-58	0.5	10	-2	4	5	4	1.5	10	10
U404	-58	0.5	10	-2	4	5	4	1.5	10	15
U405	-58	0.5	10	-2	4	5	4	1.5	10	20
U406	-58	0.5	10	-2	4	5	4	1.5	10	40

TO-72

2N4220
2N4416
2N4416A
2N4867
2N4867A
2N4868
2N4868A
2N4869
2N4869A

-57	0.5	3
-36	5	15
-36	5	15
-57	0.4	1.2
-57	0.4	1.2
-57	1	3
-57	1	3
-57	2.5	7.5
-57	2.5	7.5

-2
-2
-2
-2
-2
-2
-2
-2
-2

1	10
6	15
6	15
0.7	1.5
0.7	1.5
1	4
1	4
1.3	10
1.3	10

5	1.5	6	-
2.2	0.7	9	-
2.2	0.7	9	-
4.5	1.3	6	-
4.5	1.3	6	-
4.5	1.3	6	-
4.5	1.3	6	-
4.5	1.3	6	-
4.5	1.3	6	-

TO-78

$U 430$	-35	12	30	-5	15	100	4.5	2	6	-
$U 431$	-35	24	60	-5	15	100	4.5	2	6	-

TO-92

2N3819
2N5484
2N5485

-35	2
-35	1
-35	4

-2
-2
-2

5.7	5.5	2.2	0.7	10	-
3	50	2.2	0.7	10	-
3.5	60	2.2	0.7	10	-

LOW NOISE JFET AMPLIFIERS (Cont’d)

PART \#	$\begin{aligned} & V_{\text {(BR) GSS }} \\ & (V) \end{aligned}$	MIN	$\begin{aligned} & \text { IDSS } \\ & (\mathrm{mA}) \end{aligned}$	$\begin{gathered} \text { IGSS } \\ (\mathrm{pA}) \end{gathered}$	$\begin{aligned} & \mathrm{g}_{\mathrm{fs}} \\ & (\mathrm{mS}) \end{aligned}$	$\begin{aligned} & \text { gos } \\ & (\mu \mathrm{S}) \end{aligned}$	$\begin{aligned} & C_{\text {iss }} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{aligned} & C_{\text {rss }} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{gathered} e_{n} \\ (\mathrm{nV}) \\ @ 1 \mathrm{KHz} \end{gathered}$	$\begin{aligned} & \text { OFF- } \\ & \text { SET } \end{aligned}$
TO-92 (Cont'd)										
2N5486	-35	8	20	-2	4	75	2.2	0.7	10	-
BF244A	-35	2	6.5	-2	3	-	2	0.8	10	-
BF244B	-35	2	6.5	-2	3	-	2	0.8	10	-
BF244C	-35	2	6.5	-2	3	-	2	0.8	10	-
BF245A	-35	2	6.5	-2	3	-	2	0.8	10	-
BF245B	-35	6	15	-2	3	-	2	0.8	10	-
BF245C	-35	12	25	-2	3	-	2	0.8	10	-
J201	-57	0.2	1	-2	0.5	-	4.5	1.3	6	-
J202	-57	0.9	4.5	-2	1	-	4.5	1.3	6	-
J203	-57	4	20	-2	1.5	-	4.5	1.3	6	-
J204	-57	0.2	3	-2	0.5	-	4.5	1.3	6	-
J230	-57	0.7	3	-2	1	-	4.5	1.3	14	-
J231	-57	2	6	-2	1.5	-	4.5	1.3	14	-
J232	-57	5	10	-2	2.5	-	4.5	1.3	14	-
J304	-35	5	15	-2	4.5	50	2.2	0.7	10	-
J305	-35	1	8	-2	3	50	2.2	0.7	10	-
J308	-35	12	60	-2	14	110	4	1.9	6	-
J309	-35	12	30	-2	14	110	4	1.9	6	-
J310	-35	24	60	-2	14	110	4	1.9	6	-
PN4302	-57	0.5	5	-1	1	50	4.5	1.3	6	-
PN4303	-57	4	10	-1	2	50	4.5	1.3	6	-
PN4304	-57	0.5	15	-1	1	50	4.5	1.3	6	-
PN4416	-36	5	15	-2	6	15	2.2	0.7	9	-

HIGH GAIN JFET AMPLIFIERS

	IDSs							e_{n}		
	$V_{\text {(BR) }}$ GSS	MIN	MAX	IGSS	g_{fs}	gos	$\mathrm{C}_{\text {iss }}$	$\mathrm{Crss}^{\text {rse }}$	(nV)	OFF-
PART \#	(V)			(pA)	(mS)	($\mu \mathrm{S}$)	(pF)	(pF)	@1KHz	SET

SOT-23

BSR56	-55	50	-	-5	-	-	13	3.5	-
BSR57	-55	20	100	-5	-	-	13	3.5	-
BSR58	-55	8	80	-5	-	-	13	3.5	-
SST111	-55	20	-	-5	6	25	7	3	-
SST112	-55	5	-	-5	6	25	7	3	4

incorporated

HIGH GAIN JFET AMPLIFIERS (Cont'd)

	IDSS							e_{n}		
	$V_{\text {(BR) GSS }}$	MIN	MAX	IGSS	$\mathrm{g} \mathrm{fs}^{\text {f }}$	gos	$\mathrm{C}_{\text {iss }}$	$\mathrm{Crss}^{\text {rsen }}$	(nV)	OFF-
PART \#	(V)			(pA)	(mS)	($\mu \mathrm{S}$)	(pF)	(pF)	@1KHz	SET

SOT-23 (Cont'd)

SST113	-55	2	-	-5	6	25	7	3	4	-
SST4091	-55	30	-	-5	6	25	12	3.5	3	-
SST4092	-55	15	-	-5	6	25	12	3.5	3	-
SST4093	-55	8	-	-5	6	25	12	3.5	3	-
SST4391	-55	50	-	-5	6	25	13	3.5	3	-
SST4392	-55	25	-	-5	6	25	13	3.8	3	-
SST4393	-55	5	-	-5	6	25	13	4	3	-
SST4859	-55	30	-	-5	6	25	12	3.5	3	-
SST4860	-55	15	-	-5	6	25	12	3.5	3	-
SST4861	-55	8	-	-5	6	25	12	3.5	3	-
SO-8										
SST440	-35	6	30	-1	6	20	3.5	1	4	10
SST441	-35	6	30	-1	6	20	3.5	1	4	20
SST5912	-35	7	40	-1	6	20	3.5	1	4	15

TO-18

2N4091	-55	30	-	-5	6	25	13	3.5	3	-
2N4092	-55	15	-	-5	6	25	13	3.5	3	-
2N4093	-55	8	-	-5	6	25	13	3.5	3	-
2N4391	-55	50	150	-5	6	25	12	3.3	3	-
2N4392	-55	25	75	-5	6	25	12	3.2	3	-
2N4393	-55	5	30	-5	6	25	12	2.8	3	-
2N4856	-55	50	-	-5	6	25	7	3	3	-
2N4856A	-55	50	-	-5	6	25	7	3	3	-
2N4857	-55	20	100	-5	6	25	7	3	3	-
2N4857A	-55	20	100	-5	6	25	7	3	3	-
2N4858	-55	8	80	-5	6	25	7	3	3	-
2N4858A	-55	8	80	-5	6	25	7	3	3	-
2N4859	-55	50	-	-5	6	25	7	3	3	-
2N4859A	-55	50	-	-5	6	25	7	3	3	-
2N4860	-55	20	100	-5	6	25	7	3	3	-
2N4860A	-55	20	100	-5	6	25	7	3	3	-
2N4861	-55	8	80	-5	6	25	7	3	3	-
2N4861A	-55	8	80	-5	6	25	7	3	3	-
								3	3	

HIGH GAIN JFET AMPLIFIERS (Cont'd)

	Idss							e_{n}		
PART \#	$V_{(B R) G S S}$ (V)	(mA)		$\begin{aligned} & \text { IGSS } \\ & (\mathrm{pA}) \end{aligned}$	$\begin{aligned} & g_{\mathrm{fs}} \\ & (\mathrm{mS}) \end{aligned}$	$\begin{aligned} & \text { gos } \\ & (\mu \mathrm{S}) \end{aligned}$	$\begin{aligned} & C_{\text {iss }} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{gathered} \mathrm{C}_{\text {rss }} \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} (\mathrm{nV}) \\ @ 1 \mathrm{KHz} \end{gathered}$	$\begin{aligned} & \text { OFF- } \\ & \text { SET } \end{aligned}$
TO-71										
2N5564	-55	5	30	-5	9	35	10	2.5	12	5
2N5565	-55	5	30	-5	9	35	10	2.5	12	10
2N5566	-55	5	30	-5	9	35	10	2.5	12	20
M440	-35	6	30	-1	6	20	3.5	1	4	10
M441	-35	6	30	-1	6	20	3.5	1	4	20
TO-78										
M5911	-35	7	40	-1	6	20	3.5	1	4	10
M5912	-35	7	40	-1	6	20	3.5	1	4	15

TO-92

2N5638
2N5639
2N5640
$J 111$
J111A
J112
J112A
J113
J113A
PN4091
PN4092
PN4093
PN4391
PN4392
PN4393
U1897
U1898
U1899

-55	50	-	-5
-55	25	-	-5
-55	5	-	-5
-55	20	-	-5
-55	5	-	-5
-55	2	-	-5
-55	30	-	-5
-55	15	-	-5
-55	8	-	-5
-55	30	-	-5
-55	15	-	-5
-55	8	-	-5
-55	50	150	-5
-55	25	100	-5
-55	5	60	-5
-55	30	-	-5
-55	15	-	-5
-55	8	-	-5

25	7
25	7
25	7
25	7
25	7
25	7
25	7
25	7
25	7
25	13
25	13
25	13
25	12
25	12
25	12
25	14
25	14
25	14

3	3	-
3	3	-
3	3	-
3	4	-
3	4	-
3	4	-
3	4	-
3	4	-
3	4	-
3.5	4	-
3.5	4	-
3.5	4	-
3.5	3	-
3.5	3	-
3.5	3	-
3	3	-
3	3	-
3	3	-

HIGH FREQUENCY JFET AMPLIFIERS

TO-71

U440
U441

TO-72

2N4416
2N4416A

$$
-36
$$

$$
\begin{aligned}
& -2 \\
& -2
\end{aligned}
$$

15
2.2
2.2
0.7
$\begin{array}{ll}4 & 10 \\ 4 & 20\end{array}$

TO-78

-35	7	40
-35	7	40
-35	12	30
-35	24	60
-35	6	30
-35	6	30

$$
\begin{aligned}
& -1 \\
& -1 \\
& -5 \\
& -5 \\
& -1 \\
& -1
\end{aligned}
$$

70	3
70	3
100	4.5
100	4.5
70	3
70	3

1	4	10
1	4	15
2	6	-
2	6	-
1	4	10
1	4	20

HIGH FREQUENCY JFET AMPLIFIERS (Cont’d)

GENERAL PURPOSE JFET AMPLIFIERS

	IDSS						e_{n}				
PART \#	$V_{(B R) G S S}$ (V)	MIN	MAX	$\begin{gathered} \text { I GSS } \\ (\mathrm{pA}) \end{gathered}$	$\begin{aligned} & \mathrm{g}_{\mathrm{fs}} \\ & (\mathrm{mS}) \end{aligned}$	$\begin{aligned} & \text { gos } \\ & (\mu \mathrm{S}) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{rss}} \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} (\mathrm{nV}) \\ @ 1 \mathrm{KHz} \end{gathered}$	OFF- SET	$\begin{gathered} \text { CLA- } \\ \text { SS } \end{gathered}$
TO-71											
2N3956	-57	0.5	5	-10	2.5	2	3	1	10	15	D
2N3957	-57	0.5	5	-10	2.5	2	3	1	10	20	D
2N3958	-57	0.5	5	-10	2.5	2	3	1	10	25	D
2N5196	-57	0.7	7	-10	2.5	2	3	1	9	5	D
2N5197	-57	0.7	7	-10	2.5	2	3	1	9	5	D
2N5198	-57	0.7	7	-10	2.5	2	3	1	9	10	D
2N5199	-57	0.7	7	-10	2.5	2	3	1	9	15	D

GENERAL PURPOSE JFET AMPLIFIERS (Cont’d)

P-CHANNEL GENERAL PURPOSE JFET AMPLIFIERS

	IDSS							e_{n}		
	$V_{(B R) G S S}$	MIN	MAX	$I_{\text {GSS }}$	g_{fs}	gos	$\mathrm{C}_{\text {iss }}$	$\mathrm{Cr}_{\text {rss }}$	(nV)	OFF-
PART \#	(V)			(pA)	(mS)	($\mu \mathrm{S}$)	(pF)	(pF)	@1KHz	SET

SOT-23 要永

SST270
SST271
45
$-2 \quad-15$
45
-6
-50
$\begin{array}{ll}10 & 15 \\ 10 & 18\end{array}$
$\begin{array}{ll}200 & 20 \\ 500 & 20\end{array}$
$\begin{array}{ll}4 & 20 \\ 4 & 20\end{array}$
20 -

TO-92

2N5460	55	-1	-5	3	1	75	4.5	1.2	15	-	
2N5461	55	-2	-9	3	1	.5	75	4.5	1.2	15	-
2N5462	55	-4	-16		3	2	75	4.5	1.2	15	-
2N5463	55	-1	-5		3	1	75	4.5	1.2	15	-
2N5464	55	-2	-9	3	1	.5	75	4.5	1.2	15	-
2N5465	55	-4	-16	3	2	75	4.5	1.2	15	-	
J270	45	-2	-15	10	15	200	20	4	20	-	
J271	45	-6	-50	10	18	500	20	4	20	-	

JFET ANALOG SWITCHES

N-CHANNEL JFET ANALOG SWITCHES

	$V_{\text {GS (off) }}$			Idss			rds(ON)	$\mathrm{C}_{\text {iss }}$	$\mathrm{C}_{\text {rss }}$	
	$V_{\text {(BR) Gss }}$	MIN	MAX	MIN	MAX	ID(OFF)				ton
PART \#	(V)					(pA)			(pF)	(ns)

SOT-23

BSR56	-55	-4	-10	50	-	5	25	13	3.5	4
BSR57	-55	-2	-6	20	100	5	40	13	3.5	4
BSR58	-55	-0.8	-4	8	80	5	60	13	3.5	4
SST108	-32	-3	-10	80	-2	0	8	60	11	4
SST109	-32	-2	-6	40	-2	0	12	60	11	4
SST110	-32	-0.5	-4	10	-2	0	18	60	11	4
SST111	-55	-3	-10	20	-	5	30	7	3	4
SST112	-55	-1	-5	5	-	5	50	7	3	4
SST113	-55	-	-3	2	-	5	100	7	3	4
SST4091	-55	-5	-10	30	-	5	30	12	3.5	4
SST4092	-55	-2	-7	15	-	5	50	12	3.5	4
SST4093	-55	-1	-5	8	-	5	80	12	3.5	4
SST4391	-55	-4	-10	50	-	5	30	13	3.5	4
SST4392	-55	-2	-5	25	-	5	60	13	3.8	4
SST4393	-55	-0.5	-3	5	-	5	100	13	4	4
SST4859	-55	-5	-10	30	-	5	30	12	3.5	4
SST4860	-55	-2	-7	15	-	5	50	12	3.5	4
SST4861	-55	-1	-5	8	-	5	80	12	3.5	4

TO-18

2N4091	-55	-5	-10	30	-	5	30	13	3.5
	-7	15	-	5	50	13	3.5	4	
2N4092	-55	-2	-7	-5	8	-	5	80	13
2N4093	-55	-1	-4	-10	50	150	5	30	12
2N4391	-55	-4	3.5	4					
2N4392	-55	-2	-5	25	75	5	60	12	3.2
2N4393	-55	-0.5	-3	5	30	5	100	12	2.8
2N4856	-55	-4	-10	50	-	5	25	7	3
2N4856A	-55	-4	-10	50	-	5	25	7	3
2N4857	-55	-2	-6	20	100	5	40	7	3
2N4857A	-55	-2	-6	20	100	5	40	7	3
2N4858	-55	-0.8	-4	8	80	5	60	7	3
2N4858A	-55	-0.8	-4	8	80	5	60	7	3
2N4859	-55	-4	-10	50	-	5	25	7	3
2N4859A	-55	-4	-10	50	-	5	25	7	3
2N4860	-55	-2	-6	20	100	5	40	7	3
2N4860A	-55	-2	-6	20	100	5	40	7	3
2N4861	-55	-0.8	-4	8	80	5	60	7	3
2N4861A	-55	-0.8	-4	8	80	5	60	7	3

N-CHANNEL JFET ANALOG SWITCHES (Cont’d)

PART \#	$V_{G S}($ off $)$			Idss			$\begin{gathered} \text { rDSION } \\ (\Omega) \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {rss }} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{aligned} & \text { ton } \\ & (\mathrm{ns}) \end{aligned}$
	$V_{\text {(BR)GSS }}$ (V)	MIN	(V)	MIN	MAX	ID(OFF) (pA)				
TO-206AC (TO-52)										
2N5432	-32		-10	150	-	10	5	20	11	2.5
2N5433	-32	-3	-9	100	-	10	7	20	11	2.5
2N5434	-32	-1	-4	30	-	10	10	20	11	2.5
U290	-35	-4	-10	500	-	10	31	20	20	14
U291	-35	-1.5	-4.5	200	-	10	71	20	20	14

TO-92

2N5638	-55	-	-	50	-	5	30	7	3	4
2N5639	-55	-	-	25	-	5	60	7	3	4
2N5640	-55	-	-	5	-	5	100	7	3	4
J105	-35	-4.5	-10	500	-	10	31	20	20	14
J106	-35	-2	-6	200	-	10	61	20	20	14
J107	-35	-0.5	-4.5	100	-	10	81	20	20	14
J108	-32	-3	-10	80	-	20	8	60	11	4
J109	-32	-2	-6	40	-	20	12	60	11	4
J110	-32	-0.5	-4	10	-	20	18	60	11	4
J110A	-32	-0.5	-4	10	-	20	25	60	11	4
J111	-55	-3	-10	20	-	5	30	7	3	4
J111A	-55	-1	-5	5	-	5	50	7	3	4
J112	-55	-	-3	2	-	5	100	7	3	4
J112A	-55	-5	-10	30	-	5	30	7	3	4
J113	-55	-2	-7	15	-	5	50	7	3	4
J113A	-55	-1	-5	8	-	5	80	7	3	4
PN4091	-55	-5	-10	30	-	5	30	13	3.5	4
PN4092	-55	-2	-7	15	-	5	50	13	3.5	4
PN4093	-55	-1	-5	8	-	5	80	13	3.5	4
PN4391	-55	-4	-10	50	150	5	30	12	3.5	4
PN4392	-55	-2	-5	25	100	5	60	12	3.5	4
PN4393	-55	-0.5	-3	5	60	5	100	12	3.5	4
U1897	-55	-5	-10	30	-	5	30	14	3	4
U1898	-55	-2	-7	15	-	5	50	14	3	4
U1899	-55	-1	-5	8	-	5	80	14	3	4

P-CHANNEL JFET ANALOG SWITCHES

	$\mathrm{V}_{\mathrm{GS} \text { (off) }}$			IDSS		ID(OFF)	rDS(ON)	$\mathrm{C}_{\text {iss }}$	$\mathrm{Cr}_{\text {rss }}$	
	$V_{\text {(BR) GSS }}$	MIN	MAX	MIN	MAX					ton
PART \#	(V)					(pA)	(Ω)	(pF)	(pF)	(ns)

SOT-23

SST174	45	5	10	-20	-135	-10	85	20	5	25
SST175	45	3	6	-7	-70	-10	125	20	5	25
SST176	45	1	4	-2	-35	-10	250	20	5	25
SST177	45	0.8	2.25	-1.5	-20	-10	300	20	5	25
SST5114	45	5	10	-30	-90	-5	75	20	6	16
SST5115	45	3	6	-15	-60	-5	100	20	6	30
SST5116	45	1	4	-5	-25	-5	150	20	6	60

TO-18

2N5114	45	5	10	-30	-90	-10	75	20	6	16
2N5114J	45	5	10	-30	-90	-10	75	20	6	16
2N5115	45	3	6	-15	-60	-10	100	20	6	30
2N5115J	45	3	6	-15	-60	-10	100	20	6	30
2N5116	45	1	4	-5	-25	-10	150	20	6	60
2N5116J	45	1	4	-5	-25	-10	175	20	6	42

TO-92

$J 174$	45	5	10	-20	-135	-10	85	20	5	25
$J 175$	45	3	6	-7	-70	-10	125	20	5	25
$J 176$	45	1	4	-2	-35	-10	250	20	5	25
$J 177$	45	0.8	2.25	-1.5	-20	-10	300	20	5	25
$P 1086$	45	-	10	-10	-	-10	75	20	5	25
$P 1087$	45	-	5	-5	-	-10	150	20	5	25

JFET
 CURRENT LIMITERS

JFET CURRENT LIMITERS

PART \#	NOMINAL REGULATOR CURRENT	$\%$ REGULATION	Pov MIN
TO-18			
CRO22	0.22	10	100
CRO24	0.24	10	100
CRO27	0.27	10	100
CRO30	0.3	10	100
CR033	0.33	10	100
CR039	0.39	10	100
CR043	0.43	10	100
CR047	0.47	10	100
CR056	0.56	10	100
CRO62	0.62	10	100
CR068	0.68	10	100
CRO75	0.75	10	100
CR082	0.82	10	100
CR091	0.91	10	100
CR100	1	10	100
CR110	1.1	10	100
CR120	1.2	10	100
CR130	1.3	10	100
CR140	1.4	10	100
CR150	1.5	10	100
CR160	1.6	10	100
CR180	1.8	10	100
CR200	2	10	100
CR220	2.2	10	100
CR240	2.4	10	100
CR270	2.7	10	100
CR300	3	10	100
CR330	3.3	10	100
CR360	3.6	10	100
CR390	3.9	10	100
CR430	4.3	10	100
CR470	4.7	10	100
CR530	5.3	10	100
CRR0240	0.24	20	100
CRR0360	0.36	20	100
CRR0560	0.56	20	100
CRR0800	0.8	20	100
CRR1250	1.25	20	100
CRR1950	1.95	20	100
CRR2900	2.9	20	100
CRR4300	4.3	20	100

JFET CURRENT LIMITERS (Cont'd)

$\left.\left.\begin{array}{lcc} & \begin{array}{c}\text { NOMINAL } \\ \text { REGULATOR } \\ \text { CURRENT }\end{array} & \begin{array}{c}\% \\ \text { PART \# }\end{array} \\ & & \\ \text { REGULATION }\end{array}\right] \begin{array}{c}\text { Pov } \\ \text { MIN }\end{array}\right]$

3

JFET LOW-LEAKAGE DIODES

DPAD1
-1
-45

JFET LOW-LEAKAGE DIODES (Cont’d)

PART \#	REVERSE CURRENT	BREAKDOWN VOLTAGE
TO-71		
DPAD2	-2	-45
DPAD5	-5	-45
DPAD10	-10	-35
DPAD20	-20	-35
DPAD50	-50	-35
DPAD100	-100	-35
TO-92		
JPAD5	-5	-35
JPAD10	-10	-35
JPAD20	-20	-35
JPAD50	-50	-35
JPAD100	-100	-35
JPAD200	-200	-35
JPAD500	-500	-35

JFET VOLTAGE CONTROLLED RESISTORS

JFET VOLTAGE CONTROLLED RESISTORS

PART \#	ross(on)		$V_{\text {GS (off) }}$	$I_{\text {GSS }}$	$C_{\text {dG }}$
	MIN	MAX	MIN	(pA)	
TO-18					
N-CHANNEL JFET					
VCR2N	20	60	-1	-5	7.5
VCR4N	200	600	-3.5	-0.2	3
VCR7N	4000	8000	-2.5	-0.1	1.5
P-CHANNEL JFET					
VCR3P	70	200	1	20	25

JFET
 SPECIALTY PRODUCTS

2N6908 MONOLITHIC JFET CIRCUIT

N-CHANNEL JFET (with diode protected input)

PART \#	$V_{G S}($ off $)$ MAX	$V_{\text {(BR) GSS }}$ (V)	$\begin{gathered} \mathrm{g}_{\mathrm{fs}} \\ (\mu \mathrm{~S}) \end{gathered}$	$\begin{aligned} & \text { I GSS } \\ & \text { MAX } \\ & \text { (pA) } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{gathered} \bar{e}_{n} \\ n V / \\ \sqrt{H z} \end{gathered}$
TO-72						
2N6908	-1.8	-30	100	-25	5	25
2N6909	-2.3	-30	400	-25	5	25
2N6910	-3.5	-30	1200	-25	5	25
SOT-143	$\frac{5}{5-4}$					
SST6908	-1.8	-30	100	-25	5	25
SST6909	-2.3	-30	400	-25	5	25
SST6910	-3.5	-30	1200	-25	5	25

JFET QUAD RING DOUBLE BALANCED MIXER

PART \#
$V_{\text {(BR) GSS }}$
(V)

V350 -25
TO-78
rDS(ON)
(Ω)

90
a

NF
(dB)

7

DMOS

N-CHANNEL ENHANCEMENT-MODE LATERAL DMOS

PART \#	$V_{(B R) D S}$ (V)	rDS(ON) (Ω)	$V_{G S}(t h)$ (V)	$\begin{aligned} & \mathrm{C}_{\mathrm{rss}} \\ & (\mathrm{pF}) \end{aligned}$	ton (ns)
16-PIN CERAMIC DIP					
2N7116	20	70	2	0.5	2
2N7117	10	70	2	0.5	2
2N7118	15	70	2	0.5	2
SD5000I	10	70	2	0.5	2
SD50011	20	70	2	0.5	2
SD50021	15	70	2	0.5	2
16-PIN PLASTIC DIP					
SD5000N	20	70	2	0.5	2
SD5001N	15	70	2	0.5	2
SD5002N	10	70	2	0.5	2
SOT-143					
SST211	10	50	2	0.5	2
SST213	10	50	2	0.5	2
SST215	20	50	2	0.5	2
SO-14					
SD5400CY		70	2	0.5	2
SD5401CY	10	70	2	0.5	2
SD5402CY	15	70	2	0.5	2
TO-72					
2N7104	20	70	2	0.5	2
2N7105	10	70	2	0.5	2
2N7106	10	70	2	0.5	2
2N7107	10	70	2	0.5	2
2N7108	15	70	2	0.5	2
2N7109	20	70	2	0.5	2
SD210DE	20	45	2	0.5	2
SD211DE	10	45	2	0.5	2
SD212DE	10	45	2	0.5	2

PART \#	$V_{(B R) D S}$ (V)	rDS(ON) (Ω)	$V_{G S}(t h)$ (V)	$\begin{gathered} C_{\text {rss }} \end{gathered}$	ton (ns)
TO-72 (Cont'd)					
SD213DE	10	45	2	0.5	2
SD214DE	15	45	2	0.5	2
SD215DE	20	45	2	0.5	2
DOUBLE BALANCED MIXER					
PART \#	$V_{(B R) D S}$ (V)	rDS(ON) (Ω)	$V_{G S}(\mathrm{th})$ (V)	$\begin{aligned} & C_{\text {rss }} \\ & (\mathrm{pF}) \end{aligned}$	ton (ns)
TO-78					
Si8901A	15	75	2	-	-
SO-14					
Si8901CY		75	2	-	-

N-CHANNEL DEPLETION-MODE LATERAL DMOS

PART \#	$V_{(B R) D S}$ (V)	rDS(ON) (Ω)	$\begin{gathered} \mathrm{V}_{\mathrm{GS}(\mathrm{th})} \\ (\mathrm{V}) \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\text {rss }} \\ & \text { (pF) } \end{aligned}$	$\begin{aligned} & \text { ton } \\ & \text { (ns) } \end{aligned}$
TO-72					
SD2100	25	200	-2	2.5	2
SOT-143					
SST2100	25	200	-2	2.5	2

LOW POWER MOS

N-CHANNEL GEOMETRIES

Gate-Source Threshold Voltage vs. Geometry

Capacitance vs. Geometry

Typical Switching Time vs. Geometry

N-CHANNEL GEOMETRIES

Drain-Source Breakdown Voltage vs. Geometry

LOW POWER MOS

P-CHANNEL GEOMETRIES

Typical Switching Time vs. Geometry

LOW POWER MOS

N-CHANNEL

PART \#	$V_{(B R) D S}$ (V)	rDS(ON) (Ω)	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ (V)	$\begin{aligned} & \text { ton } \\ & \text { (ns) } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{gathered} I_{D} \\ (\mathrm{~mA}) \end{gathered}$	PD
14-PIN CERAMIC (P) \& PLASTIC (J)							
VQ1001J	30	1	2.5	30	38	0.85	2
VQ1001P	30	1	2.5	30	38	0.85	2
VQ1004P	60	3.5	2.5	10	35	0.46	2
VQ1004J	60	3.5	2.5	10	35	0.46	2
VQ1000J	60	5.5	2.5	10	16	0.23	2
VQ1000P	60	5.5	2.5	10	16	0.23	2
VQ1006P	90	4.5	2.5	10	35	0.40	2
VQ1006J	90	4.5	2.5	10	35	0.40	2
SOT-23							
VN0603T	60	4	3.0	15	16	0.22	0.36
VN0605T	60	5	3.0	20	16	0.18	0.36
2N7002	60	8	2.5	20	16	0.12	0.2
2N7001	240	45	2.5	30	15	0.05	0.2
VN45350T	450	350	4.5	25	5	0.02	0.35
VN50300T	500	300	4.5	20	5	0.02	0.35
TO-205AD (TO-39)							
VNO300B	30	1.2	2.5	30	38	1.51	5
2N6659	35	1.8	2.0	10	38	1.40	6.25
2N6660JANTX	60	3	2.0	10	30	0.99	6.25
2N6660	60	3	2.0	10	38	1.10	6.25
VN67AB	60	3.5	2.5	15	35	0.79	5
2N6661JANTX	90	4	2.0	10	30	0.86	6.25
2N6661	90	4	2.0	10	35	0.90	6.25
VN90AB	90	5	2.0	10	35	0.67	5
VN1206B	120	6	2.0	16	35	0.22	5
VN1706B	170	6	2.0	16	105	0.63	6.25
VN2406B	240	6	2.0	16	110	0.63	6.25
VN4O12B	400	12	1.8	40	80	0.42	0.8
TO-206AC (TO-52)							
VN10LE	60	5	2.5	10	16	0.38	1.5
VN10KE	60	5	2.5	10	38	0.17	0.3

N-CHANNEL (Cont’d)

PART \#	$V_{(B R) D S}$ (V)	rDS(ON) (Ω)	$V_{G S}($ th) (V)	$\begin{aligned} & \mathrm{ton} \\ & (\mathrm{~ns}) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \text { (pF) } \end{aligned}$	$\begin{aligned} & \mathrm{ID}_{\mathrm{D}} \\ & (\mathrm{~mA}) \end{aligned}$	PD

TO-220/TO-220SD

VN46AFD	40
VN40AFD	40
VN66AD	60
VN66AFD	60
VN67AD	60
VN67AFD	60
VN88AD	80
VN88AFD	80
VN1206D	120
VN1706D	170
VN2406D	240

3	2.5
5	2.5
3	2.5
3	2.5
3.5	2.5
3.5	2.5
4	2.5
4	2.5
6	2.0
6	2.0
6	2.0

35	1.46	15
35	1.14	15
35	1.70	20
35	1.46	15
35	1.58	20
35	1.37	15
35	1.49	20
35	1.29	15
35	0.33	20
105	1.12	20
110	1.12	20

VNO300L	30	1.2	2.5	30	38	0.64	0.8
VNO603L	60	3.5	3.0	15	16	0.30	0.8
2N7000	60	5	3.0	10	16	0.20	0.4
VN0610L	60	5	2.5	10	38	0.27	0.8
BS170	60	5	3.0	10	16	0.50	0.83
VN0610LL	60	5	2.5	10	16	0.28	0.8
VN222LL	60	7.5	2.5	10	16	0.23	0.8
2N7008	60	7.5	2.5	20	16	0.15	0.4
VN2222L	60	7.5	2.5	10	38	0.23	0.8
VN0808L	80	4	10	35	0.30	0.8	

N-CHANNEL (Cont'd)

PART \#	$V_{(B R) D S}$ (V)	$\begin{gathered} \text { rDS(ON) } \\ (\Omega) \end{gathered}$	$V_{G S}(t h)$ (V)	ton (ns)	$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{aligned} & I_{D} \\ & (m A) \end{aligned}$	PD
TO-92 (Cont'd)							
VN1206L	120	6	2.0	16	35	0.23	0.8
VN1210L	120	10	2.0	16	35	0.18	0.8
VN1706L	170	6	2.0	16	105	0.22	0.8
VN1710L	170	10	2.0	16	110	0.17	0.8
BSS89	200	6	2.8	80	105	0.30	1
VN2010L	200	10	1.8	20	35	0.19	0.8
VN2020L	200	20	2.0	20	35	0.08	0.8
BS107	200	28	3.0	-	35	0.12	0.5
VN2406L	240	6	2.0	16	110	0.22	0.8
VN2410L	240	10	2.0	16	110	0.17	0.8
2N7007	240	45	2.5	30	15	0.07	0.4
VN3515L	350	15	1.8	40	80	0.15	0.8
VN4012L	400	12	1.8	40	80	0.16	5
VN45350L	450	350	4.5	25	5	0.03	0.8
VN50300L	500	300	4.5	20	5	0.03	0.8

P-CHANNEL

14-PIN CERAMIC (P) \& PLASTIC (J)

VQ2001J	-30	2	-4.5	30	130	-0.60	2.00
VQ2001P	-30	2	-4.5	30	130	-0.60	2.00
VQ2000J	-60	10	-3.0	35	15	-0.24	2.00
VQ2000P	-60	10	-3.0	35	15	-0.24	2.00
VQ2004P	-60	5	-4.5	55	75	-0.41	2.00
VQ2004J	-60	5	-4.5	55	75	-0.41	2.00
VQ2006P	-90	5	-4.5	55	75	-0.41	2.00
VQ2006J	-90	5	-4.5	55	75	-0.41	2.00
SOT-23							
	-60	10	-2.4	25	15	-0.12	0.36
TP0610T	-60	10	-3.5	25	15	-0.12	0.36

P-CHANNEL (Cont'd)

PART \#	$V_{(B R) D S}$ (V)	rDS(ON) (Ω)	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ (V)	$\begin{aligned} & \text { ton } \\ & (\mathrm{ns}) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{gathered} I_{D} \\ (\mathrm{~mA}) \end{gathered}$	PD
TO-205AD (TO-39)							
VP0300B	-30	2.5	-4.5	30	130	-1.25	6.25
VP0808B	-80	5	-4.5	55	75	-0.88	6.25
VP1008B	-100	5	-4.5	55	75	-0.79	6.25
VP2410B	-240	10	-2.5	45	65	-0.17	0.73
TO-206AC (TO-52)							
TP0610E	-60		-2.4	25	15	-0.25	1.50
VP0610E	-60	10	-3.5	25	15	-0.25	1.50
VP2020E	-200	20	-2.5	25	30	-0.17	1.50
TO-237							
VP0300M	-30	2.5	-4.5	30	130	-0.50	1.00
VP0808M	-80	5	-4.5	55	75	-0.31	1.00
VP1008M	-100	5	-4.5	55	75	-0.31	1.00

TO-92

VP0300L	-30	2.5	-4.5	30	130	-0.32	0.80
BS250	-45	14	-3.5	10	15	-0.18	0.83
VP0610L	-60	10	-3.5	25	15	-0.18	0.80
TP0610L	-60	10	-2.4	25	15	-0.18	0.80
VP0808L	-80	5	-4.5	55	75	-0.28	0.80
VP1008L	-100	5	-4.5	55	75	-0.28	0.80
BSS92	-200	20	-2.8	14	30	-0.15	1.00
VP2020L	-200	20	-2.5	25	30	-0.12	0.80
BS208	-200	14	-	14	70	-0.20	0.83
VP2410L	-240	10	-2.5	45	65	-0.18	0.80

TO-18

MFE823
TO-72

3N164
3N163

-30	300
-40	250

-5	36
-5	36

2.4	-0.05	0.375
2.4	-0.05	0.375

N- \& P-CHANNEL QUADS

PART \#	$V_{(B R) D S}$ (V)	rDS(ON) (Ω)	$\mathrm{VGS}_{\mathrm{GS}}(\mathrm{th})$ (V)	$\begin{aligned} & \mathrm{t} \circ \mathrm{~N} \\ & (\mathrm{~ns}) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \text { (pF) } \end{aligned}$	$\begin{gathered} \mathrm{ID} \\ (\mathrm{~mA}) \end{gathered}$	PD
14-PIN CERAMIC (P) \& PLASTIC (J)							
VQ7254J	± 20	3	-	20	85	± 2	1.75
VQ7254P	± 20	3	-	20	85	± 2	1.75
VQ3001J	± 30	1/2	-4.5	30	85	-	2.00
VQ3001P	± 30	1/2	-4.5	30	85	-	2.00

N-CHANNEL DEPLETION-MODE MOS

TO-205AD (TO-39)

ND2406B 240

ND2410B
240
TO-206AC (TO-52)

ND2012E
ND2020E
200
200

$$
-4.5
$$

90
90

70	0.57	5.00
70	0.46	5.00
35	0.22	1.50
35	0.18	1.50

TO-92

ND2012L	200	12	-4.0	40	35	0.16	0.80
ND2020L	200	20	-2.5	40	35	0.13	0.80
BSS129	230	20	-	90	70	0.15	1.00
ND2406L	240	6	-4.5	90	70	0.23	0.80
ND2410L	240	10	-2.5	90	70	0.18	0.80

General Information Cross Reference

 Selector Guide JFETsLow Power MOS
Performance Curves
Package Outlines
Applications
Worldwide Sales Offices and Distributors

JFETS

INTRODUCTION

Although junction field-effect transistors have existed for decades, the additional performance that can presently be achieved through their use is undeniable. Even in today's highly integrated world and despite numerous attempts, successful integration of the JFET has proven inconsistent at best. New markets and applications continue to open as designer's demand higher performance from their systems -- the JFET is definitely here to stay!

In addition to enhancing performance, the JFET is also often used as a versatile "problemsolver" to improve systems without compromising their key requirements. The inherent JFET characteristics--low-noise, low leakage, high-gain, and fast switching all contribute significantly to system speed. Let's now take a closer look at these benefits.

Unlike the bipolar transistor, which requires a base-drive current, a field-effect transistor is operated by the application of a gate voltage. Thus, while the bipolar transistor exhibits low input impedance, the JFET offers just the opposite -- a very high impedance gate!

The high-impedance nature of a JFET offers superb low-leakage qualities -- often specified in the low picoamp range. When this is coupled with good frequency response, JFETs ensure minimal circuit loading for such sensitive applications as sample-and-hold circuits and input devices for operational amplifiers.

An additional and fundamental advantage of the JFET is its extraordinarily low noise at $1 / \mathrm{f}$ frequencies -- so low that in comparative studies with bipolar transistors the JFET is considered noiseless! This advantage is most obvious in applications involving high source impedances, such as those needed for low-noise electret and capacitor microphone amplifier circuits.

Yes, JFETs are important problem solvers used to enhance the performance of a wide range of applications.

For additional technical assistance see section 9 for application notes. "An Introduction To FETs" (LPD-1) and "JFET Characteristics" (LPD-2) are especially useful reading for first-time JFET designers.

When the performance of your system is at stake, we're confident you'll turn to JFETs. When it comes to performance in manufacturing JFETs, the only place to turn is Siliconix -- the undisputed market leader. We offer the most standard part types, packaging options, and complete military processing per MIL-S-19500. We look forward to supplying JFETs for your next demanding design.

N-Channel JFET

The 2N3819 is a low-cost, all purpose JFET which offers good performance at mid-to-high frequencies. If features low noise and leakage and guarantees high gain at 100 MHz . Its TO-92 package is fully compatible with various tape and

PART NUMBER	$V_{\text {GS (OFF) }}$ MAX (V)	$V_{(B R) \text { GSS }}$ MIN (V)	g_{fs} MIN (mS)	I DSS $^{\text {MAX }}$ (mA)
2 N3819	-8	-25	2	20

For additional design information please see performance curves NH and NRL, which are located in Section 7.

SIMILAR PRODUCTS

- TO-72, See 2N4416
- SOT-23, See SST4416
- Chips, Order 2N3819CHP

1 SOURCE
2 GATE
3 DRAIN

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	-25	V
Gate-Source Voltage	V_{GS}	-25	10
Gate Current	I_{G}	m	
Power Dissipation	P_{D}	200	mA
Power Derating		2	mW
Operating Junction Temperature	T_{J}	-55 to 125	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$	-65 to 150	
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS				
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	2N3819		UNIT	
				MIN	MAX			
STATIC								
Gate-Source Breakdown Voltage	$V_{(B R) G S s}$	$I_{G}=-1 \mu \mathrm{~A}$,	$=0 \mathrm{~V}$		-35	-25		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{OFF})$	$V_{\text {DS }}=15$	2 nA	-3		-8		
Saturation Drain Current ${ }^{3}$	Ioss	$V_{\text {DS }}=15 \mathrm{~V}$	$=0 \mathrm{~V}$	10	2	20	mA	
Gate Reverse Current	lass	$\begin{gathered} V_{G S}=-15 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$		-0.002		-2	nA	
			$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	-0.002		-2	$\mu \mathrm{A}$	
Gate Operating Current	1 G	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		-20			pA	
Drain Cutoff Current	$I_{\text {d (OFF })}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}$		5				
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(ON }}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		150			Ω	
Gate-Source Voltage	V_{GS}	$V_{D S}=15 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$		-2.5	-0.5	-7.5	V	
Gate-Source Forward Voltage	$V_{G S(f)}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7				
DYNAMIC								
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$V_{D S}=\begin{gathered} 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$		5.7	2	6.5	mS	
		$\begin{gathered} V_{D S}=15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=100 \mathrm{MHz} \end{gathered}$		5.5	1.6			
Common-Source Output Conductance	gos	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		15		50	$\mu \mathrm{S}$	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}= 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$		2.2		8	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			0.7		4		
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=100 \mathrm{~Hz} \end{gathered}$		10			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

N-Channel JFET Pairs

The 2N3956 Series are monolithic JFET pairs designed for high performance differential amplification. This series features tight matching, low gate leakage for accuracy, and wide dynamic range as I_{G} is guaranteed at $\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$. Its TO-71 package is hermetically sealed and is available with full military processing. (See Section 1.)

PART NUMBER	$V_{(B R) G S S}$ MIN (V)	$g_{f s}$ MIN (mS)	I_{G} MAX (pA)	$\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{GS}_{2}}$ MAX (mV)
2N3956	-50	1	-50	15
2N3957	-50	1	-50	20
2N3958	-50	1	-50	25

For additional design information please see performance curves NQP, which are located in Section 7.

1 SOURCE 1
2 DRAIN 1
3 GATE 1
4 SOURCE 2

- Low Leakage, See U421 Series

5 DRAIN 2
6 GATE 2

- High Gain, See 2N5911 Series
- Chips, Order 2N395XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Gate-Drain Voltage		$V_{G D}$	-50	V
Gate-Source Voltage		$V_{G S}$	-50	
Forward Gate Current		I_{G}	50	mA
Power Dissipation	Per Side	P_{D}	250	mW
	Total		500	
Power Derating	Per Side		2.86	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Total		4.3	
Operating Junction Temperature		TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 200	
Lead Temperature (1/16" from case for 10 seconds)		TL	300	

incarparated

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N3956		2N3957		2N3958		UNIT
PARAMETER				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ GSS	$I_{G}=-1 \mu \mathrm{~A}$	$V_{D S}=0 \mathrm{~V}$	-57	-50		-50		-50		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{GS} \text { (OFF) }}$	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-2	-1	-4.5	-1	-4.5	-1	-4.5	
Saturation Drain Current	I DSs	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		3	0.5	5	0.5	5	0.5	5	mA
Gate Reverse Current	$I_{\text {GSS }}$	$\begin{gathered} V_{G S}=-30 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$		-10		-100		-100		-100	pA
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-20		-500		-500		-500	nA
Gate Operating Current	I_{G}	$\begin{gathered} V_{D S}=20 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \end{gathered}$		-5		-50		-50		-50	pA
		$I_{D}=200 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.8		-250		-250		-250	nA
Gate-Source Voltage	V_{GS}	$V_{D S}=20 \mathrm{~V}, I_{D}=50 \mu \mathrm{~A}$		-1.7		-4.2		-4.2		-4.2	V
		$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		-1.5	-0.5	-4	-0.5	-4	-0.5	-4	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7		2		2		2	

DYNAMIC

Common-Source Forward Transconductance	g_{fs}	$\begin{aligned} & V_{D S}= 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$	2.5	1	3	1	3	1	3	mS
		$\begin{gathered} V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f=200 \mathrm{MHz} \end{gathered}$	2	1		1		1		
Common-Source Output Conductance	gos	$\begin{aligned} & V_{D S}= 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	7		35		35		35	$\mu \mathrm{S}$
Drain-Gate Capacitance	$\mathrm{C}_{\text {dgo }}$	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{s}=0 \mathrm{~mA} \\ f=1 \mathrm{MHz} \end{gathered}$	1		1.5		1.5		1.5	pF
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	3		4		4		4	
Common-Source Reverse ran Capacitance	$\mathrm{C}_{\text {rss }}$		1		1.2		1.2		1.2	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ f=1 \mathrm{kHz} \end{gathered}$	10							$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Noise Figure	NF	$\begin{gathered} V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega \end{gathered}$	<0.1		0.5		0.5		0.5	dB

MATCHING

Differential Gate-Source Voltage	$\left\|V_{G S 1}-V_{G S 2}\right\|$	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		10		15		20		25	mV
Gate-Source Voltage Differential Change with Temperature	$\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$	$\left\|\begin{array}{c} V_{D S}=20 \mathrm{~V} \\ I_{D}=200 \mu \mathrm{~A} \end{array}\right\|$	$\mathrm{T}=-55$ to $25^{\circ} \mathrm{C}$	25		50		75		100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	ΔT		$\mathrm{T}=25$ to $125^{\circ} \mathrm{C}$	25		50		75		100	
Saturation Drain Current Ratio	$\frac{I_{\text {DSS } 1}}{I_{\text {DSS2 }}}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.97	0.95	1	0.9	1	0.85	1	
Transconductance Ratio	$\frac{g_{f s 1}}{g_{f s 2}}$	$\begin{gathered} V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		0.97	0.95	1	0.9	1	0.85	1	
Differential Gate Current	$\left\|l_{\mathrm{G} 1}{ }^{-1} \mathrm{G}_{\mathrm{G} 2}\right\|$	$\begin{gathered} V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ T_{A}=125^{\circ} \mathrm{C} \end{gathered}$		0.2		10		10		10	nA

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu s$, duty cycle $\leq 3 \%$.

N-Channel JFET

The 2N4091 Series is an all-purpose JFET analog switch which offers low on-resistance, good isolation and very fast switching. Its JAN, JANTX, and JANTXV certification make this device a perfect choice for military designs, as qualified devices can be purchased without cumbersome source-control documentation.

PART NUMBER	V $_{\text {GS (OFF) }}$ MAX (V)	$\mathbf{r}_{\text {ds (ON) }}$ MAX (Ω)	$I_{\text {D(OFF) }}$ MAX (pA)	$\mathbf{t}_{\text {ON }}$ MAX (ns)
2 N4091	-10	30	200	25
2 N4092	-7	50	200	35
2 2N4093	-5	80	200	60

For further design information please consult the typical performance curves NCB which are located in Section 7.

TO-18
BOTTOM VIEW

SIMILAR PRODUCTS

- TO-92, See PN4091 Series
- SOT-23, See SST4091 Series
- Duals, See 2N5564 Series
- Chips, Order 2N409XCHP

1 SOURCE
2 DRAIN
3 GATE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-40	V
Gate-Source Voltage	$V_{G S}$	-40	
Gate Current	I_{G}	10	mA
Power Dissipation (Case $25^{\circ} \mathrm{C}$)	PD	1800	mW
Power Derating		10	mW/ ${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 200	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 200	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.
4. This parameter not registered with JEDEC.

N-Channel JFET

The 2 N4117 and 2N4117A Series are n-channel JFETs designed to provide ultra-high input impedance. The 2 N 4117 features $\mathrm{I}_{\mathrm{Gss}}$ of 10 pA maximum while the 2N4117A Series is specified with a 1 pA limit and typically operates at 0.2 pA . These devices, therefore, make perfect choices for use as sensitive front-end amplifiers in applications such as microphones, smoke detectors, and precision test equipment. Additionally, its hermetically sealed TO-72 package allows full military processing per MIL-S-19500. (See Section 1.)

For additional design information please consult performance curves NT which are located in Section 7.

SIMILAR PRODUCTS

- TO-92, See PN4117 Series
- SOT-23, See SST4117 Series
- Dual, See U421 Series
- Chips, Order 2N411XCHP

PART NUMBER	V $_{\text {GS (OFF) }}$ MAX (V)	$V_{(B R) \text { GSS }}$ MIN (V)	$g_{f s}$ MIN (μS)	IDSS $^{\text {MAX }}$ (mA)
2N4117	-1.8	-40	70	0.09
2N4118	-3	-40	80	0.24
2N4119	-6	-40	100	0.60
2N4117A	-1.8	-40	70	0.09
2N4118A	-3	-40	80	0.24
2N4119A	-6	-40	100	0.60

TO-72

BOTTOM VIEW

[^0]ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	-40	V
Gate-Source Voltage	V_{GS}	-40	V
Gate Current	I_{G}	50	mA
Power Dissipation	P_{D}	300	mW
Power Derating		2	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 175	
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$	-65 to 175	${ }^{\circ} \mathrm{C}$
Lead Temperature $\left(1 / 16^{\prime \prime}\right.$ from case for 10 seconds $)$	T_{L}	255	

2N4117 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N4117		2N4118		2N4119		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) GSS }}$	$\mathrm{I}_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-70	-40		-40		-40		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{GS} \text { (OFF) }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-0.6	-1.8	-1	-3	-2	-6	
Saturation Drain Current ${ }^{3}$	IDSS	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.03	0.09	0.08	0.24	0.2	0.6	mA
Gate Reverse Current	IGSS	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$	-0.2		-10		-10		-10	pA
			-0.4		-25		-25		-25	nA
Gate Operating Current	I_{G}	$\mathrm{V}_{D G}=15 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A}$	-0.2							pA
Drain Cutoff Current	$I_{\text {D (OFF) }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}$	0.2							
Gate-Source Forward Voltage	$V_{G S(F)}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7							V
DYNAMIC										
$\begin{aligned} & \text { Common-Source } \\ & \text { Forward } \\ & \text { Transconductance } \\ & \hline \end{aligned}$	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D S}= & 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f & =1 \mathrm{kHz} \end{aligned}$		70	210	80	250	100	330	$\mu \mathrm{S}$
Common-Source Output Conductance	gos				3		5		10	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	1.2		3		3		3	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		0.3		1.5		1.5		1.5	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} V_{D S}= & 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f & =1 \mathrm{kHz} \end{aligned}$	15							$n \mathrm{n} / \sqrt{\mathrm{Hz}}$

NOTES: 1. $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu S$, duty cycle $\leq 3 \%$.

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N4117A		2N4118A		2N4119A		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-70	-40		-40		-40		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-0.6	-1.8	-1	-3	-2	-6	v
Saturation Drain Current ${ }^{3}$	I DSs	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.015	0.09	0.08	0.24	0.2	0.6	mA
Gate Reverse Current	IGss	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$	-0.2		-1		-1		-1	pA
Gate Reverse Current		$V_{D S}=0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-0.4		-2.5		-2.5		-2.5	nA
Gate Operating Current	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mu \mathrm{~A}$	-0.2							
Drain Cutoff Current	$\mathrm{I}_{\text {D (OFF) }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}$	0.2							
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7							V
DYNAMIC										
Common-Source Forward Transconductance	$\mathrm{g}_{\text {ts }}$	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		70	210	80	250	100	330	$\mu \mathrm{S}$
Common-Source Output Conductance	$g_{\text {os }}$				3		5		10	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	1.2		3		3		3	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		0.3		1.5		1.5		1.5	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$	15							$n / \sqrt{\mathrm{Hz}}$

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

The 2N4220 Series of multi-purpose JFETs is designed for a wide range of applications. It features extremely low gate leakage and capacitance, and when coupled with its high gain, the 2N4220 Series will make a perfect broad band amplifier. The 2N4220A Series features a guaranteed noise figure of 2.5 dB . For military designs, this series is available with full high-rel processing. (See Section 1.)

For further design information please consult the typical performance curves NRL which are located in Section 7.

SIMILAR PRODUCTS

- TO-92, See J201 Series
- SOT-23, See SST201 Series
- Chips, Order 2N422XCHP

2N4220 SERIES
N-Channel JFETs

PART NUMBER	$V_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{V}_{(\mathrm{BR}) \text { GSS }}$ MIN (V)	$\mathrm{g}_{\text {fs }}$ MIN (mS)	I DSS $^{\text {MAX }}$ (mA)
2N4220	-4	-30	1	3
2N4221	-6	-30	2	6
2N4222	-8	-30	2.5	15
2N4220A	-4	-30	1	3
2N4221A	-6	-30	2	6
2N4222A	-8	-30	2.5	15

TO-72
BOTTOM VIEW

[^1]ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-30	V
Gate-Source Voltage	$V_{\text {GS }}$	-30	
Gate Current	I_{G}	10	mA
Drain Current	ID	15	
Power Dissipation	PD	300	mW
Power Derating		2	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 175	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 200	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	2N4220		2N4221		2N4222		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Gate-Source. Breakdown Voltage	$\mathrm{V}_{\text {(BR) }}$ Gss	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-57	-30		-30		-30		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{nA}$				-4		-6		-8		
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			0.5	3	2	6	5	15	mA	
Gate Reverse Current	IGss	$\begin{gathered} V_{G S}=-15 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$		-2		-100		-100		-100	pA	
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-4		-100		-100		-100	nA	
Gate Operating Current 4	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$		-2								
Drain Cutoff Current ${ }^{4}$	${ }^{\text {d (OFF })}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$		2								
Gate-Source Voltage	V_{GS}	$V_{D S}=15 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$	-0.8	-0.5	-2.5					V	
			$I_{D}=200 \mu \mathrm{~A}$	-1.5			-1	-5				
			$\mathrm{I}_{\mathrm{D}}=500 \mu \mathrm{~A}$	-3.5					-2	-6		
Gate-Source Forward Voltage ${ }^{4}$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7								
DYNAMIC												
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D S}= & 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$			1	4	2	5	2.5	6	mS	
Common-Source Output Conductance	gos					10		20		40		
Common-Source Forward- Transmittance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=100 \mathrm{MHz} \end{gathered}$			750		750		750			
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}= 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$		5		6		6		6	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			1.5		2		2		2		
Equivalent Input Nolse Voltage ${ }^{4}$	\bar{e}_{n}	$\begin{gathered} V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		6							$n / \sqrt{\mathrm{Hz}}$	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$
4. This parameter not registered with JEDEC.

2N4220 SERIES

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. This parameter not registered with JEDEC.

N-Channel JFETs

The 2N4338 Series of n-channel JFETs is designed for sensitive amplifier stages at low to mid frequencies. It features low cut-off voltages to accommodate low-level power supplies and low leakage for improved system accuracy. The 2N4338 and 2N4339 are ideal for low current, low battery operation. With their 1 dB max. noise figure at 1 kHz , system sensitivity will be excellent. Finally, the 2 N 4338 Series' TO-18 package is

PART NUMBER	$\mathbf{V}_{\text {GS(OFF) }}$ MAX (V)	$\mathrm{V}_{(\mathrm{BR}) \text { GSS }}$ MIN (V)	g_{fs} MIN (mS)	I DSS $^{\text {MAX }}$ (mA)
2N4338	-1	-50	0.6	0.6
2N4339	-1.8	-50	0.8	1.5
2N4340	-3	-50	1.3	3.6
2N4341	-6	-50	2	9

For further design information please consult the typical performance curves NPA which are located in Section 7.

SIMILAR PRODUCTS

- TO-92, See J201 Series

TO-18
BOTTOM VIEW

1 SOURCE
2 DRAIN
3 GATE \& CASE

- SOT-23, See SST201 Series
- Chips, Order 2N433XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	-50	V
Gate-Source Voltage	V_{GS}	-50	mA
Gate Current	I_{G}	50	mW
Power Dissipation	PD_{D}	300	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power Derating		2	
Operating Junction Temperature	T_{J}	-55 to 175	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 200	
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS					
		TEST CONDITIONS	TYP ${ }^{2}$	2N4338		2N4339		UNIT
PARAMETER	SYMBOL			MIN	MAX	MIN	MAX	

STATIC

Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ GSS	$I_{G}=-1 \mu \mathrm{~A}, V_{D S}=0 \mathrm{~V}$	-57	-50		-50		V
Gate-Source Cutoff Voltage	$V_{G S(O F F)}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mu \mathrm{~A}$		-0.3	-1	-0.6	-1.8	
Saturation Drain Current ${ }^{3}$	IDSS	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.2	0.6	0.5	1.5	mA
Gate Reverse Current	IGSS	$\begin{array}{ll} V_{G S}=-30 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} & T_{A}=150^{\circ} \mathrm{C} \end{array}$	-2		-100		-100	pA
			-4		-100		-100	nA
Gate Operating Current 4	I_{G}	$\mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$	-2					pA
Drain Cutoff Current	$I_{\text {D (OFF }}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-5 \mathrm{~V}$	2		50		50	
Gate-Source Forward Voltage 4	$V_{G S(f)}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7					V

Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D S}= 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		0.6	1.8	0.8	2.4	mS
Common-Source Output Conductance	gos				5		15	uS
Drain-Source On-Resistance	${ }^{\text {DSS(ON) }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$			2500		1700	Ω
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} V_{D S}= & 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	5		7		7	pF
$\begin{aligned} & \text { Common-Source } \\ & \text { Reverse Transfer } \\ & \text { Capacitance } \\ & \hline \end{aligned}$	$\mathrm{Crss}^{\text {r }}$		1.5		3		3	
Equivalent Input Noise Voltage ${ }^{4}$	\bar{e}_{n}	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$	6					$\overline{\mathrm{nV} / \sqrt{\mathrm{Hz}}}$
Noise Figure	NF	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{~m} \Omega \end{aligned}$	<0.01		1		1	dB

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. This parameter not registered with JEDEC.

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	2N4340		2N4341		UNIT	
				MIN	MAX	MIN	MAX			
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-57	-50		-50		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mu \mathrm{~A}$			-1	-3	-2	-6		
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			1.2	3.6	3	9	mA	
Gate Reverse Current	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$		-2		-100		-100	pA	
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-4		-100		-100	nA	
Gate Operating Current ${ }^{4}$	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$		-2					pA	
Drain Cutoff Current	${ }^{\text {d (OFF })}$	$V_{D S}=15 \mathrm{~V}$	$\mathrm{V}_{\mathrm{GS}}=-5 \mathrm{~V}$	2		50				
			$\mathrm{V}_{G S}=-10 \mathrm{~V}$	3				70		
Gate-Source Forward Voltage ${ }^{4}$	$\mathrm{V}_{\text {GS (f) }}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7					V	
DYNAMIC										
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D S}= & 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$			1.3	3	2	4	mS	
Common-Source Output Conductance	gos					30		60	US	
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS }}^{\text {(ON }}$)	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$				1500		800	Ω	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} V_{D S}= & 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$		5		7		7	pF	
$\begin{aligned} & \text { Common-Source } \\ & \text { Reverse Transfer } \\ & \text { Capacitance } \\ & \hline \end{aligned}$	$\mathrm{C}_{\text {rss }}$			1.5		3		3		
Equivalent Input Noise Voltage ${ }^{4}$	\bar{e}_{n}	$\begin{gathered} V_{D S}=10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$		6					$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
Noise Figure	NF	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega \end{aligned}$		<0.01		1		1	dB	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. This parameter not registered with JEDEC.

2N4391 SERIES

N-Channel JFET

The 2N4391 Series features many of the superior characteristics of JFETs. Its low on-resistance and fast switching make it a good choice for demanding analog switching applications, while its high-gain, low-noise, and impressive frequency response make it the choice for specialized amplifier circuits. This series also features a hermetically sealed

PART NUMBER	$V_{G S}$ (OFF) MAX (V)	$\begin{gathered} \mathrm{rds}(\mathrm{ON}) \\ \text { MAX } \\ (\Omega) \end{gathered}$	$\begin{aligned} & I_{D}(O F F) \\ & \text { MAX } \\ & (\mathrm{pA}) \end{aligned}$	ton MAX (ns)
2N4391	-10	30	100	20
2N4392	-5	60	100	20
2N4393	-3	100	100	20

For additional design information please consult the typical performance curves NCB which are located in Section 7.

SIMILAR PRODUCTS

- TO-92, See PN4391 Series
- SOT-23, See SST4391 Series
- Duals, See 2N5564 Series
- Chips, Order 2N439XCHP

BOTTOM VIEW

1 SOURCE
2 DRAIN
3 GATE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	-40	V
Gate-Source Voltage	V_{GS}	-40	V
Gate Current	I_{G}	50	mA
Power Dissipation (Case $25^{\circ} \mathrm{C}$)	P_{D}	1800	mW
Power Derating		10	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 200	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 200	${ }^{\circ} \mathrm{C}$
Lead Temperature $\left(1 / 16^{\prime \prime}\right.$ from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	2N4391		2N4392		2N4393		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Gate-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }}$ Gss	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-55	-40		-40		-40		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(OFF) }}$	$V_{D S}=20 \mathrm{~V}, I_{D}=1 \mathrm{nA}$			-4	-10	-2	-5	-0.5	-3		
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			50	150	25	75	5	30	mA	
Gate Reverse Current	IGss	$\begin{gathered} V_{G S}=-20 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$		-5		-100		-100		-100	pA	
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-13		-200		-200		-200	nA	
Gate Operating Current 4	$1 G$	$V_{D G}=15 \mathrm{~V}, I_{D}=10 \mathrm{~mA}$		-5							pA	
Drain Cutoff Current	${ }^{\text {d }}$ (OFF)	$V_{D S}=20 \mathrm{~V}$	$V_{G S}=-5 \mathrm{~V}$	5						100		
			$V_{G S}=-7 \mathrm{~V}$	5				100				
			$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$	5		100						
		$\begin{aligned} & V_{D S}=20 \mathrm{~V} \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	$V_{G S}=-5 \mathrm{~V}$	13						200	$n A$	
			$\mathrm{V}_{\mathrm{GS}}=-7 \mathrm{~V}$	13				200				
			$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$	13		200						
Drain-Source On-Voltage	$\mathrm{V}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=3 \mathrm{~mA}$	0.25						0.4	V	
			$\mathrm{I}_{\mathrm{D}}=6 \mathrm{~mA}$	0.3				0.4				
			$\mathrm{I}_{\mathrm{D}}=12 \mathrm{~mA}$	0.35		0.4						
Drain-Source On-Resistance	ros(on)	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$				30		60		100	Ω	
Gate-Source Forward Voltage	$V_{G S(F)}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7		1		1		1	V	
DYNAMIC												
Common-Source Forward Transconductance ${ }^{4}$	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D G}= & 20 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$		6							mS	
Common-Source Output Conductance ${ }^{4}$	$\mathrm{g}_{\text {os }}$			25							$\mu \mathrm{S}$	
Drain-Source On-Resistance	$\mathrm{r}_{\text {ds (}}$ (ON)	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~mA} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$				30		60		100	Ω	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=20 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		12		14		14		14	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$	$\begin{aligned} & V_{D S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=-5 \mathrm{~V}$	3.3						3.5		
			$\mathrm{V}_{\mathrm{GS}}=-7 \mathrm{~V}$	3.2				3.5				
			$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$	2.8		3.5						
Equivalent Input Noise Voltage ${ }^{4}$	\bar{e}_{n}	$\begin{gathered} \mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		3.0							$n / \sqrt{\mathrm{Hz}}$	
SWITCHING												
Turn-on Time	$\mathrm{t}_{\mathrm{d}}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}$		2		15		15		15	ns	
	t_{r}	P/N ID(ON)	$V_{G S \text { (OFF) }} \quad R_{L}$	2		5		5		5		
Turn-off Time	$\mathrm{t}_{\text {d (OFF) }}$	$\begin{aligned} & \text { 2N4391 } \\ & \text { 2N4392 } \\ & \text { 2N4393 } \end{aligned}$	$\begin{array}{rr} -12 & 800 \Omega \\ -7 & 1600 \Omega \end{array}$	6		20		35		50		
	t_{f}		-5V 3000Ω	13		15		20		30		

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu s$, duty cycle $\leq 3 \%$.
4. This parameter not registered with JEDEC.

2N4416 SERIES

N-Channel JFETs

The 2N4416 and 2N4416A are n-channel JFETs designed to provide high-performance amplification, especially at high-frequency. These parts feature low noise figure ($4 \mathrm{~dB} \max @ 400 \mathrm{MHz}$), high gain (10 dB min @ 400 MHz) and provide wide bandwidth. Its TO-72 hermetically sealed package is available with full military processing. (See Section 1.)

For additional design information please see performance curves NH , which are located in Section 7.

SIMILAR PRODUCTS

PART NUMBER	V $_{\text {GS(OFF) }}$ MAX (V)	V $_{\text {(BR) GSS }}$ MIN (V)	g_{fs} MIN (mS)	I DSS $^{\text {MAX }}$ (mA)
2N4416	-6	-30	4.5	15
2N4416A	-6	-35	4.5	15

- TO-92, See PN4416
- SOT-23, See SST4416
- Chips, Order 2N4416CHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT		UNITS
		2N4416	2N4416A	
Gate-Drain Voltage	$V_{G D}$	-30	-35	V
Gate-Source Voltage	$V_{G S}$	-30	-35	
Gate Current	I_{G}	10		mA
Power Dissipation	PD	300		mW
Power Derating		1.7		mW/ ${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 150		${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 200		
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300		

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS					
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N4416		2N4416A		UNIT
				MIN	MAX	MIN	MAX	
STATIC								
Gate-Source Breakdown Voltage	$V_{\text {(BR) GSS }}$	$I_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-36	-30		-35		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(OFF) }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-3		-6	-2.5	-6	
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	10	5	15	5	15	mA
Gate Reverse Current	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$ $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-2		-100		-100	pA
			-4		-100		-100	nA
Gate Operating Current 4	I_{G}	$V_{D G}=10 \mathrm{~V}, I_{D}=1 \mathrm{~mA}$	-20					pA
Drain Cutoff Current ${ }^{4}$	$I_{\text {d (OFF })}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-6 \mathrm{~V}$	2					
Drain-Source On-Resistance ${ }^{4}$	$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	150					Ω
Gate-Source Forward Voltage ${ }^{4}$	$\mathrm{V}_{\mathrm{GS} \text { (f) }}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7					V
DYNAMIC								
Common-Source Forward- Transconductance ${ }^{3}$	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D S}= 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$	6	4.5	7.5	4.5	7.5	mS
Common-Source Output Conductance ${ }^{3}$	gos		15		50		50	$\mu \mathrm{S}$
Common-Source Input Capacitance	$\mathrm{C}_{\text {ISs }}$	$\begin{aligned} & V_{D S}= 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	2.2		4		4	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		0.7		0.8		0.8	
Common-Source Output Capacitance	Coss		1		2		2	
Equivalent Input Noise Voltage ${ }^{4}$	\bar{e}_{n}	$\begin{gathered} V_{D S}=10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=100 \mathrm{~Hz} \end{gathered}$	9					$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$
ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS					
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	100 MHz		400 MHz		UNIT
				MIN	MAX	MIN	MAX	
HIGH-FREQUENCY								
Common-Source Input Conductance	$\mathrm{g}_{\text {iss }}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			100		1000	$\mu \mathrm{S}$
Common-Source Input Susceptance	$\mathrm{b}_{\text {Iss }}$				2500		10,000	
Common-Source Output Capacitance	goss				75		100	
Common-Source Output Susceptance	$\mathrm{b}_{\text {oss }}$				1000		4000	
Common-Source Forward Transconductance	$\mathrm{g}_{\text {f }}$					4000		
Common-Source Power Gain	G_{ps}	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		18		10		
Noise Figure	NF	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA} \\ R_{G}=1 \mathrm{k} \Omega \end{gathered}$			2		4	dB

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. This parameter not registered with JEDEC.

2N4856 SERIES - JANTX, JANTXV

N-Channel JFET

The 2N4856 Series is an all-purpose JFET analog switch which offers low on-resistance, good isolation and very fast switching. Its JAN, JANTX, and JANTXV certification make this device a perfect choice for military designs, as qualified devices can be purchased without cumbersome source-control documentation.

For additional design information please consult the typical performance curves NCB, which are located in Section 7.

PART NUMBER	$V_{\text {GS }}$ (OFF) MAX (V)	$\begin{gathered} \mathrm{r}_{\mathrm{ds}(\mathrm{ON})} \\ \text { MAX } \\ (\Omega) \end{gathered}$	$\begin{aligned} & \text { ID(OFF) } \\ & \text { MAX } \\ & \text { (pA) } \end{aligned}$	ton MAX (ns)
2N4856	-10	25	250	9
2N4857	-6	40	250	10
2N4858	-4	60	250	20
2N4859	-10	25	250	9
2N4860	-6	40	250	10
2N4861	-4	60	250	20

BOTTOM VIEW

SIMILAR PRODUCTS

- TO-92, J111 Series
- SOT-23, SST111 Series
- Dual, 2N5564 Series
- Chips, Order 2N485XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT		UNITS
		2N4856-58	2N4859-61	
Gate-Drain Voltage	V_{GD}	-40	-30	V
Gate-Source Voltage	$V_{G S}$	-40	-30	
Gate Current	I_{G}	50		mA
Power Dissipation ($25^{\circ} \mathrm{C}$ Case)	P_{D}	1800		mW
Power Derating		10		$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 200		${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 200		
Lead Temperature (1/16" from case for 10 seconds)	TL	300		

ELECTRICAL CHARACTERISTICS ${ }^{1}$						LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS				TYP ${ }^{2}$	2N4856		2N4857		2N4858		UNIT	
						MIN	MAX	MIN	MAX	MIN	MAX			
STATIC														
Gate-Source Breakdown Voltage	$\mathrm{V}_{(\mathrm{BR}) \mathrm{GSS}}$	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$					-55	-40		-40		-40		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$					-4	-10	-2	-6	-0.8	-4		
Saturation Drain Current ${ }^{3}$	Idss	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$					50		20	100	8	80	mA	
Gate Reverse Current	Iass	$\begin{aligned} & V_{G S}=-20 \mathrm{~V} \\ & V_{D S}=0 \mathrm{~V} \end{aligned}$				-5		-250		-250		-250	pA	
				$\mathrm{T}_{\mathrm{A}}=1$	$150^{\circ} \mathrm{C}$	-13		-500		-500		-500	nA	
Gate Operating Current ${ }^{4}$	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$				-5								
Drain Cutoff Current	ID(OFF)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$				5		250		250		250		
		$\begin{gathered} V_{D S}=15 \mathrm{~V}, V_{G S}=-10 \mathrm{~V} \\ T_{A}=150^{\circ} \mathrm{C} \end{gathered}$				13		500		500		500	nA	
Drain-Source On-Voltage	$\mathrm{V}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{Gs}}=0 \mathrm{~V}$		$I_{D}=$	5 mA	0.25						0.5	v	
				$\mathrm{I}_{\mathrm{D}}=$	10 mA	0.35				0.5				
				$\mathrm{I}_{\mathrm{D}}=$	20 mA	0.5		0.75						
Drain-Source On-Resistance ${ }^{4}$	ros(on)	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$						25		40		60	Ω	
Gate-Source Forward Voltage ${ }^{4}$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$				0.7							V	
DYNAMIC														
Common-Source Forward- Transconductance 4 g_{fs}		$\begin{aligned} V_{D G}= & 20 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$				6							mS	
Common-Source Output Conductance ${ }^{4}$	gos					25							HS	
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$	$\begin{gathered} V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$						25		40		60	Ω	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=-10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$				7		18		18		18	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$					3		8		8		8		
Equivalent Input Noise Voltage ${ }^{4}$	\bar{e}_{n}	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$				3							$\frac{n y}{\sqrt{H z}}$	
SWITCHING														
Turn-on Time	$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{ON})}$	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}$ P / N $\mathrm{I}_{\mathrm{D}(\mathrm{ON})} \mathrm{V}_{\mathrm{GS}(\mathrm{OFF})} \quad \mathrm{R}_{\mathrm{L}}$ 2 N 4856 20 mA -10 V 2064Ω 2 N 4857 10 mA -6 V 2N4858 553 mA -4 V 1910Ω				2		6		6		10	ns	
	t_{r}					2		3		4		10		
Turn-off Time	${ }^{\text {t }}$ (OFF)					19		25		50		100		

NOTES: 1. $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=100 \mu \mathrm{~S}$, duty cycle $\leq 10 \%$.
4. This parameter not registered with JEDEC.

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N4859		2N4860		2N4861		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

Gate-Source Breakdown Voltage	$V_{(B R) G S S}$	$I_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{D S}=0 \mathrm{~V}$		-55	-30		-30		-30		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{GS} \text { (OFF) }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$			-4	-10	-2	-6	-0.8	-4.0	
Saturatlon Drain Current ${ }^{3}$	IDSS	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			50		20	100	8	80	mA
Gate Reverse Current	$I_{\text {GSS }}$	$\begin{aligned} & V_{G S}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$		-5		-250		-250		-250	pA
			$T_{A}=150^{\circ} \mathrm{C}$	-13		-500		-500		-500	nA
Gate Operating Current 4	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$		-5							
Drain Cutoff Current	$I_{\text {D (OFF) }}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$		5		250		250		250	
		$\begin{gathered} V_{D S}=15 \mathrm{~V}, V_{G S}=-10 \mathrm{~V} \\ T_{A}=150^{\circ} \mathrm{C} \end{gathered}$		13		500		500		500	nA
Drain-Source On-Voltage	$V_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$	0.25						0.5	V
			$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	0.35				0.5			
			$I_{D}=20 \mathrm{~mA}$	0.5		0.75					
Drain-Source On-Resistance 4	$\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$				25		40		60	Ω
Gate-Source Forward Voltage 4	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7							V

DYNAMIC

Common-Source Forward Transconductance 4	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D G}= & 20 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$	6				mS
Common-Source Output Conductance ${ }^{4}$	gos		25				$\mu \mathrm{S}$
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{ds}}(\mathrm{ON})$	$\begin{gathered} V_{G S}=0 \mathrm{~V}, I_{D}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$		25	40	60	Ω
Common-Source Input Capacitance	$\mathrm{C}_{\text {Iss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=-10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	7	18	18	18	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		3	8	8	8	
Equivalent Input Noise Voltage 4	\bar{e}_{n}	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	3				$\frac{n V /}{\sqrt{H z}}$

SWITCHING

Turn-on Time	$\mathrm{t}_{\mathrm{d}}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}$				2	6	6	10	ns
	t_{r}	P/N $I_{D(O N)} V_{G S(O F F)} R_{L}$ 2N4859 $20 \mathrm{~mA}-10 \mathrm{~V} 464 \Omega$				2	3	4	10	
Turn-off Time	${ }^{t}$ (OFF)	$\begin{aligned} & \text { 2N4859 } \\ & \text { 2N4860 } \\ & \text { 2N4861 } \end{aligned}$	20 mA 10 mA 5 mA	$\begin{array}{r} -10 \mathrm{~V} \\ -6 \mathrm{~V} \\ -4 \mathrm{~V} \end{array}$	$\begin{array}{r} 464 \Omega \\ 953 \Omega \\ 1910 \Omega \\ \hline \end{array}$	19	25	50	100	

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=100 \mu \mathrm{~S}$, duty cycle $\leq 10 \%$.
4. This parameter not registered with JEDEC.

N-Channel JFET

The 2N4856A Series is an all-purpose JFET analog switch which offers low on-resistance and good isolation. Although very similar to the 2N4856 Series, the 2N4856A Series features even lower capacitance and faster switching. Finally, its hermetically sealed TO-18 package allows full military processing. (See Section 1.)

For additional design information please consult the typical performance curves NCB, which are located in Section 7.

PART NUMBER	$\mathbf{V}_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{r}_{\text {ds }(O N)}$ MAX (Ω)	$I_{\mathrm{D}(\mathrm{OFF})}$ MAX (pA)	$\mathbf{t}_{\text {ON }}$ MAX (ns)
2N4856A	-10	25	250	8
2N4857A	-6	40	250	10
2N4858A	-4	60	250	16
2N4859A	-10	25	250	8
2N4860A	-6	40	250	10
2N4861A	-4	60	250	16

1 SOURCE
2 DRAIN
3 GATE

TO-18

BOTTOM VIEW

SIMILAR PRODUCTS

- TO-92, J111 Series
- SOT-23, SST111 Series
- Dual, 2N5564 Series
- Chips, Order 2N485XACHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERSITEST CONDITIONS	SYMBOL	LIMIT		UNITS
		2N4856A-58A	2N4859A-61A	
Gate-Drain Voltage	$V_{G D}$	-40	-30	V
Gate-Source Voltage	$V_{G S}$	-40	-30	
Gate Current	I_{G}	50		mA
Power Dissipation ($25^{\circ} \mathrm{C}$ Case)	PD	1800		mW
Power Derating		10		mW/ ${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 200		${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 200		
Lead Temperature ($1 / 16$ " from case for 10 seconds)	T_{L}	300		

2N4856A SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N4856A		2N4857A		2N4858A		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ ass	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-55	-40		-40		-40		V
Gate-Source Cutoff Voltage	$V_{\text {GS (OFF) }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$		-4	-10	-2	-6	-0.8	-4	
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		50		20	100	8	80	mA
Gate Reverse		$\begin{aligned} & V_{G S}=-20 \mathrm{~V} \\ & V_{D S}=0 \mathrm{~V} \end{aligned}$	-5		-250		-250		-250	pA
			-13		-500		-500		-500	nA
Gate Operating Current ${ }^{4}$	I_{G}	$V_{D G}=15 \mathrm{~V}, I_{D}=10 \mathrm{~mA}$	-5							pA
Drain Cutoff Current	${ }^{\text {D (OFF })}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	5		250		250		250	
		$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{gathered}$	13		500		500		500	nA
Drain-Source On-Voltage	$\mathrm{V}_{\text {DS(ON) }}$	$V_{G S}=0 \mathrm{~V}$	0.25						0.5	V
			0.35				0.5			
			0.5		0.75					
Drain-Source On-Resistance ${ }^{4}$	ros(on)	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$			25		40		60	Ω
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7							V
DYNAMIC										
Common-Source Forward Transconductance 4	$\mathrm{g}_{\text {ts }}$	$\begin{aligned} V_{D G}= & 20 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$	6							mS
Common-Source Output Conductance ${ }^{4}$	$\mathrm{g}_{\text {os }}$		25							$\mu \mathrm{S}$
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{ds} \text { (ON) }}$	$\begin{aligned} V_{G S} & =0 \mathrm{~V}, I_{D}=0 \mathrm{~V} \\ f & =1 \mathrm{kHz} \end{aligned}$			25		40		60	Ω
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=-10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	7		10		10		10	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		3		4		3.5		3.5	
Equivalent Input Noise Voltage ${ }^{4}$	\bar{e}_{n}	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$	3							$n / \sqrt{\mathrm{Hz}}$
SWITCHING										
Turn-on Time	$\left.\mathrm{t}_{\mathrm{d} \text { (}} \mathrm{ON}\right)$		2		5		6		8	ns
	t_{r}		2		3		4		8	
Turn-off Time	${ }^{\text {t }}$ (FFF)		19		20		40		80	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=100 \mu \mathrm{~S}$, duty cycle $\leq 10 \%$.
4. This parameter not registered with JEDEC.

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N4859A		2N4860A		2N4861A		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }}$ Gss	$I_{G}=-1 \mu \mathrm{~A}, V_{D S}=0 \mathrm{~V}$	-55	-30		-30		-30		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$		-4	-10	-2	-6	-0.8	-4	
Saturation Drain Current ${ }^{3}$	I DSs	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		50		20	100	8	80	mA
Gate Reverse Current	Igss	$\begin{aligned} & V_{G S}=-15 \mathrm{~V} \\ & V_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$	-5		-250		-250		-250	pA
			-13		-500		-500		-500	nA
Gate Operating Current 4	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	-5							pA
Drain Cutoff Current	$I_{\text {d(OFF })}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	5		250		250		250	
		$\begin{gathered} V_{D S}=15 \mathrm{~V}, V_{G S}=-10 \mathrm{~V} \\ T_{A}=150^{\circ} \mathrm{C} \end{gathered}$	13		500		500		500	nA
Drain-Source On-Voltage	VSS(ON)	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	0.25						0.5	V
			0.35				0.5			
			0.5		0.75					
Drain-Source On-Resistance 4	$r_{\text {DS (ON }}$)	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$			25		40		60	Ω
Gate-Source Forward Voltage 4	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7							V
DYNAMIC										
Common-Source Forward- Transconductance 4	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D G}= & 20 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ f & =1 \mathrm{kHz} \end{aligned}$	6							mS
Common-Source Output Conductance ${ }^{4}$	gos		25							μS
Draln-Source On-Resistance	$\mathrm{r}_{\text {ds(ON) }}$	$\begin{aligned} V_{G S} & =0 \mathrm{~V}, I_{D}=0 \mathrm{~V} \\ f & =1 \mathrm{kHz} \end{aligned}$			25		40		60	Ω
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=-10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	7		10		10		10	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		3		4		3.5		3.5	
Equivalent Input Noise Voltage 4	\bar{e}_{n}	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$	3							$\frac{\mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$
SWITCHING										
Turn-on Time	$\mathrm{t}_{\mathrm{d}}(\mathrm{ON})$		2		5		6		8	ns
	t_{r}		2		3		4		8	
Turn-off Time	${ }^{\text {t }}$ (FFF)		19		20		40		80	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=100 \mu \mathrm{~S}$, duty cycle $\leq 10 \%$.
4. This parameter not registered with JEDEC.

2N4867 SERIES

N-Channel JFETs

The 2 N 4867 Series of n-channel JFETs is designed for sensitive amplifier stages at low to mid frequencies. For applications requiring the lowest possible noise, the 2N4867A Series features \bar{e}_{n} of $10 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ 10 \mathrm{~Hz}$. Additionally, this series features low cut-off voltages to accommodate low-level power supplies and low leakage for improved system accuracy. Specifically the 2N4867 and 2N4868 are ideal for low current, low battery operation. With 1 dB max. noise figure at 1 kHz , system sensitivity will be excellent. Finally, the 2N4867 Series' TO-72 package is hermetically sealed and suitable for military processing. (See Section 1.)

For further design information please consult the typical performance curves NPA which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See 2N4338 Series
- TO-92, See J201 Series
- SOT-23, See SST201 Series

PART NUMBER	$V_{\text {GS(OFF) }}$ MAX (V)	$V_{(\text {BR }) \text { GSS }}$ MIN (V)	g_{fs} MIN (mS)	$\mathrm{I}_{\text {DSS }}$ MAX (mA)
2 24867	-2	-40	0.7	1.2
2N4868	-3	-40	1	3
2N4869	-5	-40	1.3	7.5
2N4867A	-2	-40	0.7	1.2
2N4868A	-3	-40	1	3
2N4869A	-5	-40	1.3	7.5

TO-72

1 SOURCE
2 DRAIN
3 GATE
4 CASE

BOTTOM VIEW

- Chips, Order 2N486XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-40	
Gate-Source Voltage	$V_{G S}$	-40	V
Gate Current	I_{G}	50	mA
Power Dissipation	PD_{D}	300	mW
Power Derating		1.7	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 200	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	2N4867		2N4868		2N4869		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Gate-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) GSS }}$	$I_{G}=-1 \mu \mathrm{~A}, V_{D S}=0 \mathrm{~V}$			-57	-40		-40		-40		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(OFF) }}$	$V_{D S}=20 \mathrm{~V}, I_{D}=1 \mu \mathrm{~A}$			-0.7	-2	-1	-3	-1.8	-5		
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			0.4	1.2	1	3	2.5	7.5	mA	
Gate Reverse Current	IGss	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{gathered}$		-2		-250		-250		-250	pA	
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-4		-250		-250		-250	nA	
Gate Operating Current ${ }^{4}$	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$		-2								
Drain Cutoff Current ${ }^{4}$	Id (off)	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-6 \mathrm{~V}$		2								
Gate-Source Forward Voltage 4	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7							V	
DYNAMIC												
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D S}= & 20 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$			0.7	2	1	3	1.3	4	mS	
Common-Source Output Conductance	gos					1.5		4		10	$\mu \mathrm{S}$	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}= 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$		4.5		25		25		25		
Common-Source Capacitance	$\mathrm{C}_{\text {rss }}$			1.3		5		5		5	pr	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{f}=10 \mathrm{~Hz}$	14		20		20		20	$\left\|\frac{n y}{\sqrt{H z}}\right\|$	
			$\mathrm{f}=1 \mathrm{kHz}$	6		10		10		10		
Noise Figure	NF	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=20 \mathrm{k} \Omega \end{aligned}$		0.5		1		1		1	dB	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. This parameter not registered with JEDEC.

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N4867A		2N4868A		2N4869A		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

Gate-Source Breakdown Voltage	$V_{(B R) G S S}$	$I_{G}=-1 \mu \mathrm{~A}$,	$\mathrm{ps}=0 \mathrm{~V}$	-57	-40		-40		-40		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$,	$=1 \mu \mathrm{~A}$		-0.7	-2	-1	-3	-1.8	-5	
Saturation Drain Current ${ }^{3}$	I DSs	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$,	GS $=0 \mathrm{~V}$		0.4	1.2	1	3	2.5	7.5	mA
Gate Reverse Current	IGss	$\begin{gathered} V_{G S}=-30 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$		-2		-250		-250		-250	pA
			${ }_{A}=150^{\circ} \mathrm{C}$	-4		-250		-250		-250	nA
Gate Operating Current ${ }^{4}$	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$		-2							pA
Drain Cutoff Current ${ }^{4}$	ID(OFF)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-6 \mathrm{~V}$		2							
Gate-Source Forward Voltage 4	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7							V

DYNAMIC											
Common-Source Forward Transconductance	g_{fs}	$\begin{aligned} V_{D S}= & 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f & =1 \mathrm{kHz} \end{aligned}$			0.7	2	1	3	1.3	4	mS
Common-Source Output Conductance	$\mathrm{g}_{\text {os }}$					1.5		4		10	$\mu \mathrm{S}$
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} V_{D S}=20 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{aligned}$		4.5		25		25		25	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			1.3		5		5		5	pF
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$	$\mathrm{f}=10 \mathrm{~Hz}$	8		10		10		10	$n / \sqrt{\mathrm{Hz}}$
			$\mathrm{f}=1 \mathrm{kHz}$	3.5		5		5		5	
Noise Figure	NF	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=20 \mathrm{k} \Omega \end{aligned}$		0.5		1		1		1	dB

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. This parameter not registered with JEDEC.

P-Channel JFETs

The 2N5114 Series is a p-channel JFET analog switch designed to complement our n-channel 2N4091 Series. They feature low on-resistance and good off-isolation as well as the fast switching associated with JFETs. They are housed in TO-18 hermetic packages and available with JAN, JANTX, or JANTXV level processing. (See 2N5114 JANTX data sheet.)

For additional design information please see performance curves PSCIA, which are located in Section 7.

SIMILAR PRODUCTS

- TO-92, See J174 Series

PART NUMBER	$\begin{gathered} \mathrm{V}_{\mathrm{GS}(\mathrm{OFF})} \\ \mathrm{MAX} \\ \mathrm{~V}) \end{gathered}$	$\begin{gathered} \mathrm{r}_{\mathrm{ds}(\mathrm{ON})} \\ \text { MAX } \\ (\Omega) \end{gathered}$	$\begin{aligned} & \text { ID(OFF) } \\ & \text { MAX } \\ & \text { (} \mathrm{pA} \text {) } \end{aligned}$	$\begin{gathered} \text { ton } \\ \text { MAX } \\ \text { (ns) } \end{gathered}$
2N5114	10	75	-500	16
2N5115	6	100	-500	30
2N5116	4	150	-500	60

- SOT-23, See SST5114 Series
- Chips, Order 2N511XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	30	
Gate-Source Voltage	$V_{G S}$	30	V
Gate Current	I_{G}	50	mA
Power Dissipation	P_{D}	500	mW
Power Derating		3	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ_{J}	-55 to 200	
Storage Temperature	$T_{\text {Stg }}$	-65 to 200	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	

2N5114 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	2N5114		2N5115		2N5116		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Gate-Source Breakdown Voltage	$V_{\text {(BR) GSS }}$	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{D S}=0 \mathrm{~V}$			45	30		30		30		
Gate-Source Cutoff Voltage	$V_{\text {GS(OFF) }}$	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{nA}$			5	10	3	6	1	4	\checkmark	
Saturation Drain Current ${ }^{3}$	I DSs	$\mathrm{V}_{\mathrm{Gs}}=0 \mathrm{~V}$	$V_{\text {DS }}=-18 \mathrm{~V}$		-30	-90						
			$V_{\text {DS }}=-15 \mathrm{~V}$				-15	-60	-5	-25		
Gate Reverse Current	l gss	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$		5		500		500		500	pA	
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	0.01		1		1		1	$\mu \mathrm{A}$	
Gate Operating ${ }^{4}$ Current	I_{G}	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$		-5							pA	
Drain Cutoff Current	${ }^{\text {d (OFF) }}$	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}$	$\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}$	-10		-500						
			$\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}$	-10				-500				
			$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$	-10						-500		
		$\begin{gathered} V_{D S}=-15 \mathrm{~V} \\ T_{A}=150^{\circ} \mathrm{C} \end{gathered}$	$V_{G S}=12 \mathrm{~V}$	-0.02		-1					nA	
			$\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}$	-0.02				-1				
			$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$	-0.02						-1		
Drain-Source On-Voltage	$\mathrm{V}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=-15 \mathrm{~mA}$	-1.0		-1.3					V	
			$\mathrm{I}_{\mathrm{D}}=-7 \mathrm{~mA}$	-0.7				-0.8				
			$\mathrm{I}_{\mathrm{D}}=-3 \mathrm{~mA}$	-0.5						-0.6		
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$				75		100		150	Ω	
Gate-Source Forward Voltage	$\mathrm{VGS}_{\text {(F) }}$	$\mathrm{I}_{\mathrm{G}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		-0.7		-1		-1		-1	V	
DYNAMIC												
Common-Source 4 Forward Transconductance	$\mathrm{g}_{\text {f }}$	$\begin{gathered} V_{D G}=-15 \mathrm{~V}, I_{D}=-1 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$		4.5							mS	
Common-Source ${ }^{4}$ Output Conductance	gos			20							$\mu \mathrm{S}$	
Drain-Source On-Resistance	$\mathrm{r}_{\text {ds }}(\mathrm{ON})$	$\begin{gathered} V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$				75		100		150	Ω	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		20		25		25		25	pF	
Common-Source Reverse Transfer Capacitance	Crss	$\begin{aligned} & V_{D S}=0 V \\ & f=1 \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}$	5		7						
			$\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}$	6				7				
			$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$	6						7		
Equivalent Input ${ }^{4}$ Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		20							$n \mathrm{n} /{ }^{\text {H2 }}$	
SWITCHING												
Turn-on Time	$\mathrm{t}_{\mathrm{d} \text { (ON) }}$	$\begin{array}{ll} & V_{G S(O N)}=0 V \\ P / N & V_{D D} \\ I_{D(O N)} V_{G S(O F F)} R_{L} \end{array}$				6		10		25	ns	
	t_{r}					10		20		35		
Turn-off Time	$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{OFF})}$	$\|$$2 N 5114$ -10 V -15 mA 20 V 130Ω 2 N 115 -6 V -7 mA 12 V 900 2 N 5116 -6 V -3 mA 8 V 2000Ω				6		8		20		
	t_{f}					15		30		60		

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. This parameter not registered with JEDEC.

P-Channel JFETs

The 2N5114 Series is a p-channel JFET analog switch designed to complement our n-channel 2N4091 Series. They feature low on-resistance and good off-isolation as well as the fast switching associated with JFETs. They are housed in TO-18 hermetic packages and available with JAN, JANTX, or JANTXV level processing.

PART NUMBER	V $_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$ MAX (Ω)	$\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$ MAX (pA)	$\mathrm{t}_{\text {ON }}$ MAX (ns)
2 N5114	10	75	-500	16
2 N5115	6	100	-500	30
$2 N 5116$	4	175	-500	42

For additional design information please see performance curves PSCIA, which are located in Section 7.

BOTTOM VIEW

SIMILAR PRODUCTS

- TO-92, See J174 Series
- SOT-23, See SST5114 Series

$\begin{array}{ll}1 & \text { SOURCE } \\ 2 & \text { DRAIN } \\ 3 & \text { GATE }\end{array}$
- Chips, Order 2N511XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	30	V
Gate-Source Voltage	V_{GS}	30	50
Gate Current	I_{G}	500	mA
Power Dissipation	P_{D}	mW	
Power Derating		-55 to 200	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-65 to 200	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	300	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}		

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N5114		2N5115		2N5116		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

N-Channel JFET Pairs

The 2N5196 Series of monolithic JFET pairs is designed for high performance differential amplification for a wide range of precision test instrumentation applications. This series features tight matching specs, low gate leakage for accuracy, and wide dynamic range as I_{G} is guaranteed at $V_{D G}=20 \mathrm{~V}$. Its TO-71 package is hermetically sealed and is available with full military processing. (See Section 1.)

For additional design information please see performance curves NQP, which are located in Section 7.

SIMILAR PRODUCTS

- Low Noise, See U401 Series
- Low Leakage, See U421 Series
- High Gain, See 2 N5911 Series

TO-71

BOTTOM VIEW

1 SOURCE 1
2 DRAIN 1
3 GATE 1
4 SOURCE 2
5 DRAIN 2
6 GATE 2

- Chips, Order 2N519XCHP Series

PART NUMBER	$V_{(B R) G S S}$ MIN (V)	\mathbf{g}_{fs} MIN (mS)	$\mathrm{I}_{\mathbf{G}}$ MAX (pA)	$\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{GS}_{2}}$ MAX (mV)
2N5196	-50	1	-15	5
2N5197	-50	1	-15	5
2N5198	-50	1	-15	10
2N5199	-50	1	-15	15

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Gate-Drain Voltage		$V_{G D}$	-50	V
Gate-Source Voltage		V_{GS}	-50	
Forward Gate Current		1 G	50	mA
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=85^{\circ}$)	Per Side	PD	250	mW
	Total		500	
Power Derating ($\mathrm{T}_{\mathrm{A}}=85^{\circ}$)	Per Side		2.56	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Total		4.3	
Operating Junction Temperature		TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 200	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	2N5196		2N5197		UNIT	
				MIN	MAX	MIN	MAX			
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ Gss	$\mathrm{I}_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-57	-50		-50		V
Gate-Source Cutoff Voltage	$V_{\text {GS (OFF) }}$	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-2	-0.7	-4	-0.7	-4		
Saturation Drain Current	I DSs	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		3	0.7	7	0.7	7	mA	
Gate Reverse Current	IGss	$\begin{gathered} V_{G S}=-30 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{gathered}$		-10		-25		-25	pA	
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-20		-50		-50	nA	
Gate Operating Current	I_{G}	$\begin{gathered} V_{D G}=20 \mathrm{~V} \\ I_{D}=200 \mu \mathrm{~A} \end{gathered}$		-5		-15		-15	pA	
		$I_{D}=200 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.8		-15		-15	nA	
Gate-Source Voltage	$V_{G S}$	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		-1.5	-0.2	-3.8	-0.2	-3.8	V	
DYNAMIC										
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D S}= & 20 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		2.5	1	4	1	4	mS	
Common-Source Output Conductance	$\mathrm{g}_{\text {os }}$			2		50		50	HS	
$\begin{aligned} & \text { Common-Source } \\ & \text { Forward-Suctance } \\ & \hline \text { Transconduct } \end{aligned}$	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ f=1 \mathrm{kHz} \end{gathered}$		0.8	0.7	1.6	0.7	1.6	mS	
Common-Source Output Conductance	gos			1		4		4	山S	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} V_{D S}=20 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{aligned}$		3		6		6	pF	
Common-Source Reverse Transfe Capacitance	$\mathrm{C}_{\text {rss }}$			1		2		2		
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{array}{r} V_{D S}=20 \\ f= \end{array}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	9		20		20	$\frac{\mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$	
Noise Flgure	NF	$\begin{aligned} & V_{D S}=20 \\ & f=100 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & V_{G S}=0 \mathrm{~V} \\ & R_{G}=10 \mathrm{M} \Omega \end{aligned}$	<0.1		0.5		0.5	dB	
MATCHING										
Differential Gate-Source Voltage	$\left\|\mathrm{V}_{\mathrm{GS1}} \mathrm{~V}_{\mathrm{GS} 2}\right\|$	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$		3		5		5	mV	
Gate-Source Voltage Differentlal Change with Temperature	$\frac{\Delta\left\|V_{G S 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|}{\Delta{ }^{\text {a }} \text { (}}$	$\mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V}$	$\mathrm{T}=-55$ to $25^{\circ} \mathrm{C}$	3		5		10	$\mu \mathrm{v} / \circ^{\circ} \mathrm{C}$	
	ΔT	$I_{D}=200 \mu \mathrm{~A}$	$\mathrm{T}=25$ to $125^{\circ} \mathrm{C}$	3		5		10		
Saturation Drain Current Ratio	$\frac{l_{\text {DSS1 }}}{I_{\text {Dss2 }}}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.98	0.95	1	0.95	1		
Transconductance Ratio	$\frac{g_{\mathrm{fs} 1}}{g_{\mathrm{fs} 2}}$	$\begin{gathered} V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ f=1 \mathrm{kHz} \end{gathered}$		0.99	0.97	1	0.97	1		
Differential Output Conductance	\| $\mathrm{gos}_{\text {os }}$ - $\mathrm{g}_{\text {os2 }} \mid$			0.1		1		1	川	
Differentlal Gate Current	$\left\|I_{\mathrm{G} 1} \mathrm{I}_{\mathrm{G} 2}\right\|$	$\begin{gathered} V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ T_{A}=125^{\circ} \mathrm{C} \end{gathered}$		0.1		5		5	nA	
Common Mode Rejection Ratio	CMRR	$V_{D D}=10$ to $20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		100					dB	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	2N5198		2N5199		UNIT	
				MIN	MAX	MIN	MAX			
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ Gss	$I_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-57	-50		-50		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-2	-0.7	-4	-0.7	-4		
Saturation Drain Current	IDSs	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		3	0.7	7	0.7	7	mA	
Gate Reverse Current	IGss	$\begin{gathered} V_{G S}=-30 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$		-10		-25		-25	pA	
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-20		-50		-50	nA	
Gate Operating Current	I_{G}	$V_{D G}=20 \mathrm{~V}$		-5		-15		-15	pA	
		$I_{D}=200 \mu$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.8		-15		-15	nA	
Gate-Source Voltage	V_{GS}	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		-1.5	-0.2	-3.8	-0.2	-3.8	V	
DYNAMIC										
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=20 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$		2.5	1	4	1	4	mS	
Common-Source Output Conductance	gos			2		50		50	H	
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ f=1 \mathrm{kHz} \end{gathered}$		0.8	0.7	1.6	0.7	1.6	mS	
Common-Source Output Conductance	$\mathrm{g}_{\text {os }}$			1		4		4	נ	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=20 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		3		6		6	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			1		2		2		
Equivalent Input Noise Voltage	\bar{e}_{n}	$V_{D S}=20$	$\begin{aligned} & \mathrm{V}_{\mathrm{Gs}}=0 \mathrm{~V} \\ & \mathrm{kHz} \end{aligned}$	9		20		20	$\frac{\mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$	
Noise Figure	NF	$\begin{gathered} V_{D S}=20 \\ f=100 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=10 \mathrm{~m} \Omega \end{aligned}$	<0.1		0.5		0.5	dB	
MATCHING										
Differential Gate-Source Voltage	$\left\|\mathrm{V}_{\mathrm{GS} 1} \mathrm{~V}_{\mathrm{GS} 2}\right\|$	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$		7		10		15	mV	
Gate-Source Voltage Differential Change with Temperature	$\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS2}}\right\|$	$V_{D G}=20 \mathrm{~V}$	T $=-55$ to $25^{\circ} \mathrm{C}$	10		20		40	$\mu y /{ }^{\circ} \mathrm{C}$	
	ΔT	$I_{D}=200 \mu \mathrm{~A}$	$\mathrm{T}=25$ to $125^{\circ} \mathrm{C}$	10		20		40		
Saturation Drain Current Ratio	$\frac{\mathrm{I}_{\mathrm{DSS} 1}}{\mathrm{I}_{\mathrm{Dss} 2}}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.97	0.95	1	0.95	1		
Transconductance Ratio	$\frac{g_{\mathrm{fs} 1}}{g_{\mathrm{fs} 2}}$	$\begin{gathered} V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ f=1 \mathrm{kHz} \end{gathered}$		0.97	0.95	1	0.95	1		
Differential Output Conductance	$\left\|g_{\text {os } 1}-g_{\text {os } 2}\right\|$			0.2		1		1	川S	
Differential Gate Current	$\left\|l_{G 1}-I_{G 2}\right\|$	$\begin{gathered} V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ T_{A}=125^{\circ} \mathrm{C} \end{gathered}$		0.1		5		5	nA	
Common Mode Rejection Ratio	§ CMRR	$V_{D D}=10$ to $20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		97					dB	

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

2N5432 SERIES

N-Channel JFET

The 2N5432 Series offers the designer an alternative for true high performance analog switching applications. Good breakdown voltage characteristics coupled with low on-resistance and very fast switching make these devices suitable for a wide range of applications. For military designs, the TO-52 package is hermetically sealed and suitable for processing per MIL-S-19500. (See Section 1.)

For further design information please consult the typical performance curves NIP which are located in Section 7.

SIMILAR PRODUCTS

- SOT-23, See SST108 Series
- TO-92, See J108 Series
- Chips, Order 2N543XCHP

TO-206AC (TO-52) BOTTOM VIEW

PART NUMBER	V $_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{r}_{\text {ds(ON) }}$ MAX (Ω)	$I_{\text {D(OFF) }}$ MAX (pA)	$\mathrm{t}_{\text {ON }}$ MAX (ns)
2N5432	-25	5	200	5
2N5433	-25	7	200	5
2N5434	-25	10	200	5

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	-25	V
Gate-Source Voltage	V_{GS}	-25	100
Gate Current	I_{G}	300	mA
Power Dissipation	PD_{D}	2.4	mW
Power Derating		-55 to 150	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ_{J}	-65 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	300	C
Lead Temperature $(1 / 16 "$ from case for 10 seconds)	T_{L}		

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N5432		2N5433		2N5434		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$V_{(B R) G S S}$	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-32	-25		-25		-25		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(OFF) }}$	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{nA}$		-4	-10	-3	-9	-1	-4	\checkmark
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		150		100		30		mA
Gate Reverse Current	I gss	$\begin{aligned} & V_{G S}=-15 \mathrm{~V} \\ & V_{D S}=0 \mathrm{~V} \end{aligned}$	-5		-200		-200		-200	pA
			-10		-200		-200		-200	nA
Gate Operating Current ${ }^{4}$	I_{G}	$V_{D G}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA}$	-10							
Drain Cutoff Current	$I_{\text {d (OFF })}$	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	10		200		200		200	
		$\begin{gathered} \mathrm{V}_{D S}=5 \mathrm{~V}, \mathrm{~V}_{G S}=-10 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{gathered}$	20		200		200		200	nA
Drain-Source On-Voltage	$V_{\text {DS }}(\mathrm{ON})$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$			50		70		100	mV
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(ON }}$			2	5		7		10	Ω
$\begin{aligned} & \text { Gate-Source } \\ & \text { Forward Voltage }{ }^{4} \end{aligned}$	$\mathrm{VGS}_{\text {(F) }}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7							V
DYNAMIC										
Common-Source Forward- Transconductance 4	$g_{\text {fs }}$	$\begin{aligned} V_{D G}= & 5 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$	17							mS
Common-Source Output Conductance ${ }^{4}$	gos		600							$\mu \mathrm{S}$
Drain-Source On-Resistance	$\mathrm{r}_{\text {ds (}}^{\text {(}}$)	$\begin{aligned} \mathrm{V}_{\mathrm{GS}} & =0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~V} \\ \mathrm{f} & =1 \mathrm{kHz} \end{aligned}$			5		7		10	Ω
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}= 0 \mathrm{~V}, V_{G S}=-10 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	20		30		30		30	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		11		15		15		15	
Equivalent Input Noise Voltage ${ }^{4}$	\bar{e}_{n}	$\begin{aligned} V_{D G}=5 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{aligned}$	3.5							$\frac{\mathrm{ny}}{\sqrt{\mathrm{~Hz}}}$
SWITCHING										
Turn-on Time	$\mathrm{t}_{\mathrm{d} \text { (ON) }}$	V_{DD} $=1.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}$ P / N $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ $\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}$ R_{L} 2 N 5432 10 mA -12 V 2 N 5433 10 mA -12 V 243 2 N 5434 10 mA -12 V	2		4		4		4	ns
	t_{r}		0.5		1		1		1	
Turn-off Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		4		6		6		6	
	t_{f}		18		30		30		30	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.
4. This parameter not registered with JEDEC.

2N5460 SERIES

P-Channel JFETs

The 2N5460 Series are low cost p-channel JFETs designed to provide all-around performance in a wide range of amplifier and analog switch applications. This series features two ranges of gate-source breakdown voltage, good gain, and low capacitance. Its p-channel construction also affords the designer simplicity for many applications. Its TO-92 package is compatible with a wide range of tape and reel options for automated assembly. (See Section 8.)

For additional design information please see performance curves PSCIB, which are located in Section 7.

PART NUMBER	$V_{\text {GS(OFF) }}$ MAX (V)	$\mathrm{V}_{(\text {BR }) \text { GSS }}$ MIN (V)	g_{fs} MIN (mS)	I DSS $^{\text {MAX }}$ (mA)
2N5460	6	40	1	-5
2N5461	7.5	40	1.5	-9
2N5462	9	40	2	-16
2N5463	6	60	1	-5
2N5464	7.5	60	1.5	-9
2N5465	9	60	2	-16

BOTTOM VIEW

1 SOURCE
2 DRAIN
3 GATE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT		UNITS
		2N5460-2	2N5463-5	
Gate-Drain Voltage	$V_{G D}$	40	60	V
Gate-Source Voltage	V_{GS}	40	60	
Gate Current	I_{G}	10		mA
Power Dissipation	PD	310		mW
Power Derating		2.8		$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 135		${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 150		
Lead Temperature ($1 / 16$ " from case for 10 seconds)	T_{L}	300		

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	2N5460		2N5461		2N5462		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Gate-Source Breakdown Voltage	$V_{\text {(BR) GSS }}$	$\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			55	40		40		40		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(OFF) }}$	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mu \mathrm{~A}$			0.75	6	1	7.5	1.8	9		
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-1	-5	-2	-9	-4	-16	mA	
Gate Reverse Current	$\mathrm{I}_{\text {gss }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$		0.003		5		5		5	nA	
			$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	0.0003		1		1		1	$\mu \mathrm{A}$	
Gate Operating Current	I_{G}	$V_{D G}=-20 \mathrm{~V}, I_{D}=-0.1 \mathrm{~mA}$		3							pA	
Drain Cutoff Current	ID(OFF)	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		-5								
Gate-Source Voltage	V_{GS}	$V_{D S}=-15 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=-0.1 \mathrm{~mA}$	1.3	0.5	4					V	
			$\mathrm{I}_{\mathrm{D}}=-0.2 \mathrm{~mA}$	2.3			0.8	4.5				
			$\mathrm{I}_{\mathrm{D}}=-0.4 \mathrm{~mA}$	3.8					1.5	6		
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		-0.7								
DYNAMIC												
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$			1	4	1.5	5	2	6	mS	
Common-Source Output Conductance	gos					75		75		75	$\mu \mathrm{S}$	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		4.5		7		7		7	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			1.2								
Common-Source Output Capacitance	Coss			1.5		2		2		2		
Equivalent Input Nolse Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V} \\ f=100 \mathrm{~Hz} \end{gathered}$		15		115		115		115	$\frac{\mathrm{nV} /{ }^{\text {Hz }}}{}$	
Noise Figure	NF	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V} \\ f=100 \mathrm{~Hz}, R_{G}=1 \mathrm{M} \Omega \\ B W=1 \mathrm{~Hz} \end{gathered}$		0.2		2.5		2.5		2.5	dB	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

2N5460 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N5463		2N5464		2N5465		
				MIN	MAX	MIN	MAX	MIN	MAX	UNIT

STATIC

Gate-Source Breakdown Voltage	$V_{\text {(BR) GSS }}$	$\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		65	60		60		60		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mu \mathrm{~A}$			0.75	6	1	7.5	. 1.8	9	
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-1	-5	-2	-9	-4	-16	mA
Gate Reverse Current	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$		0.003		5		5		5	nA
			$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	0.0003		1		1		1	μA
Gate Operating Current	I_{G}	$V_{D G}=-20 \mathrm{~V}, I_{D}=-0.1 \mathrm{~mA}$		3							pA
Drain Cutoff Current	ID(OFF)	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		-5							
Gate-Source Voltage	V_{GS}	$V_{D S}=-15 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=-0.1 \mathrm{~mA}$	1.3	0.5	4					V
			$\mathrm{I}_{\mathrm{D}}=-0.2 \mathrm{~mA}$	2.3			0.8	4.5			
			$\mathrm{I}_{\mathrm{D}}=-0.4 \mathrm{~mA}$	3.8					1.5	6	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		-0.7							
DYNAMIC											
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$			1	4	1.5	5	2	6	mS
Common-Source Output Conductance	gos					75		75		75	$\mu \mathrm{S}$
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		4.5		7		7		7	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{Cr}_{\text {rss }}$			1.2							
Common-Source Output Capacitance	$\mathrm{C}_{\text {oss }}$			1.5		2		2		2	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=100 \mathrm{~Hz} \end{aligned}$		15		115		115		115	$n / \sqrt{\mathrm{Hz}}$
Noise Figure	NF	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V} \\ \mathrm{f}=100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega \\ B W=1 \mathrm{~Hz} \end{gathered}$		0.2		2.5		2.5		2.5	dB

NOTES:

1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

N-Channel JFETs

The 2N5484 Series of n-channel JFETs is designed to provide high-performance amplification, especially at high-frequency. These parts feature low noise ($4 \mathrm{~dB} \max @ 400 \mathrm{MHz}$), high gain (5.5 mS typical @ 400 MHz) and provide wide bandwidth. Additionally, its low-cost TO-92 package is available with tape and reel to support automated assembly. (See Section 8.)

For additional design information please see performance curves NH , which are located in Section 7.

PART NUMBER	$V_{G S}(O F F)$ MAX (V)	$V_{\text {(BR) }}$ GSS MIN (V)	$\begin{aligned} & \mathrm{g}_{\mathrm{fs}} \\ & \mathrm{MIN} \\ & (\mathrm{mS}) \end{aligned}$	IDSS MAX (mA)
2N5484	-3	-25	3	5
2N5485	-4	-25	3.5	10
2N5486	-6	-25	4	20

TO-92
BOTTOM VIEW

1 DRAIN
2 SOURCE
3 GATE

SIMILAR PRODUCTS

- SOT-23, See SST5484 Series
- Chips, Order 2N548XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-25	
Gate-Source Voltage	$V_{G S}$	-25	V
Gate Current	I_{G}	10	mA
Drain Current	I_{D}	30	mW
Power Dissipation	P_{D}	360	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power Derating		-65 to 135	
Operating Junction Temperature	T_{J}	-65 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$T_{\text {stg }}$	T_{L}	300
Lead Temperature $(1 / 16 "$ from case for 10 seconds)			

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N5484		2N5485		2N5486		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$I_{G}=-1 \mu \mathrm{~A}, V_{D S}=0 \mathrm{~V}$	-35	-25		-25		-25		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(}}$ (OFF)	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$		-0.3	-3	-0.5	-4	-2	-6	v
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		1	5	4	10	8	20	mA
Gate Reverse Current	IGss	$\begin{gathered} V_{G S}=-20 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$	$\begin{array}{\|c\|} \hline-0.002 \\ \hline-0.2 \\ \hline \end{array}$		-1		-1		-1	nA
Gate Operating Current	I_{G}	$V_{D G}=10 \mathrm{~V}, I_{\text {D }}=1 \mathrm{~mA}$	-20							pA
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS} \text { (F) }}$	$\mathrm{I}_{\mathrm{G}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.8							V
DYNAMIC										
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}$		3	6	3.5	7	4	8	mS
Common-Source Output Conductance	$\mathrm{g}_{\text {os }}$				50		60		75	US
Common-Source Input Capacitance	$\mathrm{C}_{\text {Iss }}$	$\begin{gathered} V_{G S}=0 \mathrm{~V}, V_{D S}=15 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	2.2		5		5		5	
$\begin{aligned} & \text { Common-Source } \\ & \text { Reverse Transfer } \\ & \text { Capacitance } \\ & \hline \end{aligned}$	$\mathrm{Crss}^{\text {r }}$		0.7		1		1		1	pF
Common-Source Output Capacitance	Coss		1		2		2		2	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V} \\ \mathrm{f}=100 \mathrm{~Hz} \end{gathered}$	10							$\mathrm{ny} / \sqrt{\mathrm{Hz}}$

HIGH FREQUENCY

Common-Source	$y_{\text {fs }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	$f=100 \mathrm{MHz}$	4.5	2.5						mS
Transconductance			$\mathrm{f}=400 \mathrm{MHz}$	5.5			3		3.5		
Common-Source Output Conductance	Yos		$f=100 \mathrm{MHz}$	30		75					$\mu \mathrm{S}$
			$\mathrm{f}=400 \mathrm{MHz}$	50				100		100	
Common-Source Input Conductance	$y_{\text {is }}$		$f=100 \mathrm{MHz}$			0.1					mS
			$f=400 \mathrm{MHz}$					1		1	
Common-Source Power Gain	G_{ps}	$\begin{aligned} & V_{D S}=15 \mathrm{~V} \\ & f=100 \mathrm{MHz} \end{aligned}$	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	20	16	25					dB
			$\mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$	21			18	30	18	30	
		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{f}=400 \mathrm{MHz} \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$		13			10	20	10	20	
Noise Figure	NF	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & R_{G}=1 \mathrm{M} \Omega, \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.3		2.5		2.5		2.5	
		$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & R_{G}=1 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{MHz} \end{aligned}$		2		3					
		$V_{D S}=15 \mathrm{~V}$	$f=100 \mathrm{MHz}$	1				2		2	
			$\mathrm{f}=400 \mathrm{MHz}$	2.5				4		4	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

N-Channel JFET Pairs

The 2N5564 Series are matched pairs of JFETs mounted in a single TO-71 package. This two-chip design reduces parasitic performance at high frequency while ensuring extremely tight matching. The 2N5564 features high breakdown voltage ($\mathrm{V}_{\text {(BR) }}$ Gss typically $>55 \mathrm{~V}$), high gain (typically $>9 \mathrm{mS}$), and less than 5 mV offset between the two die. Additionally, its TO-71 package is hermetically sealed and can be processed per MIL-S-19500. (See Section 1.)

For additional design information please see performance curves NCB, which are located in Section 7.

SIMILAR PRODUCTS

- Low Noise, See U401 Series
- Low Leakage, See U421 Series
- Chips, Order 2N556XCHP

PART NUMBER	$V_{(B R) G S S}$ MIN (V)	g_{fs} MIN (mS)	I_{G} MAX (pA)	$\mathrm{V}_{\mathrm{Gs}_{1}}-\mathrm{V}_{\mathrm{GS}_{2}}$ MAX (mV)
2N5564	-40	7.5	-100	5
2N5565	-40	7.5	-100	10
2 2N5566	-40	7.5	-100	20

BOTTOM VIEW

[^2]ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-40	V
Gate-Source Voltage	$V_{G S}$	-40	
Gate-Gate Voltage	$V_{G G}$	± 80	
Forward Gate Current	I_{G}	50	mA
Power Dissipation	P_{D}	325	mW
		650	
Power Derating		2.2	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
		3.3	
Operating Junction Temperature	TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-65 to 200	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N5564		2N5565		2N5566		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

Gate-Source Breakdown Voltage	$V_{\text {(BR) GSS }}$	$I_{G}=-1 \mu \mathrm{~A}$	$\mathrm{DS}^{\prime}=0 \mathrm{~V}$	-55	-40		-40		-40		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-2	-0.5	-3	-0.5	-3	-0.5	-3	
Saturation Drain Current	IDSS	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		20	5	30	5	30	5	30	mA
Gate Reverse Current ${ }^{3}$	$I_{\text {GSS }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$		-5		-100		-100		-100	pA
			$T_{A}=150^{\circ} \mathrm{C}$	-10		-200		-200		-200	nA
Gate Operating Current	I_{G}	$\begin{aligned} & V_{D G}=15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA} \end{aligned}$		-3							pA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-1							nA
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS }}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		50		100		100		100	Ω
Gate-Source Voltage	$V_{G S}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$		-1.2							V
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7		1		1		1	

DYNAMIC

Common-Source Forward Transconductance	$g_{\text {fs }}$	$\begin{aligned} V_{D G}= & 15 \mathrm{~V}, I_{D}=2 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$	9	7.5	12.5	7.5	12.5	7.5	12.5	mS
Common-Source Output Conductance	gos		35		45		45		45	US
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D G}=15 \mathrm{~V}, I_{D}=2 \mathrm{~mA} \\ f=100 \mathrm{MHz} \end{gathered}$	8.5	7		7		7		mS
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} V_{D G}= & 15 \mathrm{~V}, I_{D}=2 \mathrm{~mA} \\ & f=1 \mathrm{MHz} \end{aligned}$	10		12		12		12	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		2.5		3		3		3	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=15 \mathrm{~V}, I_{D}=2 \mathrm{~mA} \\ f=10 \mathrm{~Hz} \end{gathered}$	12		50		50		50	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Noise Figure	NF	$\begin{aligned} & V_{D G}=15 \mathrm{~V}, I_{D}=2 \mathrm{~mA} \\ & \mathrm{f}=10 \mathrm{~Hz}, R_{G}=1 \mathrm{M} \Omega \end{aligned}$	0.1		1		1		1	dB

MATCHING

Differential Gate-Source Voltage	$\left\|V_{G S 1}-V_{G S 2}\right\|$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$				5		10		20	mV
Gate-Source Voltage Differential Change with Temperature	$\Delta\left\|V_{G S 1}-V_{G S 2}\right\|$	$V_{D S}=15 \mathrm{~V}$	$\mathrm{T}=-55$ to $25^{\circ} \mathrm{C}$			10		25		50	$\mu \mathrm{V} / \circ^{\circ} \mathrm{C}$
	ΔT	$\mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$	$\mathrm{T}=25$ to $125^{\circ} \mathrm{C}$			10		25		50	
Saturation Drain Current Ratio	$\frac{I_{\text {DSS }}}{I_{\text {DSS2 }}}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.98	0.95	1	0.95	1	0.95	1	
Transconductance Ratio	$\frac{g_{\mathrm{fs} 1}}{g_{\mathrm{fs} 2}}$	$\begin{gathered} V_{D S}=15 \mathrm{~V}, \mathrm{I}_{D}=2 \mathrm{~mA} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		0.98	0.95	1	0.90	1	0.90	1	
Common Mode Rejection Ratio	CMRR	$V_{D D}=10$ to $20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$		76							dB

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

N-Channel JFET

The 2N5638 Series is a multi-purpose n-channel JFET designed to economically enhance circuit performance. These devices are especially well suited for analog switching applications and feature very fast switching speeds, but function efficiently as high-gain amplifiers, particularly at high-frequency. Our low-cost TO-92 packaging offers affordable performance with flexibility for designers, as these devices can be ordered with a variety of lead forms or tape and reel for automated insertion. (See Section 8.)

For additional design information please consult the typical performance curves NCB which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See 2N4391 Series
- SOT-23, See SST4391 Series
- Duals, See 2N5564 Series
- Chips, Order 2N563XCHP

PART NUMBER	$V_{\text {(BR)DSS }}$ MAX (V)	$\begin{gathered} \mathrm{r}_{\mathrm{ds}(\mathrm{ON})} \\ \text { MAX } \\ (\Omega) \end{gathered}$	$\begin{aligned} & \text { ID(OFF) } \\ & \text { MAX } \\ & \text { (nA) } \end{aligned}$	ton MAX (ns)
2N5638	-30	30	1	9
2N5639	-30	60	1	14
2N5640	-30	100	1	18

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	-30	V
Gate-Source Voltage	V_{GS}	-30	ma
Gate Current	I_{G}	10	mW
Power Dissipation	P_{D}	625	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power Derating		5.68	
Operating Junction Temperature	T_{J}	-65 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 150	
Lead Temperature $\left(1 / 16^{\prime \prime}\right.$ from case for 10 seconds $)$	T_{L}	300	

2N5638 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$						LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS				TYP ${ }^{2}$	2N5638		2N5639		2N5640		UNIT	
						MIN	MAX	MIN	MAX	MIN	MAX			
STATIC														
Gate-Source Breakdown Voltage	$V_{\text {(BR) GSS }}$	$\mathrm{I}_{G}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$					-55	-30		-30		-30		V
Saturation Drain Current ${ }^{3}$	I DSS	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$					50		25		5		mA	
Gate Reverse Current	IGss	$\begin{gathered} V_{G S}=-15 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$				-0.005		-1		-1		-1	nA	
				$\mathrm{T}_{\mathrm{A}}=$	$100^{\circ} \mathrm{C}$	-0.01		-1		-1		-1	$\mu \mathrm{A}$	
Gate Operating Current 4	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$				-5							pA	
Drain Cutoff Current	${ }^{\text {D (OFF) }}$	$V_{D S}=15 \mathrm{~V}$		V_{GS}	$=-6 \mathrm{~V}$	0.005						1	nA	
				$V_{G S}$	$=-8 \mathrm{~V}$	0.005				1				
				$V_{G S}$	$=-12 \mathrm{~V}$	0.005		1						
		$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$		V_{GS}	$=-6 \mathrm{~V}$	0.01						1	$\mu \mathrm{A}$	
				V_{GS}	$=-8 \mathrm{~V}$	0.01				1				
				V_{GS}	$=-12 \mathrm{~V}$	0.01		1						
Drain-Source On-Voltage	$V_{\text {DS(ON }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$		$\mathrm{I}_{\mathrm{D}}=$	$=3 \mathrm{~mA}$	0.25						0.5	V	
				$\mathrm{I}_{\mathrm{D}}=$	$=6 \mathrm{~mA}$	0.30				0.5				
				$\mathrm{I}_{\mathrm{D}}=$	$=12 \mathrm{~mA}$	0.35		0.5						
Drain-Source On-Resistance	ros(on)	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$						30		60		100	Ω	
Gate-Source Forward Voltage 4	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$				0.7							V	
DYNAMIC														
Common-Source Forward Transconductance 4	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D G}= & 20 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$				6							ms	
Common-Source Output Conductance ${ }^{4}$	gos					25							$\mu \mathrm{S}$	
Drain-Source On-Resistance	$\mathrm{r}_{\text {ds }}(\mathrm{ON})$	$\begin{gathered} V_{G S}=0 V, I_{D}=0 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$						30		60		100	Ω	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=-12 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$				7		10		10		10	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$					3		4		4		4		
Equivalent Input Noise Voltage ${ }^{4}$	\bar{e}_{n}	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$				3.0							$n y / \sqrt{\mathrm{Hz}}$	
SWITCHING														
Turn-on Time	$\mathrm{t}_{\mathrm{d}}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}$				2		4		6		8	ns	
	t_{r}	P/N			$\begin{gathered} R_{L} \\ 800 \Omega \\ 1600 \Omega \\ 3200 \Omega \end{gathered}$	2		5		8		10		
Turn-off Time	$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{OFF})}$	$\begin{aligned} & 2 N 5638 \\ & 2 N 5639 \\ & 2 N 5640 \end{aligned}$		-10 V		6		5		10		15		
	t_{f}			-10 V		13		10		20		30		

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$
4. This parameter not registered with JEDEC.

N-Channel JFET Pairs

The 2N5911 Series are JFET matched pairs mounted in a single TO-78 package. This two chip design reduces parasitic performance at high frequency while ensuring extremely tight matching. The 2N5911 features high speed amplification (slew rate), high gain (typically $>6 \mathrm{mS}$), and low gate leakage (typically $<1 \mathrm{pA}$). This performance makes these devices perfect for use as wideband differential amplifiers in demanding test and measurement applications. Finally, its TO-78 hermetically sealed package is available with military screening per MIL-S-19500. (See Section 1.)

For additional design information please see performance curves NZF, which are located in Section 7.

SIMILAR PRODUCTS

- SO-8, See SST5912
- Monolithic, See M5911 Series
- Low Noise, See U401 Series
- Low Leakage, See U421 Series
- Chips, Order 2N591XCHP

PART NUMBER	$\mathbf{V}_{(B R) G S S}$ MIN (V)	g_{fs} MIN (mS)	I_{G} MAX (pA)	$\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{GS}_{2}}$ MAX (mV)
2 N5911	-25	5	-100	10
2 N5912	-25	5	-100	15

TO-78
воttom View

1 SOURCE 1
2 DRAIN 1
3 GATE 1
4 CASE
5 SOURCE 2
6 DRAIN 2
7 GATE 2

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Gate-Drain Voltage		$V_{G D}$	-25	V
Gate-Source Voltage		$V_{G S}$	-25	
Gate-Gate Voltage		$V_{G G}$	± 80	
Forward Gate Current		I_{G}	50	mA
Power Dissipation	Per Side	PD	367	mW
	Total		500	
Power Derating	Per Side		3	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Total		4	
Operating Junction Temperature		TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 200	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$					LIMITS						
PARAMETER	SYMBOL	TEST CONDITIONS			TYP ${ }^{2}$	2N5911		2N5912		UNIT	
					MIN	MAX	MIN	MAX			
STATIC											
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$I_{G}=-1 \mu \mathrm{~A}, V_{D S}=0 \mathrm{~V}$				-35	-25		-25		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(OFF) }}$	$V_{D S}=10 \mathrm{~V}, I_{D}=1 \mathrm{nA}$			-3.5	-1	-5	-1	-5		
Saturation Drain Current ${ }^{3}$	'dss	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			15	7	40	7	40	mA	
Gate Reverse Current	IGss	$\begin{gathered} V_{G S}=-15 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$			-1		-100		-100	pA	
				$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-2		-250		-250	nA	
Gate Operating Current	I_{G}	$\begin{aligned} & V_{D G}=10 \mathrm{~V} \\ & I_{D}=5 \mathrm{~mA} \end{aligned}$			-1		-100		-100	pA	
				$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.3		-100		-100	nA	
Gate-Source Voltage	V_{GS}	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$			-1.5	-0.3	-4	-0.3	-4	V	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			0.7						
DYNAMIC											
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D G}= & 10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$			6	5	10	5	10	mS	
Common-Source Output Conductance	$\mathrm{g}_{\text {os }}$				70		100		100	$\mu \mathrm{S}$	
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ f=100 \mathrm{MHz} \end{gathered}$			5.8	5	10	5	10	mS	
Common-Source Output Conductance	gos				90		150		150	HS	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} V_{D G}= & 10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ & f=1 \mathrm{MHz} \end{aligned}$			3		5		5	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$				1		1.2		1.2		
Equivalent Input Noise Voltage	\bar{e}_{n}	$V_{D G}=$		$\begin{aligned} & \mathrm{D}=5 \mathrm{~mA} \\ & \mathrm{~Hz} \end{aligned}$	4		20		20	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
Noise Figure	NF	$\begin{aligned} & V_{D G}= \\ & f=10 \end{aligned}$		$\begin{aligned} & =5 \mathrm{~mA} \\ & =100 \mathrm{k} \Omega \end{aligned}$	0.1		1		1	dB	
MATCHING											
Differential Gate-Source Voltage	$\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$	$\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$			4		10		15	mV	
Gate-Source Voltage Differential Change with Temperature	$\Delta\left\|V_{G S 1}-V_{G S 2}\right\|$	$\begin{aligned} & V_{D G}=10 \mathrm{~V} \\ & I_{D}=5 \mathrm{~mA} \end{aligned}$		-55 to $25^{\circ} \mathrm{C}$	15		20		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
	ΔT			25 to $125^{\circ} \mathrm{C}$	15		20		40		
Saturation Drain Current Ratio	$\frac{\mathrm{I}_{\mathrm{DSS} 1}}{\mathrm{I}_{\mathrm{DSS} 2}}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			0.98	0.95	1	0.95	1		
Transconductance Ratio	$\frac{g_{\mathrm{fs} 1}}{g_{\mathrm{fs} 2}}$	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$			0.98	0.95	1	0.95	1		
Differential Gate Current	$\mid l_{\mathrm{G}_{1}-1 \mathrm{I}_{\mathrm{G}} \mid}$	$\begin{gathered} V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA} \\ T_{A}=125^{\circ} \mathrm{C} \end{gathered}$			0.005		20		20	nA	
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{DD}}=5$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$			85					dB	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

N-Channel JFET Pairs

The 2N6905 Series of high-performance monolithic dual JFETs features extremely low noise, tight offset voltage and drift over temperature specifications. It is targeted for use in a wide range of precision instrumentation applications. The 2N6905 Series has a wide selection of both offset and drift ranges with the prime device, the 2N6905,

PART NUMBER	$\mathbf{V}_{(B R) G S S}$ MIN (V)	\mathbf{g}_{fs} MIN (mS)	I_{G} MAX (pA)	$\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{GS}_{2}}$ MAX (mV)
2 N6905	-35	2	-5	5
2 N6906	-35	2	-5	10
2N6907	-35	2	-5	25

TO-71

SOURCE 1
2 DRAIN 1
3 GATE 1
4 SOURCE 2
5 DRAIN 2
6 GATE 2

- High-Gain, See 2N5911 Series
- SO-8, See SST404 Series
- Chips, Order 2N690XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Gate-Drain Voltage		$V_{G D}$	-35	V
Gate-Source Voltage		V_{GS}	-35	
Forward Gate Current		1_{G}	10	mA
Power Dissipation	Per Side	PD	300	mW
	Total		500	
Power Derating	Per Side		2.6	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Total		5	
Operating Junction Temperature		TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 200	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	2N6905		2N6906		2N6907		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$I_{G}=-1 \mu$	$\mathrm{A}, \mathrm{V}_{\text {DS }}=0 \mathrm{~V}$		-55	-35		-35		-35		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=15$	$\mathrm{V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-1.5	-0.2	-3	-0.2	-3	-0.2	-3		
Saturation Drain ${ }^{3}$ Current	IDSS	$V_{\text {DS }}=10$	$\mathrm{V}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	3.5	0.5	10	0.5	10	0.5	10	mA	
Gate Reverse Current	IGss	$\begin{gathered} V_{G S}=-15 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$	V	-2		-15		-15		-15	pA	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-1							nA	
Gate Operating Current	I_{G}	$V_{D G}=15 \mathrm{~V}$		-2		-5		-5		-5	pA	
		$I_{D}=200 \mu$	T $T_{A}=125^{\circ} \mathrm{C}$	-0.8		-5		-5		-5	nA	
Drain-Source On-Resistance ${ }^{4}$	$\mathrm{r}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$		250							Ω	
Gate-Source Voltage	V_{GS}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mathrm{\mu A}$		-1		-2.3		-2.3		-2.3	V	
Gate-Source Forward Voltage ${ }^{4}$	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~m}$	$\mathrm{A}, \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7								
DYNAMIC												
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		4	2	7	2	7	2	7	mS	
Common-Source Output Conductance	$\mathrm{g}_{\text {os }}$			4		20		20		20	$\mu \mathrm{S}$	
Common-Source Input Capacitance	$\mathrm{C}_{\text {Iss }}$	$\begin{gathered} V_{D G}=15 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ f=1 \mathrm{MHz} \end{gathered}$		4		8		8		8	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			1.5		3		3		3		
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D S}= 10 \\ & f= \end{aligned}$	$\begin{aligned} & \mathrm{V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ = & 10 \mathrm{~Hz} \end{aligned}$	10		15		15		15	$\mathrm{ny} / \sqrt{\mathrm{Hz}}$	
MATCHING												
Differential Gate-Source Voltage	$\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$	$V_{D G}=10 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$				5		10		25	mV	
Gate-Source Voltage Differential Change with Temperature	$\Delta\left\|\mathrm{V}_{\mathrm{GS1}}-\mathrm{V}_{\mathrm{GS2}}\right\|$	$\left\|\begin{array}{l} V_{D G}=10 \mathrm{~V} \\ I_{D}=200 \mu \mathrm{~A} \end{array}\right\|$	$\mathrm{T}=-55$ to $25^{\circ} \mathrm{C}$			10		25		25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
			T $=25$ to $125^{\circ} \mathrm{C}$			10		25		50		
Saturation Drain Current Ratio ${ }^{4}$	$\frac{I_{\text {DSS1 }}}{I_{\text {DSS2 }}}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.97								
Transconductance Ratio ${ }^{4}$	$\frac{g_{\mathrm{fs} 1}}{g_{\mathrm{fs} 2}}$	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=0.2 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$		0.97								
Differential Output Conductance ${ }^{4}$	$\left\|g_{\text {os1 }}-g_{\text {os2 }}\right\|$			0.1							$\mu \mathrm{S}$	
Differential Gate Current ${ }^{4}$	$\left\|1_{G 1-1}{ }_{\text {G2 }}\right\|$	$\begin{gathered} V_{D G}=15 \mathrm{~V}, I_{D}=0.2 \mathrm{~mA} \\ T_{A}=25^{\circ} \mathrm{C} \end{gathered}$		1							pA	
Common Mode Rejection Ratio	CMRR	$V_{D G}=10$ to $20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$		102	95		95		95		dB	

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. This parameter not registered with JEDEC.

N-Channel JFET Circuits

The 2N6908 Series is much more than a JFET. The addition of back-to-back diodes effectively clamps input "over-voltage" while a high-performance JFET provides an effective amplification stage. With the addition of a source resistor, a complete common-source amplifier is created which provides both low leakage and very low noise. This performance is especially effective as a small signal pre-amplifier as well as impedance matching between low and high impedance sources. Finally, its TO-72 package is hermetically sealed and is available with full military screening per MIL-S-19500. (See Section 1.)

For additional design information please see performance curves NBB, which are located in Section 7.

PART NUMBER	$\mathbf{V}_{\text {GS(OFF) }}$ MAX (V)	$\mathrm{V}_{(\text {BR }) \text { GSS }}$ MIN (V)	g_{fs} MIN $(\mu \mathrm{S})$	I DSS $^{\text {MAX }}$ (mA)
2N6908	-1.8	-30	100	2
$2 N 6909$	-2.3	-30	400	3.5
$2 N 6910$	-3.5	-30	1200	5

SIMILAR PRODUCTS

- SOT-143, See SST6908 Series
- Chips, Order 2N69XXCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-30	V
Gate-Source Voltage	$V_{G S}$	-30	10
Forward Gate Current	I_{G}	300	mA
Power Dissipation	P_{D}	2.4	mW
Power Derating		-55 to 150	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ_{J}	-55 to 200	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	300	
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}		

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N6908		2N6909		2N6910		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$\begin{gathered} \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{G} 4}=0 \mathrm{~V} \end{gathered}$	-50	-30		-30		-30		
Gate-Source Cutoff Voltage	$V_{\text {GS(OFF) }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA} \\ V_{G 4}=0 \mathrm{~V} \end{gathered}$		-0.3	-1.8	-0.6	-2.3	-0.9	-3.5	v
Saturation Drain Current 3	Idss	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{G} 4}=0 \mathrm{~V} \end{gathered}$		0.05	2	0.2	3.5	0.6	5	mA
Gate Reverse Current	$\mathrm{I}_{\text {gss }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{gathered}$	-2		-25		-25		-25	pA
		$\begin{array}{ll} \mathrm{V}_{\mathrm{G} 4}=0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\ \hline \end{array}$	-1							nA
Gate Operating Current	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$	-2							
Forward Gate Dlode Current 4	$I_{\text {G4 }}$	$V_{G 4}= \pm 100 \mathrm{mV}$	± 1		± 10		± 10		± 10	pA
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS} \text { (F) }}$	$\begin{gathered} \mathrm{I}_{\mathrm{G}}= \pm 0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{G} 4}=0 \mathrm{~V} \end{gathered}$	± 0.7		± 1.2		± 1.2		± 1.2	V
DYNAMIC										
Common-Source Forward Transconductance	g_{fs}	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{G} 4}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.1	3	0.4	3.5	1.2	4	mS
Common-Source Output Conductance	gos				50		75		100	$\mu \mathrm{S}$
Common-Source Input Capacitance	$\mathrm{C}_{\text {Iss }}$	$\begin{aligned} & V_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{G} 4}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{mHz} \end{aligned}$	3.2		5		5		5	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		1.5		2		2		2	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=100 \mathrm{~Hz} \end{gathered}$	12		25		25		25	$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$
Noise Figure	NF	$\begin{gathered} V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\ \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega \end{gathered}$	0.1		1		1		1	dB

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu s$, duty cycle $\leq 3 \%$.
4. Forward diode current when a voltage is applied between gate and fourth lead.

N-Channel JFETs

The BF244 Series of n-channel JFETs is selected into narrow current ranges to simplify design and biasing requirements of high performance JFET amplifier stages. The BF244A, BF244B, and $B F 244 C$ have been selected into IDSS ranges of 2 to $6.5 \mathrm{~mA}, 6$ to 15 mA , and 12 to 25 mA respectively. Additionally, this series features high gain ($>3 \mathrm{mS}$) and low capacitance. Finally, its TO-92 package offers the designer low cost and compatibility with automated assembly. (See Section 8.)

For additional design information please see performance curves NH , which are located in Section 7.

PART NUMBER	$\begin{gathered} V_{G S(O F F)} \\ \text { MAX } \\ (\mathrm{V}) \end{gathered}$	$V_{\text {(BR) GSS }}$ MIN (V)	$g_{\text {fs }}$ MIN (mS)	IDSS MAX (mA)
BF244A	-8	-30	3	6.5
BF244B	-8	-30	3	15
BF244C	-8	-30	3	25

TO-92
BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-30	V
Gate-Source Voltage	$V_{G S}$	-30	
Gate Current	I_{G}	10	mA
Power Dissipation	PD	360	mW
Power Derating		3.27	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)	TL	300	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

N-Channel JFETs

The BF245 Series of n-channel JFETs is selected into narrow current ranges to simplify design and biasing requirements of high performance JFET amplifier stages. The BF245A, BF245B, and BF245C have been selected into lDSS ranges of 2 to $6.5 \mathrm{~mA}, 6$ to 15 mA , and 12 to 25 mA respectively. Additionally, this series features high gain ($>3 \mathrm{mS}$) and low capacitance. Finally, its TO-92 package offers the designer low cost and compatibility with automated assembly. (See Section 8.)

For additional design information please see performance curves NH , which are located in Section 7.

PART NUMBER	$\mathbf{V}_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{V}_{(\text {BR }) \text { GSS }}$ MIN (V)	$\mathbf{g}_{\text {fs }}$ MIN (mS)	I DSS $^{\text {MAX }}$ (mA)
BF245A	-8	-30	3	6.5
BF245B	-8	-30	3	15
BF245C	-8	-30	3	25

TO-92
BOTTOM VIEW

GATE
2 SOURCE
3 DRAIN

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-30	V
Gate-Source Voltage	$V_{G S}$	-30	
Gate Current	I_{G}	10	mA
Power Dissipation	PD	360	mW
Power Derating		3.27	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

BF245 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	BF245A		BF245B		BF245C		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ Gss	$\mathrm{I}_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{D S}=0 \mathrm{~V}$	-35	-30		-30		-30		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(OFF) }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$		-0.5	-8	-0.5	-8	-0.5	-8	
Saturation Drain Current ${ }^{3}$	IDSS	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		2	6.5	6	15	12	25	mA
Gate Reverse Current	IGSS	$\begin{array}{ll} V_{G S}=-20 \mathrm{~V} \\ V_{D S} & =0 \mathrm{~V} \end{array} T_{A}=125^{\circ} \mathrm{C}$	$\begin{array}{\|c\|} \hline-0.002 \\ \hline-1 \\ \hline \end{array}$		-5		-5		-5	nA
Gate Operating Current	I_{G}	$\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	-20							pA
Gate-Source Voltage	$V_{\text {GS }}$	$V_{D G}=15 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$		-0.4	-2.2	-1.6	-3.8	-3.2	-7.5	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7							

DYNAMIC

Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D S}= 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		3	6.5	3	6.5	3	6.5	mS
Common-Source Input Capacitance	$\mathrm{Ciss}^{\text {is }}$	$\begin{gathered} V_{D S}=20 \mathrm{~V}, V_{G S}=-1 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	2							pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		0.8							
Common-Source Output Capacitance	$\mathrm{C}_{\text {oss }}$		1							
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f=100 \mathrm{~Hz} \end{gathered}$	10							$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

N-Channel JFETs

The BSR56 Series is a n-channel JFET mounted in our popular SOT-23 package. Its low cost and rDS(ON) make it a good choice for an all-purpose analog switch, while its high $g_{f s}$ and good high-frequency response also make this product useful in a high-gain amplifier mode. Like all SOT-23 products available from Siliconix, tape and reel capabilities exist for automated assembly. (See Section 8.)
For further design information please consult the typical performance curves NCB which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See 2N4856 Series

PART NUMBER	$V_{\text {GS (OFF) }}$ MAX (V)	$\begin{gathered} r_{\text {ds }}(O N) \\ \operatorname{MAX} \\ (\Omega) \end{gathered}$	$\begin{gathered} \hline I_{D(O F F)} \\ \text { TYP } \\ (\mathrm{pA}) \end{gathered}$	ton TYP (ns)
BSR56	-10	25	5	4
BSR57	-6	40	5	4
BSR58	-4	60	5	4

SOT-23


```
1 GATE
2 SOURCE
3 DRAIN
```

PRODUCT MARKING	
BSR56	M4
BSR57	M5
BSR58	M6

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain, Drain-Source Voltage	$V_{G D}$	-40	V
Gate-Source Voltage	$V_{G S}$	-40	
Gate Current	I_{G}	50	mA
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$)	PD	350	mW
Power Derating		2.8	mW/ ${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 175	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 175	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	BSR56		BSR57		BSR58		UNIT
PARAMETER				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=100 \mathrm{~ms}$, duty cycle $\leq 3 \%$.

Current Regulator Diodes

The CR022 Series is a family of precision current regulators designed for demanding applications in test equipment and instrumentation. These devices combine the proven performance of a JFET with an integrated resistor to produce a single two-leaded device which is extremely simple to operate. With nominal current ranges from 0.22 mA to 5.30 mA , the CR022 Series will meet a wide array of design requirements. In addition to its two-lead construction, this series features 10% current ranges, improved current control over wide temperature ranges, and simple "floating" operation as no power supplies are required for

PART	\mathbf{I}_{F} $(\mathrm{~mA})$	PART	\boldsymbol{I}_{F} $(\mathrm{~mA})$	PART	\mathbf{I}_{F} $(\mathrm{~mA})$
CR022	0.22	CR075	0.75	CR200	2.00
CR024	0.24	CR082	0.82	CR220	2.20
CR027	0.27	CR091	0.91	CR240	2.40
CR030	0.30	CR100	1.00	CR270	2.70
CR033	0.33	CR110	1.10	CR300	3.00
CR039	0.39	CR120	1.20	CR330	3.30
CR043	0.43	CR130	1.30	CR360	3.60
CR047	0.47	CR140	1.40	CR390	3.90
CR056	0.56	CR150	1.50	CR430	4.30
CR062	0.62	CR160	1.60	CR470	4.70
CR068	0.68	CR180	1.80	CR530	5.30

BOTTOM VIEW

- TO-92, See J500 Series
- 20% Ranges, See CRR0240 Series
- Chips, Order CRXXXCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Peak Operating Voltage	POV $^{c \mid}$	100	V
Reverse Current	I_{R}	50	mA
Thermal Resistance	$\mathrm{R}_{\text {thJC }}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	1.25	W
Operating Junction Temperature	T_{J}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 200	

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	I_{F}			$Z_{\text {d }}$		Z_{k}		V_{L}		POV		C_{F}	θ_{1}
PARAMETER	REGULATOR CURRENT			DYNAMIC IMPEDANCE		KNEE IMPEDANCE		LIMITING VOLTAGE		PEAK OPERATING VOLTAGE		CAPACITANCE	TEMPERATURE COEFFICIENT
$\begin{gathered} \text { TEST } \\ \text { CONDITIONS } \end{gathered}$	$\begin{aligned} & V_{F}=25 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$			$\begin{aligned} & V_{F}=25 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$		$V_{F}=6 \mathrm{~V}$		$\begin{gathered} \mathrm{I}_{\mathrm{F}}=0.8 \mathrm{I}_{\mathrm{F}(\mathrm{MIN})} \\ (\text { Note 3) } \end{gathered}$		$\begin{gathered} I_{F}=1.1 I_{F(\text { MAX })} \\ (\text { Note } 4) \end{gathered}$		$\begin{aligned} & V_{F}=25 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	$\begin{gathered} V_{F}=25 \mathrm{~V} \\ 0^{\circ} \mathrm{C} \leq T_{A} \leq 100^{\circ} \mathrm{C} \end{gathered}$
UNITS	mA			$\mathrm{M} \Omega$		$\mathrm{M} \Omega$		V		V		pF	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	NOM	MIN	MAX	MIN	TYP	MIN	TYP	MAX	TYP	MIN	TYP	TYP	TYP
CR022	0.22	0.198	0242	9000	18.00	2.750	3.50	1.00	0.40				2200
CR024	0.24	0.216	0.264	8.000	15.50	2.350	3.00	1.00	0.45				1800
CR027	0.27	0.243	0.297	7.000	13.00	1.950	2.50	1.00	0.50				1450
CR030	0.30	0.270	0.330	6.000	11.50	1.600	2.00	1.00	0.55				1100
CR033	0.33	0.297	0.363	5000	10.00	1.350	1.80	1.00	0.60	100	180	2.2	800
CR039	0.39	0.351	0429	4100	9.00	1.000	1.50	1.05	0.65	(All)	(All)	(All)	500
CR043	0.43	0.387	0.473	3.300	8.00	0.870	1.30	1.05	0.70				250
CR047	0.47	0.423	0.517	2.700	7.00	0.750	1.20	1.10	0.75				0
CR056	0.56	0.504	0.616	1.900	6.00	0.560	090	1.20	0.82				-200
CR062	0.62	0.558	0.682	1550	450	0.470	0.70	1.30	0.90				-600
CR068	0.68	0.612	0.748	1350	10.00	0.400	1.80	1.15	0.85				-350
CR075	0.75	0.675	0.825	1150	9.00	0.335	1.60	1.20	0.90				-450
CR082	0.82	0.738	0.902	1.000	7.80	0.290	1.40	1.25	0.95				-550
CR091	0.91	0.819	1.001	0880	660	0.240	1.20	1.29	1.00				-650
CR100	1.00	0.900	1.100	0.800	5.50	0.205	- 1.00	1.35	1.06	100	180	(All)	-750
CR110	1.10	0.990	1.210	0.700	4.80	0.180	0.90	1.40	1.12				-875
CR120	1.20	1.080	1.320	0640	410	0.155	0.80	1.45	1.18				-1000
CR130	1.30	1.170	1.430	0.580	3.50	0.135	0.80	1.50	1.25				-1100
CR140	1.40	1.260	1.540	0.540	3.10	0.115	0.70	1.55	1.32				-1200
CR150	1.50	1.350	1.650	0.510	2.70	0.105	0.60	1.60	1.40				-1300
CR160	1.60	1.440	1.760	0.475	1.10	0092	0.40	1.65	0.70				1000
CR180	1.80	1.620	1.980	0420	100	0.074	0.34	1.75	0.75				650
CR200	2.00	1.800	2.200	0395	0.90	0.061	0.28	1.85	0.80				300
CR220	2.20	1.980	2.420	0.370	0.83	0.052	0.25	1.95	0.85				100
CR240	2.40	2.160	2.640	0345	0.76	0.044	0.22	2.00	0.90				0
CR270	2.70	2.430	2.970	0.320	070	0.035	0.19	2.15	0.95				-200
CR300	3.00	2.700	3.300	0300	065	0.029	0.16	2.25	1.00	(All)	(Ali)	(All)	-400
CR330	330	2.970	3.630	0.280	0.60	0.024	014	2.35	1.05				-550
CR360	3.60 3.90	3.240 3.510	3.960 4.290	$\begin{array}{lll}0 & 265 \\ 0 & 255\end{array}$	0.54 0.47	0.020 0.017	0.13 0.12	2.50 2.60	1.10 1.17				-730 -820
CR390	3.90	3.510	4.290	$\begin{array}{ll}0 & 255 \\ 0 & 245\end{array}$	0.47 0.40	0.017 0.014	0.12 0.10	2.60 2.75	117 1.25				-820 -1000
CR430	4.30 4.70	3.870 4.230	4730 5170	$\begin{array}{ll}0 \\ 0 & 245 \\ 0 & 235\end{array}$	0.40 0.45	0.014 0.012	0.12 0.09	2.75 2.90	1.25 1.32				-1125
CR530	530	4770	5.830	0.220	0.30	0.010	0.07	3.10	1.40				-1250

NOTES 1 Pulse test - steady state currents may vary.
2. Pulse test - steady state impedances may vary
4. $\operatorname{Max} \mathrm{V}_{\mathrm{F}}$ where $\mathrm{I}_{\mathrm{F}}<1.1 \mathrm{I}_{\mathrm{F}(\text { MAX })}$ is guaranteed

CRR0240 SERIES

Current Regulator Diodes

The CRR0240 Series is a family of precision current regulators designed for demanding applications in test equipment and instrumentation. These devices combine the proven performance of a JFET with an integrated resistor to produce a single two-leaded device which is extremely simple to operate. With nominal current ranges from 0.24 mA to 4.3 mA , the CRR0240 Series will meet a wide array of design requirements. In addition to its two-lead construction, this series features $\pm 25 \%$ current ranges, current control over wide temperature ranges, and simple "floating" operation as no power supplies are required for biasing. Finally, its TO-18 hermetically sealed package is available with military processing per MIL-S-19500. (See Section 1.)

For additional design information please see typical performance curves as follows (Section 7):

$$
\begin{array}{lll}
\text { CRRO240-CRR0560 . . } & \text { NKL } \\
\text { CRR0800-CRR1250 . . } & \text { NKM } \\
\text { CRR1950-CRR4300 .. } & \text { NKO }
\end{array}
$$

SIMILAR PRODUCTS

- TO-92, See J500 Series
- 10\% Ranges, See CRO22 Series
- Chips, Order CRRXXXXCHP

BOTTOM VIEW

CATHODE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Peak Operating Voltage	POV	100	V
Reverse Current	I_{R}	50	mA
Thermal Resistance	θ_{JC}	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	1.25	W
Operating Junction Temperature	T_{J}	-55 to 150	${ }^{\circ}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 200	

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	I_{F}			z_{d}		z_{k}	V_{L}		POV		$\mathrm{C}_{\text {F }}$	θ_{1}
PARAMETER	REGULATOR CURRENT			DYNAMIC IMPEDANCE		KNEE IMPEDANCE	LIMITINGVOLTAGE		$\begin{aligned} & \text { PEAK } \\ & \text { OPERATING } \\ & \text { VOLTAGE } \\ & \hline \end{aligned}$		CAPACITANCE	TEMPERATURE COEFFICIENT (TYPICALS)
TEST CONDITIONS	$\begin{aligned} & V_{F}=25 \mathrm{~V} \\ & (\text { Note } 1) \end{aligned}$			$\begin{aligned} & V_{F}=25 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$		$\mathrm{V}_{\mathrm{F}}=6 \mathrm{~V}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=0.8 \mathrm{I}_{\mathrm{F}(\mathrm{MIN})} \\ \\ \text { (Note 3) } \end{gathered}$		$\begin{aligned} I_{F}= & 1.1 I_{F(\text { MAX })} \\ & (\text { Note } 4) \end{aligned}$		$\begin{aligned} & V_{F}=25 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	$\begin{gathered} V_{F}=25 \mathrm{~V} \\ 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 100^{\circ} \mathrm{C} \end{gathered}$
UNITS	mA			$\mathrm{M} \Omega$		$\mathrm{M} \Omega$	\checkmark		V		pF	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	NOM	MIN	MAX	MIN	TYP	TYP	MAX	TYP	MIN	TYP	TYP	TYP
$\begin{aligned} & \text { CRRO240 } \\ & \text { CRRO360 } \\ & \text { CRRO5650 } \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.36 \\ & 0.56 \end{aligned}$	$\begin{aligned} & 0.180 \\ & 0.270 \\ & 0.420 \end{aligned}$	$\begin{aligned} & 0300 \\ & 0.450 \\ & 0.700 \end{aligned}$	$\begin{aligned} & 5.00 \\ & 2.50 \\ & 1.20 \end{aligned}$	$\begin{array}{r} 15.50 \\ 9.50 \\ 6.00 \end{array}$	$\begin{aligned} & 3.00 \\ & 1.70 \\ & 1.70 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 105 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 045 \\ & 0.65 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \\ & 180 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.2 \end{aligned}$	$\begin{array}{r} 1800 \\ 650 \\ -200 \end{array}$
CRR0800 CRR1250	$\begin{aligned} & 080 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 0600 \\ & 0.937 \end{aligned}$	$\begin{aligned} & 1.000 \\ & 1.560 \end{aligned}$	$\begin{aligned} & 080 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 7.80 \\ & 3.70 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 135 \\ & 1.60 \end{aligned}$	0.95 1.20	100 100	180 180	$\begin{aligned} & 42 \\ & 4.2 \end{aligned}$	$\begin{array}{r} -550 \\ -1050 \end{array}$
CRR1950 CRR2900 CRR4300	$\begin{aligned} & 195 \\ & 290 \\ & 4.30 \end{aligned}$	$\begin{aligned} & 1460 \\ & 2.160 \\ & 3.240 \end{aligned}$	$\begin{aligned} & 2440 \\ & 3.600 \\ & 5.400 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.28 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 090 \\ & 0.65 \\ & 040 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.16 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 195 \\ & 2.35 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 080 \\ & 1.00 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 175 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 300 \\ -400 \\ -1125 \end{array}$

NOTES: 1. Pulse test - steady state currents may very.
2. Pulse test - steady state impedances may vary
4. Max_{F} where $I_{F}>11 I_{F} I_{\text {I }}$ is guarant

The DPAD1 Series of extremely low-leakage diodes provides a superior alternative to conventional diode technology when reverse current (leakage) must be minimized. These devices feature leakage currents ranging from -1 pA (DPAD1) to -100 pA (DPAD100) to support a wide range of applications. With two diodes per package, the DPAD1 Series is well suited for use in applications such as input protection for operational amplifiers. Its hermetically sealed metal can is available with full military processing per MIL-S-19500. (See Section 1.)

SIMILAR PRODUCTS

- TO-92, See JPAD5 Series
- SOT-23, See SSTPAD5 Series
- TO-18, See PAD1 Series
- Chips, Order DPADXXCHP

1 CATHODE 1
2 ANODE 1
3 CASE
4 CATHODE 2
5 ANODE 2
(DPAD1)

PART NO.	I_{R} (pA)
DPAD1	-1
DPAD2	-2
DPAD5	-5
DPAD10	-10
DPAD20	-20
DPAD50	-50
DPAD100	-100

(DPAD2, 5, 10, 20, 50, 100)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Forward Current	I_{F}	50	mA
Total Device Dissipation	P_{D}	400	mW
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 125	
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ${ }^{1}$

PARAMETER	SYMBOL	TEST CONDITIONS		LIMITS			UNIT
				TYP ${ }^{2}$	MIN	MAX	
STATIC							
Reverse Current	I_{R}	$V_{R}=-20 \mathrm{~V}$	DPAD1	-0.2		-1	pA
			DPAD2	-1		-2	
			DPAD5	-2		-5	
			DPAD10	-3		-10	
			DPAD20	-5		-20	
			DPAD50	-10		-50	
			DPAD100	-15		-100	
Reverse Breakdown Voltage	$B V_{\text {R }}$	$I_{R}=-1 \mu \mathrm{~A}$	DPAD1, 2, 5	-60	-45	-120	V
			$\begin{aligned} & \text { DPAD10, } 20 \\ & \text { DPAD50, } 100 \\ & \hline \end{aligned}$	-55	-35		
Forward Voltage Drop	V_{F}	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$		0.7		1.5	
DYNAMIC							
Reverse Capacitance	C_{R}	$\begin{aligned} & V_{R}=-5 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	DPAD1, 2,5	0.6		0.8	pF
			$\begin{aligned} & \hline \text { DPAD10, } 20 \\ & \text { DPAD50, } 100 \end{aligned}$	1		2	
Differential Capacitance	$\left\|C_{R 1}-C_{R 2}\right\|$	$V_{R 1}=V_{R 2}=-5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		0.07		0.2	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.

N-Channel JFET

The J 105 Series is a high-performance JFET analog switch designed to offer low on-resistance and fast switching. $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})<3 \Omega}$ is guaranteed with the $J 105$ which makes this device the lowest of any commercially available JFET. This device is housed in a low-cost TO-92 package and offers a wide range of lead-forms and/or tape and reel options. (See Section 8.)

For further design information please consult the typical performance curves NVA which are located in Section 7.

PART NUMBER	$V_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{r}_{\text {ds }(O N)}$ MAX (Ω)	$I_{\text {D(OFF) }}$ TYP (pA)	$\mathrm{t}_{\text {ON }}$ TYP (ns)
$\mathrm{J105}$	-10	3	10	14
$\mathrm{J106}$	-6	6	10	14
J 107	-4.5	8	10	14

TO-92
BOTTOM VIEW

SIMILAR PRODUCTS

- TO-52, See U290 Series
- Chips, Order J10XCHP

$\begin{array}{ll}1 & \text { DRAIN } \\ 2 & \text { SOURCE } \\ 3 & \text { GATE }\end{array}$

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-25	-25
Gate-Source Voltage	$V_{G S}$	50	V
Gate Current	I_{G}	360	mA
Power Dissipation	P_{D}	3.27	mW
Power Derating		-55 to 135	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$	300	C
Lead Temperature $\left(1 / 16^{\prime \prime}\right.$ from case for 10 seconds $)$	T_{L}		

ELECTRICAL CHARACTERISTICS ${ }^{1}$						LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS				TYP ${ }^{2}$	J105		$J 106$		J107		UNIT	
						MIN	MAX	MIN	MAX	MIN	MAX			
STATIC														
Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ GSS	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$					-35	-25		-25		-25		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(OFF) }}$	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$					-4.5	-10	-2	-6	-0.5	-4.5		
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$					500		200		100		mA	
Gate Reverse Current	IGss	$\begin{aligned} & V_{G S}=-15 \mathrm{~V} \\ & V_{D S}=0 \mathrm{~V} \end{aligned}$				$\begin{array}{\|c\|} \hline-0.02 \\ \hline-10 \\ \hline \end{array}$		-3		-3		-3		
Gate Operating Current	I_{G}	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{~mA}$				-0.01							nA	
Drain Cutoff Current	$I_{\text {d (OFF) }}$	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$				0.01		3		3		3		
		$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{G S}=-10 \mathrm{~V} \\ T_{A}=125^{\circ} \mathrm{C} \end{gathered}$				5								
Drain-Source On-Resistance	ros(on)	$V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}} \leq 0.1 \mathrm{~V}$						3		6		8	Ω	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$				0.7							V	
DYNAMIC														
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D G}= & 10 \mathrm{~V}, I_{D}=25 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$				55							mS	
Common-Source Output Conductance	gos					5							US	
Drain-Source On-Resistance	$\mathrm{r}_{\text {ds }}(\mathrm{ON})$	$\begin{aligned} \mathrm{V}_{\mathrm{GS}} & =0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$						3		6		8	Ω	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$				120		160		160		160		
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$	$\begin{array}{rl} V_{D S}=0 & V, V_{G S}=-10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{array}$				20		35		35		35	pF	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=25 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$				3							$\frac{n y}{\sqrt{H z}}$	
SWITCHING														
Turn-on Time	$\mathrm{t}_{\mathrm{d} \text { (ON) }}$	$V_{D D}=1.5 \mathrm{~V}$ $\left.V_{G S(O N}\right)$ $=0 \mathrm{~V}$ P / N $I_{D(O N}$ $V_{G S(O F F)}$ R_{L} $J 105$ 28 mA -12 V 50Ω J 106 27 mA -7 V 50Ω J 107 26 mA -5 V 50Ω				6							ns	
	t_{r}					8								
Turn-off Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$					5								
	t_{f}					9								

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

N-Channel JFET

The J 108 Series is designed with high-performance analog switching applications in mind. It features low on-resistance, good off-isolation, and fast switching. The TO-92 package affords low-cost and a wide range of lead-forms and tape and reel options. (See Section 8.)

For further design information please consult the typical performance curves NIP which are located in Section 7.

PART NUMBER	$V_{\text {GS (OFF) }}$ MAX (V)	$r_{\text {ds(ON) }}$ MAX (Ω)	$I_{D(O F F)}$ TYP (PA)	$\mathbf{t}_{\text {ON }}$ TYP $(n s)$
J 108	-10	8	20	4
J 109	-6	12	20	4
J 110	-4	18	20	4
J 110 A	-4	25	20	4

SIMILAR PRODUCTS

- SOT-23, See SST108 Series
- TO-52, See 2N5432 Series
- Chips, Order J1XXCHP

BOTTOM VIEW

$\begin{array}{ll}1 & \text { DRAIN } \\ 2 & \text { SOURCE } \\ 3 & \text { GATE }\end{array}$

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-25	V
Gate-Source Voltage	$V_{G S}$	-25	
Gate Current	l_{G}	50	mA
Power Dissipation	P_{D}	360	mW
Power Derating		3.27	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS					
		TEST CONDITIONS		$J 108$		$J 109$		UNIT
PARAMETER	SYMBOL		TYP ${ }^{2}$	MIN	MAX	MIN	MAX	

STATIC

Gate-Source Breakdown Voltage	$V_{\text {(BR) GSS }}$	$I_{G}=-1 \mu A$	$=0 \mathrm{~V}$	-32	-25		-25		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$			-3	-10	-2	-6	
Saturation Drain Current ${ }^{3}$	IDSs	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			80		40		mA
Gate Reverse Current	$\mathrm{I}_{\text {Gss }}$	$\begin{aligned} & V_{G S}=-15 \mathrm{~V} \\ & V_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	$\frac{-0.01}{-5}$		-3		-3	nA
Gate Operating Current	I_{G}	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$		-0.01					
Drain Cutoff Current	$I_{\text {d (OFF) }}$	$V_{D S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$		0.02		3		3	
		$\begin{gathered} \mathrm{V}_{D S}=5 \mathrm{~V}, \mathrm{~V}_{G S}=-10 \mathrm{~V} \\ T_{A}=125^{\circ} \mathrm{C} \end{gathered}$		10					
Drain-Source On-Resistance	ros(on)	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=\leq 0.1 \mathrm{~V}$				8		12	Ω
Gate-Source Forward Voltage	$V_{\text {GS(F) }}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{D S}=0 \mathrm{~V}$		0.7					V

DYNAMIC

Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D G}= & 5 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$				17			mS
Common-Source Output Conductance	gos					600			μS
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{ds} \text { (ON) }}$	$\begin{aligned} \mathrm{V}_{\mathrm{GS}}= & 0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$					8	12	Ω
Common-Source Input Capacitance	$\mathrm{C}_{\text {sss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$				60	85	85	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=-10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$				11	15	15	F
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=5 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$				3.5			$\mathrm{ny} /{ }_{\sqrt{H Z}}$
SWITCHING									
Turn-on Time	t_{d} (ON)	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}$				3			ns
	t_{r}	$\begin{aligned} & \text { P/N } \\ & \mathrm{J} 108 \\ & \mathrm{~J} 109 \end{aligned}$	$I_{D(O N)}$ 10 mA 10 mA	$\mathrm{V}_{\text {GS (}}$ (fF)	R_{L}	1			
Turn-off Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$			-12 V	150Ω	4			
	t_{f}			-7V	150Ω	18			

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300$ 山S, duty cycle $\leq 3 \%$.

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS					
PARAMETER	SYMBOL	TEST CONDITIONS		J110		J110A		UNIT
			TYP ${ }^{2}$	MIN	MAX	MIN	MAX	

STATIC

Gate-Source Breakdown Voltage	$V_{\text {(BR) GSS }}$	$I_{G}=-1 \mu \mathrm{~A}, V_{D S}=0 \mathrm{~V}$				-32	-25		-25		
Gate-Source Cutoff Voltage	$V_{\text {GS (OFF) }}$	$V_{D S}=5 \mathrm{~V}, I_{D}=1 \mu \mathrm{~A}$					-0.5	-4	-0.5	-4	v
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$					10		10		mA
Gate Reverse Current	IGss	$\begin{aligned} & V_{G S}=-15 \mathrm{~V} \\ & V_{D S}=0 \mathrm{~V} \end{aligned}$		$T_{A}:$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	$\frac{-0.01}{-5}$		-3		-3	
Gate Operating Current	I_{G}		$V_{D G}=10 \mathrm{~V}$	$V, I_{D}=10 \mathrm{~m}$		-0.01					A
Drain Cutoff Current	$I_{\text {D (OFF) }}$	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$				0.02		3		3	
		$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{G S}=-10 \mathrm{~V} \\ T_{A}=125^{\circ} \mathrm{C} \end{gathered}$				10					
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS (ON) }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=\leq 0.1 \mathrm{~V}$						18		25	Ω
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {DS }}=0 \mathrm{~V}$				0.7					V
DYNAMIC											
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D G}= & 5 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$				17					mS
Common-Source Output Conductance	gos					600					HS
Drain-Source On-Resistance	$\mathrm{r}_{\text {ds }}(\mathrm{ON})$	$\begin{gathered} V_{G S}=0 \mathrm{~V}, I_{D}=0 \\ f=1 \mathrm{kHz} \end{gathered}$						18		25	Ω
Common-Source Input Capacitance	$\mathrm{C}_{\text {Iss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$				60		85		85	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$	$\begin{array}{rl} V_{D S}=0 & \mathrm{~V}, V_{\mathrm{GS}}=-10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{array}$				11		15		15	pF
Equivalent Input Nolse Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D G}= 5 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$				3.5					$\frac{n y}{\sqrt{H z}}$
SWITCHING											
Turn-on Time	$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{ON})}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}(\mathrm{ON})=0 \mathrm{~V}$				3					ns
	t_{r}	P/N	ID(ON) 10 mA 10 mA	$V_{\text {GS (OFF) }}$	R_{L}	1					
Turn-off Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$	$J 110$ J110A			150Ω	4					
	t_{f}			$-5 \mathrm{~V}$	150Ω	20					

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

J111 SERIES

N-Channel JFET

The $\mathrm{J111}$ Series is a low-cost, all-purpose analog switch designed to support a wide range of applications. It features low on-resistance, capacitance and good off-isolation. Additionally, our TO-92 package allows a variety of lead-forms or tape and reel combinations. (See Section 8.)

For further design information please consult the

PART NUMBER	$V_{\text {GS (OFF) }}$ MAX (V)	$\mathbf{r}_{\text {ds(ON) }}$ MAX (Ω)	$\mathrm{I}_{\text {D(OFF) }}$ TYP (pA)	$\mathbf{t}_{\text {ON }}$ TYP $(n s)$
J 111	-10	30	5	4
J 112	-5	50	5	4
J 113	-3	100	5	4

SIMILAR PRODUCTS

- SOT-23, See SST111 Series
- TO-18, See 2N4391 Series
- Duals, See 2N5564 Series
- Chips, Order J11XCHP

TO-92
BOTTOM VIEW

1 DRAIN
2 SOURCE
3 GATE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-35	V
Gate-Source Voltage	$V_{\text {GS }}$	-35	
Gate Current	I_{G}	50	mA
Power Dissipation	PD	360	mW
Power Derating		3.27	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 200	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	$J 111$		$J 112$		J113		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

Gate-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) GSS }}$	$I_{G}=-1 \mu \mathrm{~A}, V_{D S}=0 \mathrm{~V}$	-55	-35		-35		-35		V
Gate-Source Cutoff Voltage	$V_{\text {GS (OFF) }}$	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$		-3	-10	-1	-5		-3	
Saturation Drain Current ${ }^{3}$	Ioss	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		20		5		2		mA
Gate Reverse Current	IGss	$\begin{array}{ll} V_{G S}=-15 \mathrm{~V} & \\ V_{D S}=0 \mathrm{~V} & T_{A}=125^{\circ} \mathrm{C} \end{array}$	$\begin{array}{\|c\|} \hline-0.005 \\ \hline-3 \\ \hline \end{array}$		-1		-1		-1	nA
Gate Operating Current	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	-5							pA
Drain Cutoff Current	$I_{\text {D(OFF }}$	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	0.005		1		1		1	nA
		$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{G S}=-10 \mathrm{~V} \\ T_{A}=125^{\circ} \mathrm{C} \end{gathered}$	3							
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$			30		50		100	Ω
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7							V

DYNAMIC

Common-Source Forward Transconductance	g_{fs}	$\begin{aligned} V_{D G}= & 20 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$	6				mS
Common-Source Output Conductance	gos		25				$\mu \mathrm{S}$
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$	$\begin{aligned} V_{G S} & =0 \mathrm{~V}, I_{D}=0 \mathrm{~V} \\ f & =1 \mathrm{kHz} \end{aligned}$		30	50	100	Ω
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} V_{D S}= & 0 \mathrm{~V}, V_{G S}=-10 \mathrm{~V} \\ f & =1 \mathrm{MHz} \end{aligned}$	7	12	12	12	pF
Common-Source Reverse Transfe Capacitance	$\mathrm{C}_{\text {rss }}$		3	5	5	5	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$	4				$\frac{\mathrm{nV} / \sqrt{\mathrm{Hz}}}{}$

SWITCHING

Turn-on Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}$				2							ns
	t_{r}	P/	$1 \mathrm{D}(\mathrm{ON})$	$\mathrm{V}_{\text {GS(OFF) }}$	R_{L}	2							
Turn-off Time	$t_{\text {d }}$ (OFF)	$\begin{aligned} & J 1111 \\ & J 112 \\ & J 113 \end{aligned}$	$\begin{gathered} 12 \mathrm{~mA} \\ 6 \mathrm{~mA} \\ 3 \mathrm{~mA} \end{gathered}$	$\begin{array}{r} -12 \mathrm{~V} \\ -7 \mathrm{~V} \\ -5 \mathrm{~V} \end{array}$	$\begin{array}{r} 800 \Omega \\ 1600 \Omega \\ 3200 \Omega \end{array}$	6							
	t_{f}					15							

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

J111A SERIES

N-Channel JFET

The J111A Series is a low-cost, all-purpose analog switch designed to support a wide range of applications. In addition to low on-resistance and capacitance, this series guarantees higher breakdown voltage and significantly lower leakage than its counterpart, the J111 Series. Finally, its TO-92 package allows a variety of lead-forms or tape and reel combinations. (See Section 8.)

PART NUMBER	$V_{G S}$ (OFF) MAX (V)	$\begin{gathered} \mathrm{r}_{\mathrm{ds}}(\mathrm{ON}) \\ \text { MAX } \\ (\Omega) \end{gathered}$	$\begin{gathered} \hline \mathrm{I}(\mathrm{OFF}) \\ \mathrm{MAX} \\ (\mathrm{pA}) \end{gathered}$	ton TYP (ns)
J111A	-10	30	200	4
J112A	-7	50	200	4
J113A	-5	80	200	4

For further design information please consult the typical performance curves NCB which are located in Section 7.

TO-92

1 DRAIN
2 SOURCE
3 GATE

SIMILAR PRODUCTS

- SOT-23, See SST111 Series
- TO-18, See 2N4391 Series
- Duals, See 2N5564 Series
- Chips, Order J11XACHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	-40	V
Gate-Source Voltage	V_{GS}	-40	V
Gate Current	I_{G}	50	mA
Power Dissipation	PD_{D}	360	mW
Power Derating		3.27	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ_{C}	-55 to 135	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	J111A		J112A		J113A		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-55	-40		-40		-40		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$		-5	-10	-2	-7	-1	-5	
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		30		15		8		mA
Gate Reverse Current	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$	-5		-200		-200		-200	pA
			-3							nA
Gate Operating Current	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	-5							
Drain Cutoff Current	$I_{\text {d (OFF) }}$	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	5		200		200		200	
		$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{gathered}$	3							nA
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$			30		50		80	Ω
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7							V
DYNAMIC										
Common-Source Forward Transconductance	$\mathrm{g}_{\text {f }}$	$\begin{aligned} V_{D G}= & 20 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$	6							mS
Common-Source Output Conductance	gos		25							$\mu \mathrm{S}$
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$	$\begin{aligned} \mathrm{V}_{\mathrm{GS}} & =0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~V} \\ f & =1 \mathrm{kHz} \end{aligned}$			30		50		80	Ω
Common-Source Input Capacitance	$C_{\text {iss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=-10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	7		12		12		12	pF
$\begin{aligned} & \text { Common-Source } \\ & \text { Reverse Transfer } \\ & \text { Capacitance } \\ & \hline \end{aligned}$	$\mathrm{C}_{\text {rss }}$		3		5		5		5	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D G}= 10 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$	4							$\frac{n y}{\sqrt{H z}}$
SWITCHING										
Turn-on Time	$\mathrm{t}_{\mathrm{d} \text { (ON) }}$	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}$ P / N $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ $\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}$ R_{L} J 111 A 12 mA -12 V 800Ω J 112 A 6 mA -7 V 1600Ω J 113 A 3 mA -5 V 3200Ω	2							ns
	t_{r}		2							
Turn-off Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		6							
	t_{f}		15							

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

J174 SERIES

P-Channel JFET

The J174 Series is a low-cost p-channel analog switch designed to provide low on-resistance and fast switching. It also works well in conjunction with Siliconix’ J111 Series for complimentary switching applications. It features a TO-92 package which is available with various lead-forms and/or tape and reel options. (See Section 8.)
For further design information please consult the typical performance curves PSCIA which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See 2 N5114 Series
- SOT-23, See SST174 Series
- Chips, Order J17XCHP

PART NUMBER	$V_{\text {GS(OFF) }}$ MAX (V)	$r_{\text {ds(ON) }}$ MAX (Ω)	$I_{\text {D(OFF) }}$ MAX $(n A)$	$\mathbf{t}_{\text {ON }}$ TYP $(n s)$
$J 174$	10	85	-1	25
$J 175$	6	125	-1	25
$J 176$	4	250	-1	25
$J 177$	2.25	300	-1	25

TO-92
BOTTOM VIEW

1 DRAIN
2 GATE
3 SOURCE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	30	
Gate-Source Voltage	$V_{G S}$	30	V
Gate Current	I_{G}	-50	mA
Power Dissipation	P_{D}	360	mW
Power Derating		3.27	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ_{J}	-55 to 135	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$					LIMITS					
PARAMETER	SYMBOL	TEST CONDITIONS				J174		$J 175$		UNIT
					TYP ${ }^{2}$	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$I_{G}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			45	30		30		v
Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{GS} \text { (}}$ (ofF)	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{nA}$				5	10	3	6	
Saturation Drain Current ${ }^{3}$	Ioss	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$				-20	-135	-7	-70	mA
Gate Reverse Current	IGss	$\begin{aligned} & V_{G S}=20 \mathrm{~V} \\ & V_{D S}=0 \mathrm{~V} \end{aligned}$	T_{A}	$125^{\circ} \mathrm{C}$	$\frac{0.01}{5}$		1		1	nA
Gate Operating Current	I_{G}	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$			0.01					
Drain Cutoff Current	$I_{\text {D (OFF })}$	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$			-0.01		-1		-1	
		$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{gathered}$			-5					
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS }}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-0.1 \mathrm{~V}$					85		125	Ω
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{G}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-0.7					V
DYNAMIC										
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{D}=-1 \mathrm{~mA}$			4.5					mS
Common-Source Output Conductance	gos				20					$\mu \mathrm{S}$
Drain-Source On-Resistance	$\mathrm{r}_{\text {ds }}(\mathrm{ON})$	$\begin{gathered} V_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~mA} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$					85		125	Ω
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$			20					pF
Common-Source Reverse Transfer Capacitance	$\mathrm{Crss}^{\text {r }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$			5					
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=-10 \mathrm{~V}, I_{D}=-1 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$			20					$n / \sqrt{\mathrm{Hz}}$
SWITCHING										
Turn-on Time	$\left.\mathrm{t}_{\mathrm{d} \text { (}} \mathrm{ON}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}$			10					ns
	t_{r}	 P/N $V_{D D}$ $J 174$ -10 V J 175 -6 V		R_{L}	15					
Turn-off Time	$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{OFF})}$		$12 \mathrm{~V}$	560Ω	10					
	t_{f}		8 V	1200Ω	20					

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

J174 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$					LIMITS					
PARAMETER	SYMBOL	TEST CONDITIONS				$J 176$		$J 177$		UNIT
					TYP ${ }^{2}$	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$V_{(B R) G S S}$	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			45	30		30		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=-15 V_{1} I_{D}=-10 n A$				1	4	0.8	2.25	
Saturation Drain Current ${ }^{3}$	IDSs	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$				-2	-35	-1.5	-20	mA
Gate Reverse Current	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$		$125^{\circ} \mathrm{C}$	[0.01		1		1	nA
Gate Operating Current	I_{G}	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$			0.01					
Drain Cutoff Current	$I_{\text {d (OFF) }}$	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$			-0.01		-1		-1	
		$\begin{gathered} V_{D S}=-15 \mathrm{~V}, V_{G S}=10 \mathrm{~V} \\ T_{A}=125^{\circ} \mathrm{C} \end{gathered}$			-5					
Drain-Source On-Resistance	r ${ }_{\text {DS (ON) }}$	$V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-0.1 \mathrm{~V}$					250		300	Ω
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS} \text { (F) }}$	$\mathrm{I}_{\mathrm{G}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-0.7					V
DYNAMIC										
Common-Source Forward Transconductance	g_{fs}	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$			4.5					mS
Common-Source Output Conductance	gos				20					$\mu \mathrm{S}$
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$	$\begin{gathered} V_{G S}=0 \mathrm{~V}, I_{D}=0 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$					250		300	Ω
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$			20					pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$			5					
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=-10 \mathrm{~V}, I_{D}=-1 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$			20					$\mathrm{ny} / \sqrt{\mathrm{Hz}}$
SWITCHING										
Turn-on Time	$\mathrm{t}_{\mathrm{d} \text { (ON) }}$	$\mathrm{V}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}$			10					ns
	t_{r}	$\begin{array}{ll} P / N & V_{D D} \\ J 176 & -6 V \\ 1177 & -6 V \end{array}$	GS(ofF)	R_{L}	15					
Turn-off Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		$6 \mathrm{~V}$	5600Ω	10					
	t_{f}		3 V	10000Ω	20					

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

The J201 Series of popular, low-cost JFETs offers high performance in a wide range of applications. With features such as 100 pA gate leakage, -40 V breakdown voltage, and $5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ noise, these devices are especially characterized for sensitive amplifier stages. The J201 and J204 with low cut off voltages, are ideal for battery operated equipment and low current amplifiers. The J201 Series in the TO-92 package offers both value and compatibility with automated assembly.

For further design information please consult the typical performance curves NPA which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See 2N4338 Series

PART NUMBER	$V_{\text {GS(OFF) }}$ MAX (V)	$\mathrm{V}_{(\text {BR }) \text { GSS }}$ MIN (V)	g_{fs} MIN (mS)	IDSS $_{\text {MAX }}^{\text {MA }}$ (mA)
J 201	-1.5	-40	0.5	1
J 202	-4	-40	1	4.5
J 203	-10	-40	1.5	20
J 204	-2	-25	0.5	3

- SOT-23, See SST201 Series
- Chips, Order J20XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT		UNITS
		J201-3	J204	
Gate-Drain Voltage	$V_{G D}$	-40	-25	
Gate-Source Voltage	V_{GS}	-40	-25	
Gate Current	I_{G}	50		mA
Power Dissipation	PD	360		mW
Power Derating		3.27		$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 135		${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-55 to 150		
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300		

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS					
PARAMETER	SYMBOL	TEST CONDITIONS			J201		J202		UNIT
				TYP ${ }^{2}$	MIN	MAX	MIN	MAX	
STATIC									
Gate-Source Breakdown Voltage	$\mathrm{V}_{(\mathrm{BR})}$ Gss	$I_{G}=-1 \mu \mathrm{~A}$	0 V	-57	-40		-40		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{GS} \text { (}}$ ($\mathrm{FFF}^{\text {) }}$	$V_{D S}=20$	10 nA		-0.3	-1.5	-0.8	-4	v
Saturation Drain Current ${ }^{3}$	IDSs	$V_{D S}=20$	$=0 \mathrm{~V}$		0.2	1	0.9	4.5	mA
Gate Reverse Current	IGss	$\begin{aligned} & V_{\mathrm{GS}}=-20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$		-2		-100		-100	pA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-1					nA
Gate Operating Current	$1 G^{\prime}$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$		-2					pA
Drain Cutoff Current	${ }^{\text {I D (OFF })}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$		2					
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7					V
DYNAMIC									
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$			0.5		1		mS
Transconductance Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$V_{D S}=\begin{aligned} & 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		4.5					pF
Common-Source Reverse Transfer Capacitance Capacitance	$\mathrm{C}_{\text {rss }}$			1.3					
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		6					$n \mathrm{n} / \sqrt{\mathrm{Hz}}$

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS					
PARAMETER	SYMBOL	TEST CONDITIONS			J203		J204		UNIT
				TYP ${ }^{2}$	MIN	MAX	MIN	MAX	
STATIC									
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$I_{G}=-1 \mu \mathrm{~A}$	0 V	-57	-40		-25		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{\text {DS }}=20$	10 nA		-2	-10	-0.3	-2	
Saturation Drain Current ${ }^{3}$	IDSS	$V_{D S}=20$	$=0 \mathrm{~V}$		4	20	0.2	3	mA
Gate Reverse Current	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$		-2		-100		-100	pA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-1					nA
Gate Operating Current	I_{G}	$\mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$		-2					pA
Drain Cutoff Current	ID(OFF)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$		2					
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7					V
DYNAMIC									
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=20 \mathrm{~V}, V_{G G}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$			1.5		0.5		mS
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$V_{D S}=\underset{f=1 \mathrm{MHz}}{20 \mathrm{~V}, V_{G S}=0 \mathrm{~V}}$		4.5					pF
Common-Source Reverse Transfer Capacitance	$\mathrm{Crss}^{\text {che }}$			1.3					
Equivalent Input Nolse Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$		6					$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$

NOTES: 1. $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

The J210 Series of n-channel JFETs provides good general purpose amplifiers for a wide range of test and instrumentation applications. This series features low-leakage ($\mathrm{I}_{\mathrm{GSS}}<100 \mathrm{pA}$), high gain ($g_{\mathrm{fs}}>7 \mathrm{mS}$ for J212), and low noise. Additionally, its low cost TO-92 package ensures value as well as compatibility with automated assembly techniques. (See Section 8.)

For additional design information please see performance curves NZF, which are located in Section 7.

PART NUMBER	$V_{\text {GS(OFF) }}$ MAX (V)	$\mathrm{V}_{(\text {BR }) \text { GSS }}$ MIN (V)	g_{fs} MIN (mS)	IDSS $^{\text {MAX }}$ (mA)
J 210	-3	-25	4	15
J 211	-4.5	-25	6	20
J 212	-6	-25	7	40

TO-92
BOTTOM VIEW

SIMILAR PRODUCTS

- Duals, See 2N5911 Series
- Chips, Order J21XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	-25	V
Gate-Source Voltage	V_{GS}	-25	V
Gate Current	I_{G}	10	mA
Power Dissipation	PD_{D}	360	mW
Power Derating		3.27	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 135	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds)	T_{L}	300	

STATIC

Gate-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) GSS }}$	$I_{G}=-1 \mu \mathrm{~A}$,	S $=0 \mathrm{~V}$	-35	-25		-25		-25		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=15 \mathrm{~V}$,	$=1 \mathrm{nA}$		-1	-3	-2.5	-4.5	-4	-6	
Saturation Draln Current ${ }^{3}$	I Dss	$V_{D S}=15 \mathrm{~V}$,	GS $=0 \mathrm{~V}$		2	15	7	20	15	40	mA
Gate Reverse Current	IGss	$\begin{gathered} V_{G S}=-15 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$		-1		-100		-100		-100	pA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.5							nA
Gate Operating Current	I_{G}	$V_{D G}=10 \mathrm{~V}, I_{D}=1 \mathrm{~mA}$		-1							pA
Drain Cutoff Current	ID(OFF)	$V_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}$		1							
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}$,	$\mathrm{s}=0 \mathrm{~V}$	0.7							V

DYNAMIC

Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$V_{D S}=\begin{aligned} & 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		4	12	6	12	7	12	mS
Common-Source Output Conductance	gos				150		200		200	MS
Common-Source Input Capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{D S}= 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	4							pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		1.5							
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$	5							$n / \sqrt{\mathrm{Hz}}$

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

J230 SERIES
N-Channel JFETs

The J230 Series of popular, low-cost JFETs offers high performance in a wide range of applications. It features low leakage, noise and cutoff voltage for use with low level power supplies. Its TO-92 package offers both value and compatibility with automated assembly.

For further design information please consult the

PART NUMBER	$V_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{V}_{(B R) \text { GSS }}$ MIN (V)	g_{fs} MIN (mS)	$\mathbf{I}_{\text {DSS }}$ MAX (mA)
J 230	-3	-40	1	3
J 231	-5	-40	1.5	6
J 232	-6	-40	2.5	10

SIMILAR PRODUCTS

- TO-18, See 2N4338 Series
- SOT-23, See SST201 Series
- Chips, Order J23XCHP

TO-92

$\begin{array}{ll}1 & \text { DRAIN } \\ 2 & \text { SOURCE } \\ 3 & \text { GATE }\end{array}$

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-40	V
Gate-Source Voltage	$V_{G S}$	-40	50
Gate Current	I_{G}	360	mA
Power Dissipation	PD_{D}	3.27	mW
Power Derating		-55 to 135	$\mathrm{~mW} /^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	300	
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}		

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	J230		J231		J232		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$\mathrm{V}_{(\mathrm{BR}) \mathrm{Gss}}$	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-57	-40		-40		-40		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{GS} \text { (OFF) }}$	$V_{D S}=20 \mathrm{~V}, I_{D}=1 \mu \mathrm{~A}$		-0.5	-3	-1.5	-5	-3	-6	v
Saturation Drain Current ${ }^{3}$	I DSs	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.7	3	2	6	5	10	mA
Gate Reverse Current	IGss	$\begin{aligned} & V_{G S}=-30 \mathrm{~V} \\ & V_{D S}=0 \mathrm{~V} \end{aligned}$	-2		-250		-250		-250	pA
			-1							nA
Gate Operating Current	I_{G}	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$	-1							pA
Drain Cutoff Current	ID(OFF)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	2							
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7							V
DYNAMIC										
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$V_{D S}=\underset{f=1}{20 \mathrm{VHz}} \mathrm{~V}_{G S}=0 \mathrm{~V}$		1	3.5	1.5	4	2.5	5	mS
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}= 20 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	4.5							pF
Common-Source Reverse Transfer Capacitance	$\mathrm{Crss}^{\text {r }}$		1.3							
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=10 \mathrm{~Hz} \end{gathered}$	14		30		30		30	$\mathrm{ny} /{ }_{\sqrt{\mathrm{Hz}}}$

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

The J270 Series is an all-purpose amplifier for designs requiring p-channel operation. These devices feature high gain, low noise and tight $\mathrm{V}_{\mathrm{GS}(\mathrm{OFF}}$ limits for simple circuit design. They are available in low-cost TO-92 packages and are fully compatible with automatic insertion techniques. (See Section 8 for details.)

For further design information please consult the typical performance curves PSCIA which are located in Section 7.

SIMILAR PRODUCTS

PART NUMBER	V $_{\text {GS(OFF) }}$ MAX (V)	$V_{\text {(BR) GSS }}$ MIN (V)	$\mathbf{g}_{\text {fs }}$ MIN (mS)	I DSS $^{\text {MAX }}$ (mA)
J 270	2.0	30	6	-15
J 271	4.5	30	8	-50

TO-92

BOTTOM VIEW

- SOT-23, See SST270 Series
- Chips, Order J27XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	30	
Gate-Source Voltage	$V_{G S}$	30	V
Gate Current	I_{G}	-50	mA
Power Dissipation	PD_{D}	360	mW
Power Derating		3.27	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 135	
Storage Temperature	$\mathrm{T}_{\text {Stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS					
				J270		J271		UNIT
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	MIN	MAX	MIN	MAX	

STATIC

Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		45	30		30		V
Gate-Source Cutoff Voltage	$V_{\text {GS(OFF) }}$	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{nA}$			0.5	2.0	1.5	4.5	
Saturation Drain Current ${ }^{3}$	IDSs	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-2	-15	-6	-50	mA
Gate Reverse Current	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$		10		200		200	pA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	5					nA
Gate Operating Current	I_{G}	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$		10					pA
Drain Cutoff Current	Id (OFF)	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		-10					
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		-0.7					V

DYNAMIC

Common-Source Forward Transconductance	g_{fs}	$\begin{aligned} V_{D S}= & -15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f & =1 \mathrm{kHz} \end{aligned}$		6	15	8	18	mS
Common-Source Output Conductance	gos				200		500	HS
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	20					pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		4					
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=-10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$	20					$\frac{n y}{\sqrt{H z}}$

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

J304 SERIES

N-Channel JFETs

The J304 Series of n-channel JFETs is designed to provide high-performance amplification, especially at high-frequency. These parts feature low noise, high gain and provide wide bandwidth.

For additional design information please see

PART NUMBER	V GS(OFF) $_{\text {MAX }}$ (V)	$V_{\text {(BR) GSS }}$ MIN (V)	g_{fs} MIN (mS)	I DSS $^{\text {MAX }}$ (mA)
J 304	-6	-30	4.5	15
J 305	-3	-30	3	8

SIMILAR PRODUCTS

- SOT-23, See SST5484 Series
- TO-72, See PN4416 Series
- Chips, Order J30XCHP

BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$\mathrm{V}_{G \mathrm{GD}}$	-30	V
Gate-Source Voltage	V_{GS}	-30	10
Gate Current	I_{G}	360	mA
Power Dissipation	P_{D}	3.27	mW
Power Derating		-55 to 135	$\mathrm{~mW}{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	300	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}		

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

J308 SERIES

N-Channel JFETs

The J308 Series is a popular, low-cost device which offers superb amplification characteristics. It features high-gain, low noise (typically $<6 \mathrm{nV} \sqrt{\mathrm{Hz}}$) and low gate leakage (typically $<2 \mathrm{pA}$). Of special interest, however, is performance at high frequency. Even at 450 MHz the J 308 Series offers high power gain and low noise. Like all TO-92 packages offered by Siliconix, tape and reel options are available to support automated assembly. (See Section 8.)

For additional design information and a closer look at high-frequency characteristics, please consult performance curves NZB which are located in Section 7.

PART NUMBER	$V_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{V}_{(\text {BR }) \text { GSS }}$ MIN (V)	g_{fs} MIN (mS)	IDSS $^{\text {MAX }}$ (mA)
J 308	-6.5	-25	8	60
J 309	-4.0	-25	10	30
J 310	-6.5	-25	8	60

SIMILAR PRODUCTS

TO-92

BOTTOM VIEW

1 DRAIN
2 SOURCE
3 GATE

- TO-52, See U308 Series
- SOT-23, See SST308 Series
- Dual, See U430 Series
- Chips, Order J30XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-25	V
Gate-Source Voltage	$V_{G S}$	-25	
Gate Current	I_{G}	10	mA
Power Dissipation	$P_{\text {D }}$	360	mW
Power Derating		3.27	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	J308		J309		J310		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Gate-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }}$ Gss	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-35	-25		-25		-25		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (}}^{\text {(}}$ (FF)	$V_{D S}=10 \mathrm{~V}, I_{D}=1 \mathrm{nA}$			-1	-6.5	-1	-4	-2	-6.5		
Saturation Drain Current ${ }^{3}$	Ioss	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			12	60	12	30	24	60	mA	
Gate Reverse Current	IGss	$\begin{gathered} V_{G S}=-15 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$		-0.002		-1		-1		-1	nA	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.008		-1		-1		-1	$\mu \mathrm{A}$	
Gate Operating Current	I_{G}	$V_{D G}=9 \mathrm{~V}, I_{D}=10 \mathrm{~mA}$		-15							pA	
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS (ON) }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		35							Ω	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS} \text { (F) }}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7		1		1		1	V	
DYNAMIC												
Common-Source Forward-S Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$		14	8		10		8		mS	
Common-Source Output Conductance	$g_{\text {os }}$			110		250		250		250	$\mu \mathrm{S}$	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{G S}=-10 \mathrm{~V}, V_{D S}=10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		4		5		5		5	pF	
Common-Source Capacitance	$\mathrm{C}_{\text {rss }}$			1.9		2.5		2.5		2.5		
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} V_{D S}= & 10 \mathrm{~V}, I_{0} \\ & f=100 \end{aligned}$	$\begin{aligned} & =10 \mathrm{~mA} \\ & \mathrm{~Hz} \end{aligned}$	6							$\frac{\mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$	
HIGH FREQUENCY												
Common-Gate Foward Transconductance	g_{fg}	$V_{D S}=10 \mathrm{~V}$	$\mathrm{f}=105 \mathrm{MHz}$	15							mS	
			$\mathrm{f}=450 \mathrm{MHz}$	13								
Common-Gate Output Conductance	gog		$\mathrm{f}=105 \mathrm{MHz}$	0.16								
			$\mathrm{f}=450 \mathrm{MHz}$	0.55								
Common-Gate Power Gain ${ }^{4}$	G_{pg}	$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	$\mathrm{f}=105 \mathrm{MHz}$	16							dB	
			$\mathrm{f}=450 \mathrm{MHz}$	11.5								
Noise Figure	NF		$\mathrm{f}=105 \mathrm{MHz}$	1.5								
			$\mathrm{f}=450 \mathrm{MHz}$	2.7								

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. Gain ($G_{p g}$) measured at optimum input noise match.

Current Regulator Diodes

The J500 Series is a family of current regulators designed for demanding applications in test equipment and instrumentation. These devices utilize the JFET techniques to produce a single two-leaded device which is extremely simple to operate. With nominal current ranges from 0.24 mA to 4.7 mA , the J 500 Series will meet a wide array of design requirements. In addition to its two-lead construction, this series features 20% current ranges, improved current control over wide temperature ranges, and simple "floating" operation as no power supplies are required for biasing. Several of the devices provide effective current control operating down to even 1 volt. Finally, its low-cost TO-92 package ensures a cost effective design solution.

For additional design information please see performance curves NCL, which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See CR022 Series
- Chips, Order J5XXCHP

PART	$\mathbf{I}_{\mathbf{F}}$ (mA)	PART	$\mathbf{I}_{\mathbf{F}}$ (mA)
J 500	0.24	J 506	1.40
J 501	0.33	J 507	1.80
J 502	0.43	J 508	2.40
J 503	0.56	J 509	3.00
J 504	0.75	J 510	3.60
J 505	1.00	J 511	4.70

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Peak Operating Voltage	POV	50	V
Forward Current	I_{F}	20	mA
Reverse Current	I_{R}	50	
Power Dissipation	PD_{D}	360	mW
Power Derating		3.27	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ_{I}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 200	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SYMBOL \& \multicolumn{3}{|c|}{\(\mathrm{I}_{\mathrm{F}}\)} \& \multicolumn{2}{|c|}{\(\mathrm{Z}_{\mathrm{d}}\)} \& \(\mathrm{Z}_{\mathrm{k}}\) \& \multicolumn{2}{|c|}{\(\mathrm{V}_{\mathrm{L}}\)} \& \multicolumn{2}{|c|}{POV} \& \(\mathrm{C}_{\text {F }}\) \& \(\theta_{1}\) \\
\hline PARAMETER \& \multicolumn{3}{|c|}{REGULATOR CURRENT} \& \multicolumn{2}{|l|}{DYNAMIC IMPEDANCE} \& \begin{tabular}{l}
KNEE \\
IMPEDANCE
\end{tabular} \& \multicolumn{2}{|l|}{LIMITING VOLTAGE} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \text { PEAK } \\
\& \text { OPERATING } \\
\& \text { VOLTAGE } \\
\& \hline
\end{aligned}
\]} \& CAPACITANCE \& TEMPERATURE
COEFFICIENT
(TYPICALS) \\
\hline TEST
CONDITIONS \& \multicolumn{3}{|c|}{\[
\begin{aligned}
\& V_{F}=25 \mathrm{~V} \\
\& \text { (Note 1) }
\end{aligned}
\]} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& V_{F}=25 \mathrm{~V} \\
\& \text { (Note 2) }
\end{aligned}
\]} \& \(V_{F}=6 \mathrm{~V}\) \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\mathrm{I}_{\mathrm{F}}= \& 0.8 \mathrm{I}_{\mathrm{F}(\mathrm{MiN})} \\
\& (\text { Note 3) }
\end{aligned}
\]} \& \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{I}_{F}=1.1 \mathrm{I}_{F(\text { MAX })} \\
\\
(\text { Note } 4)
\end{gathered}
\]} \& \[
\begin{aligned}
\& V_{F}=25 \mathrm{~V} \\
\& f=1 \mathrm{MHz}
\end{aligned}
\] \& \[
\begin{gathered}
V_{F}=25 \mathrm{~V} \\
0^{\circ} \mathrm{C} \leq T_{A} \leq 100^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{UNITS} \& \multicolumn{3}{|c|}{mA} \& \multicolumn{2}{|c|}{\(\mathrm{M} \Omega\)} \& \(\mathrm{M} \Omega\) \& \multicolumn{2}{|c|}{V} \& \multicolumn{2}{|c|}{V} \& pF \& ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline \& NOM \& MIN \& MAX \& MIN \& TYP \& TYP \& MAX \& TYP \& MIN \& TYP \& TYP \& TYP \\
\hline J500 \& 0.24 \& 0.192 \& 0.288 \& 4.00 \& 400 \& 2.50 \& 1.20 \& 0.4 \& 50 \& 100 \& 2.2 \& 1300 \\
\hline J501 \& 0.33 \& 0.264 \& 0396 \& 2.20 \& 250 \& 1.60 \& 1.30 \& 0.5 \& 50 \& 100 \& 2.2 \& 600 \\
\hline J502 \& 0.43 \& 0.344 \& 0.516 \& 1.50 \& 15.0 \& 1.10 \& 1.50 \& 0.6 \& 50 \& 100 \& 2.2 \& 0 \\
\hline J503 \& 0.56 \& 0.448 \& 0.672 \& 1.20 \& 12.0 \& 0.80 \& 1.70 \& 0.7 \& 50 \& 100 \& 22 \& -400 \\
\hline J504 \& 0.75 \& 0.600 \& 0.900 \& 0.80 \& 70 \& 055 \& 1.90 \& 0.8 \& 50 \& 100 \& 2.2 \& -1000 \\
\hline J505 \& 1.00 \& 0800 \& 1.200 \& 0.50 \& 5.0 \& 0.40 \& 2.10 \& 0.9 \& 50 \& 100 \& 2.2 \& -1300 \\
\hline J506 \& 1.40 \& 1.120 \& 1.680 \& 0.33 \& 30 \& 0.25 \& 2.50 \& 1.1 \& 50 \& 100 \& 2.2 \& -1900 \\
\hline J507 \& 1.80 \& 1.440 \& 2.160 \& 0.20 \& 20 \& 0.19 \& 2.80 \& 1.3 \& 50 \& 100 \& 2.2 \& -2200 \\
\hline J508 \& 2.40 \& 1.900 \& 2.900 \& 0.20 \& 15
10 \& 0.13
0.09 \& 3.10
3.50 \& 15
1.7 \& 50
50 \& 100
100 \& 22 \& -2600 \\
\hline J509 \& 3.00 \& 2.400 \& 3.600
4.300 \& 0.15
0.15 \& 1.0
0.8 \& 0.09
0.07 \& 3.50
3.90 \& 1.7
1.9 \& 50
50 \& 100 \& 2.2
22 \& \[
\begin{aligned}
\& -2800 \\
\& -3000
\end{aligned}
\] \\
\hline J510

511 \& 3.60
4.70 \& 2.900

3.800 \& $$
\begin{aligned}
& 4.300 \\
& 5.600
\end{aligned}
$$ \& 0.15

0.12 \& 0.8
06 \& \& \& 1.7
2.1 \& 50
50 \& 100
100 \& 22 \& -3000
-3000

\hline
\end{tabular}

NOTES: 1 Pulse test - steady state currents may very.
. Pulse test - steady state impedances may vary
. Max_{F} where $\mathrm{I}_{F}>1.1 \mathrm{I}_{F(M x)}$ is $\mathrm{F}_{F(M \operatorname{lin})}$

The J552 is a current regulator designed for applications in test equipment and instrumentation. With forward current between 0.2 and 0.7 mA , the J 552 will meet a wide array of design requirements. In addition to its two-lead construction, it features current control over wide temperature ranges and simple "floating" operation as no power supplies are required for biasing. Finally, the low-cost TO-92 package ensures a cost effective design solution.

For additional design information please see performance curves NKL, which are located in Section 7.

SIMILAR PRODUCTS

BOTTOM VIEW

1 ANODE
2 CATHODE

- TO-18, See CR022 Series
- Chips, Order J5XXCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Peak Operating Voltage	$P_{O V}$	100	V
Forward Current	I_{F}	20	mA
Reverse Current	I_{R}	50	mW
Power Dissipation	P_{D}	350	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power Derating		-55 to 135	
Operating Junction Temperature	T_{J}	-55 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	300	
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}		

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	J552		UNIT
				MIN	MAX	

STATIC

Forward Current ${ }^{3}$	$\mathrm{I}_{\mathrm{F} 1}$	$V_{F}=100 \mathrm{~V}$	400		770	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{F}}=25 \mathrm{~V}$	400	250	700	
		$V_{F}=1 \mathrm{~V}$	390	200		
Peak Operating Voltage ${ }^{\text {3, }} 4$	Pov	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~V} \mathrm{I}_{\mathrm{F} 1 \text { (MAX) }}$	160	100		V
Limiting Voltage ${ }^{5}$	V_{L}	$\mathrm{I}_{\mathrm{F}}=0.9 \mathrm{I}_{\mathrm{F} 1(\mathrm{MIN})}$	1		1.5	
DYNAMIC						
Small-Signal Dynamic Impedance ${ }^{3}$	$\mathrm{Z}_{\mathrm{F} 1}$	$\mathrm{V}_{\mathrm{F}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$	8	1		$\mathrm{M} \Omega$
Anode-Cathode Capacitance	C_{F}	$V_{F}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	2			pF

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. Maximum $V_{F}<1.1 \mathrm{I}_{\mathrm{F} 1(\mathrm{MAX})}$ is guaranteed.
5. Maximum V_{F} required to insure $I_{F}>0.9 I_{F 1(\mathrm{MIN})}$.

J553 SERIES

Current Regulator Diodes

The J553 Series is a low cost family of current regulators designed for demanding applications in test equipment and instrumentation. These devices utilize the proven JFET techniques to produce a single two-leaded device which is extremely simple to operate. With nominal current ranges from 0.5 mA to 4.5 mA , the J 553 Series will meet a wide array of design requirements. In addition to its two-lead construction, this series feature improved current control over wide temperature ranges and simple "floating" operation as no power supplies are required for biasing. Several of the devices provide effective current control operating down to even 2 volts. Finally, its low-cost TO-92 package ensures a cost effective design solution.

For additional design information please see performance curves NCL, which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See CR022 Series
- Chips, Order J5XXCHP

PART	I_{F} (mA)
J 553	0.50
J 554	1.00
J 555	2.00
J 556	3.00
J 557	4.50

BOTTOM VIEW

1 ANODE
2 CATHODE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Peak Operating Voltage	PoV	50	V
Forward Current	I_{F}	20	mA
Reverse Current	I_{R}	50	mW
Power Dissipation	P_{D}	360	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Power Derating		3.27	
Operating Junction Temperature	T_{J}	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 200	

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	I_{F}			Z_{d}	\mathbf{Z}_{k}	V_{L}		POV		C_{F}	θ_{1}
PARAMETER	REGULATOR CURRENT			DYNAMIC IMPEDANCE	KNEE IMPEDANCE	LIMITING VOLTAGE		$\begin{aligned} & \text { PEAK } \\ & \text { OPERATING } \\ & \text { VOLTAGE } \end{aligned}$		CAPACITANCE	TEMPERATURE COEFFICIENT (TYPICALS)
TEST CONDITIONS	$\begin{aligned} & V_{F}=25 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$			$V_{F}=25 \mathrm{~V}$ (Note 2)	$\mathrm{V}_{\mathrm{F}}=6 \mathrm{~V}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=0.8 \mathrm{I}_{\mathrm{F}(\mathrm{MiN})} \\ (\text { Note } 3) \end{gathered}$		$\begin{aligned} \mathrm{I}_{F}= & 1.1 \mathrm{I}_{\mathrm{F}(\text { MAX })} \\ & (\text { Note 4) } \end{aligned}$		$\begin{aligned} & V_{F}=25 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	$\begin{gathered} V_{F}=25 \mathrm{~V} \\ 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 100^{\circ} \mathrm{C} \end{gathered}$
UNITS	mA			$\mathrm{M} \Omega$	$\mathrm{M} \Omega$	V		V		pF	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	NOM	MIN	MAX	TYP	TYP	MAX	TYP	MIN	TYP	TYP	TYP
J553	0.50	0.180	0.750	13.0	1.00	1.30	07	50	100	2.2	-200
J554	1.00	0.600	1.600	5.0	0.40	1.75	09	50	100	2.2	-1300
J555	2.00	1.400	2.600	1.8	0.17	2.15	1.4	50	100	2.2	-2300
J556	3.00	2.400	3800	1.0	009	2.60	1.7	50	100	2.2	-2800
J557	4.50	3.600	5.300	0.6	0.06	3.00	2.1	50	100	2.2	-3100

NOTES: 1. Pulse test - steady state currents may very.
2. Pulse test - steady state impedances may vary
4. Max V_{F} where $I_{F}>1.1 I_{F(M A X)}$ is guaranteed.

The JPAD5 Series of low-leakage diodes provides a superior alternative to conventional diode technology when reverse current (leakage) must be minimized. These devices feature leakage currents ranging from -5 pA (JPAD5) to -500 pA (JPAD500) to support varying system requirements. Its TO-92 package allows designers to maximize circuit performance while maintaining the objectives of low cost and compact packaging. Tape and reel is available for use with automated assembly techniques. (See Section 8.)

SIMILAR PRODUCTS

- SOT-23, See SSTPAD5 Series

TO-92

BOTTOM VIEW

1 CATHODE
2 ANODE

- TO-18, See PAD1 Series
- Duals, See DPAD1 Series
- Chips, Order JPADXXCHP

PART NO.	\mathbf{I}_{R} (pA)
JPAD5	-5
JPAD10	-10
JPAD20	-20
JPAD50	-50
JPAD100	-100
JPAD200	-200
JPAD500	-500

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Forward Current	I_{F}	10	mA
Total Device Dissipation	P_{D}	360	mW
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 135	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	

ELECTRICAL CHARACTERISTICS

| PARAMETER | | | LIMITS | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | SYMBOL | TEST CONDITIONS | TYP ${ }^{2}$ | MIN | MAX | UNIT |

STATIC

Reverse Current	I_{R}	$\mathrm{V}_{\mathrm{R}}=-20 \mathrm{~V}$	JPAD5	-1		-5	pA
			JPAD10	-2		-10	
			JPAD20	-2		-20	
			JPAD50	-5		-50	
			JPAD100	-5		-100	
			JPAD200	-20		-200	
			JPAD500	-20		-500	
Reverse Breakdown Voltage	$B V_{\text {R }}$	$I_{R}=-1 \mu \mathrm{~A}$		-60	-35		V
Forward Voltage Drop	V_{F}	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$		0.8		1.5	
DYNAMIC							
Reverse Capacitance	C_{R}	$\mathrm{V}_{\mathrm{R}}=-5$	$f=1 \mathrm{MHz}$	1.5		2	pF

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.

JR135V SERIES

High-Voltage Current Limiting Diodes

The JR135V Series of high-voltage diodes utilizes a MOS process to provide active current limiting over a voltage range from 1 V up to 240 V . These devices feature two-terminal construction and require no additional circuitry or power supplies. Additionally, it is housed in a low-cost TO-92 package and is available with tape and reel to support automated assembly.

For additional design information please see performance curves VRMA, which are located in Section 7.

PART NO.	PoV (V)
JR135V	135
JR170V	170
JR200V	200
JR220V	220
JR240V	240

TO-92
BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Peak Anode-Cathode Voltage	JR135V	Pov	135	V
	JR170V		170	
	JR200V		200	
	JR220V		220	
	JR240V		240	
Reverse Current		$I_{\text {R }}$	50	mA
Power Dissipation		P_{D}	360	mW
Power Derating			3.27	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature		T_{J}	-55 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	LIMITS		UNIT	
				MIN	MAX			
STATIC								
Peak Operating Voltage	Pov	$I_{F}=1 \mathrm{~mA}$	JR135V		165	135		V
			JR170V	190	170			
			JR200V	215	200			
			JR220V	230	220			
			JR240V	260	240			
Forward Current	I_{F}	$\mathrm{V}_{\mathrm{F}}=2 \mathrm{~V}$		440	200		$\mu \mathrm{A}$	
		$\mathrm{V}_{\mathrm{F}}=100 \mathrm{~V}$		450	200	770		
Limiting Voltage	V_{L}	$\mathrm{I}_{\mathrm{F}}=0.8 \mathrm{I}_{\mathrm{F}} @ 2 \mathrm{~V}$ min		0.7		0.9	V	
DYNAMIC								
Dynamic Impedance	$Z_{\text {D }}$	$V_{F}=25 \mathrm{~V}$		2			$\mathrm{M} \Omega$	
Temperature Coefficient	$\frac{\Delta I_{F}}{\Delta T}$	$\begin{gathered} V_{F}=2 \\ T_{A}=-2 \end{gathered}$	$\begin{aligned} & 100 \mathrm{~V} \\ & 85^{\circ} \mathrm{C} \end{aligned}$	0.6			\%/ ${ }^{\circ} \mathrm{C}$	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.

M440 SERIES

N-Channel JFET Pairs

The M440 Series are monolithic pairs of JFETs mounted in a single TO-71 package. The M440 features high speed amplification (slew rate), high gain (typically $>6 \mathrm{mS}$), and low gate leakage (typically $<1 \mathrm{pA}$). This performance makes these devices perfect for use as wideband differential amplifiers in demanding test and measurement applications. Finally, its TO-71 hermetically sealed package is available with military screening per MIL-S-19500. (See Section 1.)

TO-71

BOTTOM VIEW

- SO-8, See SST440 Series
- Low Noise, See U401 Series
- Low Leakage, See U421 Series
- Chips, Order M44XCHP

SIMILAR PRODUCTS

- TO-78, See U443 Series

PART NUMBER	$V_{(B R) G S S}$ MIN (V)	\mathbf{g}_{fs} MIN (mS)	\mathbf{I}_{G} TYP (pA)	$\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{GS}_{2}}$ MAX (mV)
M440	-25	5	-1	10
M441	-25	5	-1	20

For additional design information please see performance curves NNZ, which are located in Section 7.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Gate-Drain Voltage		$V_{G D}$	-25	V
Gate-Source Voltage		$V_{G S}$	-25	
Forward Gate Current		I_{G}	50	mA
Power Dissipation	Per Side	PD	325	mW
Power Derating	Per Side		2.2	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Total		3.3	
Operating Junction Temperature		TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 200	
Lead Temperature ($1 / 16$ " from case for 10 seconds)		TL	300	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing
3. Pulse test; $\mathrm{PW}=300$ 上 s, duty cycle $\leq 3 \%$.

M5911 SERIES

N-Channel JFET Pairs

The M5911 Series are monolithic pairs of JFETs mounted in a single TO-78 package. The M5911 features high speed amplification (slew rate), high gain (typically $>6 \mathrm{mS}$), and low gate leakage (typically $<1 \mathrm{pA}$). This performance makes these devices perfect for use as wideband differential amplifiers in demanding test and measurement applications. Finally, its TO-78 hermetically sealed package is available with military screening per MIL-S-19500. (See Section 1.)

For additional design information please see performance curves NNZ, which are located in Section 7.

SIMILAR PRODUCTS

- SO-8, See SST5912
- Two-Chip, See 2N5911 Series
- Low Noise, See U401 Series
- Low Leakage, See U421 Series
- Chips, Order M591XCHP

PART NUMBER	$V_{(B R) G S S}$ MIN (V)	g_{fs} MIN (mS)	I_{G} MAX (pA)	$\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{GS}_{2}}$ MAX (mV)
M5911	-25	5	-100	10
M5912	-25	5	-100	15

TO-78

BOTTOM VIEW

1 SOURCE 1
2 DRAIN 1
3 GATE 1
4 CASE
5 SOURCE 2
6 DRAIN 2
7 GATE 2

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Gate-Drain Voltage		$V_{G D}$	-25	V
Gate-Source Voltage		V_{GS}	-25	
Forward Gate Current		1 G	50	mA
Power Dissipation	Per Side	PD	367	mW
	Total		500	
Power Derating	Per Side		3	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Total		4	
Operating Junction Temperature		TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 200	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

P1086 SERIES

P-Channel JFETs

The P1086 Series of low-cost p-channel analog switches is designed to provide low on-resistance and fast switching. It also works well in conjunction with Siliconix' J111 Series for complementary switching applications. The P1086 Series features a TO-92 package which is available with various

PART NUMBER	V $_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{r}_{\text {ds (ON) }}$ MAX (Ω)	$\mathrm{I}_{\text {D(OFF) }}$ TYP (pA)	$\mathrm{t}_{\text {ON }}$ TYP $(n s)$
P1086	10	75	-10	25
P1087	5	150	-10	25

For further design information please consult the typical performance curves PSCIA which are located in Section 7.

BOTTOM VIEW

SIMILAR PRODUCTS

- TO-18, See 2N5114 Series
- SOT-23, See SST174 Series

1 SOURCE

- Chips, Order P108XCHP

2 DRAIN
3 GATE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	30	V
Gate-Source Voltage	$V_{G S}$	30	
Gate Current	I_{G}	-50	mA
Power Dissipation	PD	360	mW
Power Derating		3.27	mW/ ${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

PAD1 SERIES

Low-Leakage Pico-Amp Diodes

The PAD1 Series of extremely low-leakage diodes provides a superior alternative to conventional diode technology when reverse current (leakage) must be minimized. These devices feature leakage currents ranging from -1 pA (PAD1) to -100 pA (PAD100) to support a wide range of applications. The PAD1 Series is well suited for use in applications such as input protection for operational amplifiers. Its hermetically sealed metal can is available with full military processing per MIL-S-19500. (See Section 1.)

PART NO.	I_{R} (PA)
PAD1	-1
PAD2	-2
PAD5	-5
PAD10	-10
PAD20	-20
PAD50	-50
PAD100	-100

SIMILAR PRODUCTS

- TO-92, See JPAD5 Series
- SOT-23, See SSTPAD5 Series
- Duals, See DPAD1 Series
- Chips, Order PADXXCHP

TO-18 (MODIFIED)

1 CATHODE
2 ANODE
(PAD10, 20, 50 100)

BOTTOM VIEW

0)

TO-18

1 CATHODE
2 ANODE
3 CASE
(PAD1, 2, 5)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Forward Current	I_{F}	50	mA
Total Device Dissipation	P_{D}	300	mW
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$							
PARAMETER	SYMBOL	TEST CONDITIONS		LIMITS			UNIT
				TYP ${ }^{2}$	MIN	MAX	
STATIC							
Reverse Current	I_{R}	$V_{R}=-20 \mathrm{~V}$	PAD1	-0.3		-1	pA
			PAD2	-0.7		-2	
			PAD5	-1		-5	
			PAD10	-2		-10	
			PAD20	-2		-20	
			PAD50	-5		-50	
			PAD100	-5		-100	
Reverse Breakdown Voltage	BV_{R}	$I_{R}=-1 \mu \mathrm{~A}$	PAD1, 2, 5	-60	-45	-120	V
			$\begin{aligned} & \text { PAD10, } 20 \\ & \text { PAD50, } 100 \\ & \hline \end{aligned}$	-50	-35		
Forward Voltage Drop	V_{F}	$I_{F}=5 \mathrm{~mA}$		0.8		1.5	
DYNAMIC							
Reverse Capacitance	$\mathrm{C}_{\text {R }}$	$\begin{aligned} & V_{R}=-5 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	PAD1, 2, 5	0.5		0.8	pF
			$\begin{aligned} & \text { PAD10, } 20 \\ & \text { PAD50, } 100 \\ & \hline \end{aligned}$	1.5		2	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.

PN4091 SERIES

N-Channel JFET

The PN4091 Series is the plastic equivalent of our popular 2N4091 Series. These devices are especially well suited for analog switching applications but function efficiently as high-gain amplifiers, particularly at high-frequency. Our low-cost TO-92 packaging offers affordable performance with flexibility for designers, as these devices can be ordered with a variety of lead forms or tape and reel for automated insertion. (See Section 8.)

For additional design information please consult the typical performance curves NCB which are located in Section 7.

SIMILAR PRODUCTS

- SOT-23, See SST4091 Series
- TO-18, See 2N4091 Series
- Duals, See 2N5564 Series
- Chips, Order PN409XCHP

PART NUMBER	$V_{\text {GS }}($ OFF $)$ MAX (V)	$r_{\text {ds }(\text { ON })}$ MAX (Ω)	$I_{\text {D(OFF) }}$ MAX (pA)	$\mathbf{t}_{\text {ON }}$ MAX (ns)
PN4091	-10	30	200	25
PN4092	-7	50	200	35
PN4093	-5	80	200	60

TO-92
BOTTOM VIEW

1 DRAIN
2 SOURCE
3 GATE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-40	V
Gate-Source Voltage	$V_{G S}$	-40	
Gate Current	I_{G}	10	mA
Power Dissipation	P_{D}	360	mW
Power Derating		3.27	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

PN4091 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	PN4091		PN4092		PN4093		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Gate-Source Breakdown Voltage	$V_{\text {(BR) GSs }}$	$I_{G}=-1 \mu \mathrm{~A}, V_{D S}=0 \mathrm{~V}$			-55	-40		-40		-40		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=20 \mathrm{~V}, I_{D}=1 \mathrm{nA}$			-5	-10	-2	-7	-1	-5		
Saturation Drain Current ${ }^{3}$	I DSs	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			30		15		8		mA	
Gate Reverse Current	IGss	$\begin{gathered} V_{G S}=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{gathered}$		-5		200		200		200	pA	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-3		100		100		100	nA	
Gate Operating Current	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$		-5							pA	
Drain Cutoff Current	${ }^{\text {I D (OFF) }}$	$V_{D S}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{GS}}=-6 \mathrm{~V}$	5						200		
			$\mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}$	5				200				
			$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$	5		200						
		$\begin{aligned} & V_{D S}=20 \mathrm{~V} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	$V_{G S}=-6 \mathrm{~V}$	3						100	nA	
			$V_{G S}=-8 \mathrm{~V}$	3				100				
			$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$	3		100						
Drain-Source On-Voltage	$V_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~mA}$	0.15						0.2	V	
			$\mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$	0.15				0.2				
			$\mathrm{I}_{\mathrm{D}}=6.6 \mathrm{~mA}$	0.15		0.2						
Drain-Source On-Resistance	ros(on)	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$				30		50		80	Ω	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7							V	
DYNAMIC												
Common-Source Forward Transconductance	$\mathrm{g}_{\text {f }}$	$\begin{aligned} V_{D G}= & 20 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$		6							mS	
Common-Source Output Conductance	gos			25							$\mu \mathrm{S}$	
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$	$\begin{gathered} V_{G S}=0 \mathrm{~V}, I_{D}=0 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$				30		50		80	Ω	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		13		16		16		16	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=-20 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		3.5		5		5		5		
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		4							$n / \sqrt{\mathrm{HHz}}$	
SWITCHING												
Turn-on Time	$\mathrm{t}_{\mathrm{d} \text { (ON) }}$	$V_{D D}=3 \mathrm{~V}, \mathrm{~V}_{\text {GS(ON) }}=0 \mathrm{~V}$$\mathrm{P} / \mathrm{N} \quad \mathrm{I}_{\mathrm{D}(\mathrm{ON})} \mathrm{V}_{\text {GS(OFF) }} \quad \mathrm{R}$		2		15		15		20	ns	
	t_{r}			2		10		20		40		
Turn-off Time	toff	PN4091 6.6 mA -12 V 425Ω PN4092 4 mA -8 V 700Ω PN4093 2.5 mA -6 V 1120Ω		20		40		60		80		

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

PN4117 SERIES

N-Channel JFETs

The PN4117 and PN4117A Series are n-channel JFETs designed to provide ultra-high input impedance. The PN4117 Series features IGss of 10 pA maximum. The PN4117A is specified with a 1 pA limit and typically operates at 0.2 pA . These devices, therefore, make perfect choices for use as sensitive front-end amplifiers in applications such as microphones, smoke detectors, and precision test equipment. Additionally, its TO-92 plastic package provides a low-cost device compatible with today's automated assembly techniques. (See Section 8.)

For additional design information please consult performance curves NT which are located in Section 7.

SIMILAR PRODUCTS

- TO-72, See 2N4117 Series
- SOT-23, See SST4117 Series
- Dual, See U421 Series
- Chips, Order PN411XCHP

PART NUMBER	$V_{\text {GS(OFF) }}$ MAX (V)	$\mathrm{V}_{(B R) \text { GSS }}$ MIN (V)	\mathbf{g}_{fs} MIN $(\mu \mathrm{S})$	$\mathrm{I}_{\text {DSS }}$ MAX (mA)
PN4117	-1.8	-40	70	0.09
PN4118	-3	-40	80	0.24
PN4119	-6	-40	100	0.60
PN4117A	-1.8	-40	70	0.09
PN4118A	-3	-40	80	0.24
PN4119A	-6	-40	100	0.60

TO-92

BOTTOM VIEW

1 DRAIN
2 SOURCE
3 GATE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-40	V
Gate-Source Voltage	$V_{G S}$	-40	
Gate Current	I_{G}	10	mA
Power Dissipation	PD	360	mW
Power Derating		3.27	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 150	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	PN4117		PN4118		PN4119		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) Gss }}$	$\mathrm{I}_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-70	-40		-40		-40		
Gate-Source Cutoff Voltage	$V_{\text {GS(OFF) }}$	$V_{D S}=10 \mathrm{~V}, I_{D}=1 \mathrm{nA}$		-0.6	-1.8	-1	-3	-2	-6	\checkmark
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.03	0.09	0.08	0.24	0.2	0.6	mA
Gate Reverse Current	$I_{\text {GSS }}$	$\begin{array}{ll} V_{G S}=-10 \mathrm{~V} \\ V_{D S} & =0 \mathrm{~V} \quad T_{A}=100^{\circ} \mathrm{C} \end{array}$	-0.2		-10		-10		-10	pA
			-0.03		-25		-25		-25	nA
Gate Operating Current	I_{G}	$V_{D G}=15 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A}$	-0.2							pA
Drain Cutoff Current	ID(OFF)	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=-8 \mathrm{~V}$	0.2							
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7							V
DYNAMIC										
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		70	210	80	250	100	330	$\mu \mathrm{S}$
Common-Source Output Conductance	gos				3		5		10	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	1.3		3		3		3	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		0.4		1.5		1.5		1.5	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$	15							$n / \sqrt{\text { Hz }}$

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	PN4117A		PN4118A		PN4119A		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$V_{(B R) G S S}$	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-70	-40		-40		-40		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(OFF) }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-0.6	-1.8	-1	-3	-2	-6	\checkmark
Saturation Drain Current ${ }^{3}$	IDSs	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.03	0.09	0.08	0.24	0.2	0.6	mA
Gate Reverse Current	IGss	$\begin{array}{ll} V_{G S}=-10 \mathrm{~V} & \\ V_{D S}=0 \mathrm{~V} & T_{A}=100^{\circ} \mathrm{C} \end{array}$	-0.2		-1		-1		-1	pA
			-0.03		-2.5		-2.5		-2.5	nA
Gate Operating Current	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mu \mathrm{~A}$	-0.2							pA
Drain Cutoff Current	$I_{\text {d (OFF }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=-8 \mathrm{~V}$	0.2							
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS} \text { (F) }}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7							V
DYNAMIC										
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		70	210	80	250	100	330	$\mu \mathrm{S}$
Common-Source Output Conductance	gos				3		5		10	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	1.3		3		3		3	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		0.4		1.5		1.5		1.5	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	15							$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

N-Channel JFETs

The PN4302 Series of multi-purpose JFETs is designed for a wide range of low cost applications. It features low gate leakage and capacitance, which makes these devices ideal for high-frequency amplifiers. This series is packaged in TO-92 for low cost and compatibility with automated assembly.

For further design information please consult the typical performance curves NPA which are located in Section 7.

PART NUMBER	V $_{\text {GS(OFF) }}$ MAX (V)	$\mathrm{V}_{(\text {BR }) \text { GSS }}$ MIN (V)	$\mathrm{g}_{\text {fs }}$ MIN (mS)	I DSS $^{\text {MAX }}$ (mA)
PN4302	-4	-30	1	5
PN4303	-6	-30	2	10
PN4304	-10	-30	1	15

SIMILAR PRODUCTS

TO-92
BOTTOM VIEW

1 DRAIN
2 SOURCE
3 GATE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-30	V
Gate-Source Voltage	$V_{G S}$	-30	50
Gate Current	I_{G}	360	mA
Power Dissipation	PD_{D}	3.27	mW
Power Derating		-55 to 135	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	300	
Lead Temperature $(1 / 16 "$ from case for 10 seconds)	T_{L}		

Siliconix
incorparated
PN4302 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER		TEST CONDITIONS	TYP ${ }^{2}$	PN4302		PN4303		PN4304		UNIT
	SYMBOL			MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }}$ Gss	$I_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-57	-30		-30		-30		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$			-4		-6		-10	
Saturation Drain Current ${ }^{3}$	Ioss	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.5	5	4	10	0.5	15	mA
Gate Reverse Current	$I_{\text {gss }}$	$V_{G S}=-10 \mathrm{~V}$	-0.001		-1		-1		-1	nA
		$V_{D S}=0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-0.03		-100		-100		-100	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7							V
DYNAMIC										
Common-Source Forward Transconductance	g_{fs}	$\begin{aligned} V_{D S}= & 20 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		1		2		1		mS
Common-Source Output Conductance	gos				50		50		50	$\mu \mathrm{S}$
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$V_{D S}=\begin{gathered} 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$	4.5		6		6		6	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		1.3		3		3		3	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$	6							$\frac{\mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$
Nolse Figure	NF	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega \end{aligned}$	<0.1		2		2		3	dB

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

N-Channel JFET

The PN4391 Series is the plastic equivalent of our popular 2N4391 Series. These devices are especially well suited for analog switching applications but function efficiently as high-gain amplifiers, particularly at high-frequency. Our low-cost TO-92 packaging offers affordable performance with flexibility for designers, as these devices can be ordered with a variety of lead forms or tape and reel for automated insertion. (See Section 8.)

For additional design information please consult the typical performance curves NCB which are located in Section 7.

SIMILAR PRODUCTS

PART NUMBER	$\mathbf{V}_{\text {GS (OFF) }}$ MAX (V)	$\mathbf{r}_{\text {ds }(O N)}$ MAX (Ω)	$I_{\text {D(OFF }}$ MAX (nA)	$\mathbf{t}_{\text {ON }}$ MAX (ns)
PN4391	-10	30	1	20
PN4392	-5	60	1	20
PN4393	-3	100	1	20

SOT-23, See SST4391 Series

- TO-18, See 2N4391 Series
- Duals, See 2N5564 Series
- Chips, Order PN439XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-40	V
Gate-Source Voltage	$V_{G S}$	-40	
Gate Current	I_{G}	50	mA
Power Dissipation	P_{D}	360	mW
Power Derating		3.27	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

N-Channel JFET

The PN4416 is a n-channel JFET designed to provide high-performance amplification, especially at high-frequency. These parts feature low noise ($4 \mathrm{~dB} \max @ 400 \mathrm{MHz}$), high gain (10 dB min @ 400 MHz) and provide a wide bandwidth. Its low

PART NUMBER	$V_{\text {GS(OFF) }}$ MAX (V)	$V_{\text {(BR) GSS }}$ MIN (V)	$\mathrm{g}_{\text {fs }}$ MIN (mS)	$I_{\text {DSS }}$ MAX (mA)
PN4416	-6	-30	4.5	15

For additional design information please see performance curves NH , which are located in Section 7.
TO-92

1 SOURCE
2 DRAIN
3 GATE

BOTTOM VIEW

SIMILAR PRODUCTS

- TO-72, See 2N4416
- SOT-23, See SST4416
- Chips, Order PN4416CHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-30	
Gate-Source Voltage	$V_{G S}$	-30	V
Gate Current	I_{G}	10	mA
Power Dissipation	PD_{G}	360	mW
Power Derating		3.27	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ_{J}	-55 to 135	
Storage Temperature	Tstg°	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

N-Channel JFET

The SST108 Series is the surface mount equivalent of our J 108 device types. It features the lowest rDS(ON) of any SOT-23 JFET device, which makes it especially well suited for analog switching applications. Siliconix' surface mount commitment features low cost performance for a wide range of commercial applications as well as tape and reel options for automatic insertion and high-volume

PART NUMBER	$\mathrm{V}_{\text {GS }(O F F)}$ MAX (V)	$\mathrm{r}_{\text {ds }(O N)}$ MAX (Ω)	$I_{\mathrm{D}(\mathrm{OFF}}$ TYP (pA)	t_{ON} TYP (ns)
SST108	-10	8	20	4
SST109	-6	12	20	4
SST110	-4	18	20	4

assembly. (See Section 8.)

For further design information please consult the typical performance curves NIP which are located in Section 7.

SOT-23

> 1 GATE
> 2 DRAIN
> 3 SOURCE

SIMILAR PRODUCTS

- TO-92, See 1108 Series
- TO-52, See 2N5432 Series
- Chips, Order J1XXCHP

PRODUCT MARKING	
SST108	108
SST109	109
SST110	110

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-25	V
Gate-Source Voltage	$V_{G S}$	-25	
Gate Current	I_{G}	50	mA
Power Dissipation	P_{D}	350	mW
Power Derating		2.8	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

SST108 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$						LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS				TYP ${ }^{2}$	SST108		SST109		SST110		UNIT	
						MIN	MAX	MIN	MAX	MIN	MAX			
STATIC														
Gate-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) Gss }}$	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$					-32	-25		-25		-25		V
Gate-Source Cutoff Voltage	$\mathrm{VGS}_{\text {(}}$ OFF)	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$					-3	-10	-2	-6	-0.5	-4		
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$					80		40		10		mA	
Gate Reverse Current	IGss	$\begin{aligned} & V_{\mathrm{GS}}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$		$T_{A}=1$		$\begin{array}{\|c\|} \hline-0.01 \\ \hline-5 \\ \hline \end{array}$		-3		-3		-3	nA	
Gate Operating Current	I_{G}	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$				-0.01								
Drain Cutoff Current	$I_{\text {D (OFF) }}$	$V_{D S}=5 \mathrm{~V}, \mathrm{~V}_{G S}=-10 \mathrm{~V}$				0.02		3		3		3		
		$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{gathered}$				1.0								
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS }}(\mathrm{ON})$	$V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}} \leq 0.1 \mathrm{~V}$						8		12		18	Ω	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$				0.7							V	
DYNAMIC														
Common-Source Forward Transconductance	g_{fs}	$\begin{aligned} V_{D G}= & 5 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$				17							mS	
Common-Source Output Conductance	gos					600							$\mu \mathrm{S}$	
Drain-Source On-Resistance	$\mathrm{r}_{\text {ds (ON) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$						8		12		18	Ω	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$				60		85		85		85	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$				11		15		15		15		
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=5 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$				3.5							$n v / \sqrt{\mathrm{Hz}}$	
SWITCHING														
Turn-on Time	$t_{d}(\mathrm{ON})$	$V_{D D}=1.5 \mathrm{~V}$ V / V $\left.\mathrm{I}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}\right)$ $\mathrm{S} / \mathrm{V})$ $\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}$ R_{L} SST108 10 mA -12 V 150Ω SST109 10 mA -7 V 150Ω SST110 10 mA -5 V 150Ω				3							ns	
	t_{r}					1								
Turn-off Time	$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{OFF})}$					4								
	t_{f}					18								

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

N-Channel JFET

The SST111 Series is the surface mount equivalent of our J 111 device types. Its low cost and rDS(on) make it a good choice for an all-purpose analog switch, while its high $g_{f s}$ and good high-frequency response also make this product useful in a high-gain amplifier mode. Like all SOT-23 products available from Siliconix, tape and reel capabilities exist for automated assembly. (See Section 8.)

PART NUMBER	$V_{\text {GS(OFF) }}$ MAX (V)	$\mathbf{r}_{\text {ds(ON) }}$ MAX (Ω)	$I_{\text {D(OFF) }}$ TYP (pA)	$\mathbf{t}_{\text {ON }}$ TYP (ns)
SST111	-10	30	5	4
SST112	-5	50	5	4
SST113	-3	100	5	4

SOT-23

TOP VIEW

SIMILAR PRODUCTS

- TO-92, See J111 Series
- TO-18, See 2N4391 Series
- Duals, See 2N5564 Series
- Chips, Order J11XCHP

1 GATE
2 DRAIN
3 SOURCE

PRODUCT MARKING	
SST111	C11
SST112	C12
SST113	C13

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	-35	V
Gate-Source Voltage	V_{GS}	-35	ma
Gate Current	I_{G}	50	m
Power Dissipation	P_{D}	350	mW
Power Derating		2.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	SST111		SST112		SST113		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

DYNAMIC

Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D G}= & 20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$	6				mS
Common-Source Output Conductance	gos		25				$\mu \mathrm{S}$
Drain-Source On-Resistance	$\mathrm{r}_{\text {ds (ON) }}$	$\begin{gathered} V_{G S}=0 \mathrm{~V}, I_{D}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$		30	50	100	Ω
Common-Source Input Capacitance	$\mathrm{Ciss}^{\text {is }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=-10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	7	12	12	12	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		3	5	5	5	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$	4				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

SWITCHING

Turn-on Time	$\mathrm{t}_{\mathrm{d}}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}$				2								ns
	t_{r}					2								
Turn-off Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$	$\left\lvert\, \begin{aligned} & \text { SST111 } \\ & \text { SST112 } \\ & \text { SST113 } \end{aligned}\right.$	$\begin{array}{rrr} 12.5 \mathrm{~mA} & -12 \mathrm{~V} & 800 \Omega \\ 6.25 \mathrm{~mA} & -7 \mathrm{~V} & 1600 \Omega \\ 3.1 \mathrm{~mA} & -5 \mathrm{~V} & 3200 \Omega \end{array}$			6								
	t_{f}					15								

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

P-Channel JFET

The SST174 Series is a low-cost p-channel analog switch designed to provide low on-resistance and fast switching. It works well in conjunction with Siliconix' J111 Series for complimentary switching applications. It features a SOT-23 package and is available tape and reeled to support automated assembly. (See Section 8.)
For further design information please consult the typical performance curves PSCIA which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See 2 N5114 Series
- TO-92, See J174 Series
- Chips, Order J17XCHP

PART NUMBER	$V_{\text {GS(OFF) }}$ MAX (V)	$\mathrm{r}_{\text {ds (ON) }}$ MAX (Ω)	I GSS $^{\text {MAX }}$ (nA)	$\mathbf{t}_{\text {ON }}$ TYP $(n s)$
SST174	10	85	1	25
SST175	6	125	1	25
SST176	4	250	1	25
SST177	2.25	300	1	25

SOT-23

1 GATE
2 DRAIN
3 SOURCE

PRODUCT MARKING	
SST174	S74
SST175	S 75
SST176	S 76
SST177	S 77

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	30	V
Gate-Source Voltage	V_{GS}	30	ma
Gate Current	I_{G}	-50	m
Power Dissipation	PD_{D}	350	mW
Power Derating		2.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ_{J}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16$ " from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS					
PARAMETER	SYMBOL	TEST CONDITIONS			SST174		SST175		UNIT
				TYP ${ }^{2}$	MIN	MAX	MIN	MAX	
STATIC									
Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ Gss	$\mathrm{I}_{\mathrm{G}}=1 \mu$	0 V	45	30		30		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(OFF) }}$	$V_{D S}=-15$	10 nA		5	10	3	6	
Saturation Drain Current ${ }^{3}$	IDSs	$V_{D S}=-1$	0 V		-20	-135	-7	-70	mA
Gate Reverse Current	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	0.01 5		1		1	nA
Gate Operating Current	1_{G}	$V_{D G}=-15 \mathrm{~V}, I_{D}=-1 \mathrm{~mA}$		10					pA
Drain Cutoff Current	ID(OFF)	$V_{\text {DS }}=-15$	$=10 \mathrm{~V}$	-10					
		$\begin{array}{r} V_{D S}=-15 \\ T_{A} \end{array}$	$=10 \mathrm{~V}$	-5					nA
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	-0.1 V			85		125	Ω
Gate-Source Forward Voltage	$V_{G S(F)}$	$\mathrm{I}_{\mathrm{G}}=-1 \mathrm{~m}$	$=0 \mathrm{~V}$	-0.7					V

DYNAMIC

Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{D}=-1 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$				4.5			mS
Common-Source Output Conductance	gos					20			US
Drain-Source On-Resistance	$\mathrm{r}_{\text {ds }}(\mathrm{ON})$	$\begin{gathered} V_{G S}=0 \mathrm{~V}, I_{D}=0 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$					85	125	Ω
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$				20			
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$				5			pr
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$				20			$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$
SWITCHING									
Turn-on Time	$\mathrm{t}_{\mathrm{d} \text { (ON) }}$	$\begin{aligned} & \text { P/N } \\ & \text { SST174 } \\ & \text { SST175 } \end{aligned}$	$\mathrm{V}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}$		$\begin{gathered} R_{\mathrm{L}} \\ 560 \Omega \\ 1200 \Omega \end{gathered}$	10			ns
	t_{r}			V_{GS} (off)		15			
Turn-off Time	$\mathrm{t}_{\text {d (OFF) }}$		-10 V	12 V		10			
	t_{f}		-6 V	8 V		20			

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; $P W=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

SST201 SERIES

N-Channel JFETs

The SST201 Series is the SOT-23 equivalent of our popular J201 Series. It features low leakage, very low noise, and low cutoff voltage for use with low level power supplies. The SST201 and SST204 are excellent for battery operated equipment and low current amplifiers. The SST201 Series' SOT-23 package affords low cost and compatibility with automated assembly techniques. (See Section 8.)
For further design information please consult the typical performance curves NPA which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See 2N4338 Series
- TO-92, See J201 Series
- Chips, Order J20XCHP

PART NUMBER	V $_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{V}_{\text {(BR) GSS }}$ MIN (V)	$\mathrm{g}_{\text {fs }}$ MIN (mS)	$\mathrm{I}_{\text {DSS }}$ MAX (mA)
SST201	-1.5	-40	0.5	1
SST202	-4	-40	1	4.5
SST203	-10	-40	1.5	20
SST204	-2	-25	0.5	3

SOT-23

3
1 GATE
2 SOURCE
3 DRAIN

PRODUCT MARKING	
SST201	P01
SST202	P02
SST203	P03
SST204	P04

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-40	
Gate-Source Voltage	$V_{G S}$	-40	V
Gate Current	I_{G}	50	mA
Power Dissipation	P_{D}	350	mW
Power Derating		-55 to 150	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	300	C
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}		

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS					
PARAMETER	SYMBOL	TEST CONDITIONS			SST201		SST202		UNIT
				TYP ${ }^{2}$	MIN	MAX	MIN	MAX	
STATIC									
Gate-Source Breakdown Voltage	$\mathrm{V}_{(\mathrm{BR}) \mathrm{GSS}}$	$I_{G}=-1 \mu$	0 V	-57	-40		-40		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=20$	10 nA		-0.3	-1.5	-0.8	-4	v
Saturation Drain Current ${ }^{3}$	I DSs	$V_{D S}=20$	$=0 \mathrm{~V}$		0.2	1.0	0.9	4.5	mA
Gate Reverse Current	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$	$\Gamma_{A}=125^{\circ}$	-2 -1		-100		-100	pA
Gate Operating Current	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$		-2					pA
Drain Cutoff Current	${ }^{\text {D (OFF) }}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$		2					
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS} \text { (F) }}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7					V
DYNAMIC									
Common-Source Forward Transconductance	g_{fs}	$\begin{gathered} V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$			0.5		1		ms
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$V_{D S}=\begin{gathered} 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		4.5					pF
Common-Source Capacitance	$\mathrm{C}_{\text {rss }}$			1.3					
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		6					$n / \sqrt{\text { Hz }}$

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS					
PARAMETER	SYMBOL	TEST CONDITIONS			SST203		SST204		UNIT
				TYP ${ }^{2}$	MIN	MAX	MIN	MAX	
STATIC									
Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ gss	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$	$=0 \mathrm{~V}$	-57	-40		-25		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{GS} \text { (OFF) }}$	$V_{D S}=20$	10 nA		-2	-10	-0.3	-2	\checkmark
Saturation Drain Current ${ }^{3}$	Ioss	$V_{D S}=20$	= 0 V		4	20	0.2	3	mA
Gate Reverse Current	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$		-2		-100		-100	pA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-1					nA
Gate Operating Current	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$		-2					pA
Drain Cutoff Current	${ }^{\text {d }}$ (OFF)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$		2					
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {DS }}=0 \mathrm{~V}$		0.7					V
DYNAMIC									
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$			1.5		0.5		mS
Common-Source Input Capacitance	$\mathrm{C}_{\text {Iss }}$	$\begin{aligned} V_{D S}=20 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{aligned}$		4.5					pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			1.3					
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		6					$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

The SST270 Series is an all-purpose amplifier for designs requiring p-channel operation. These devices feature high gain, low noise and tight $V_{\text {GS (OFF) }}$ limits for simple circuit design. They are available in low-cost SOT-23 packages and are fully compatible with automatic insertion techniques. (See Section 8 for details.)

For further design information please consult the typical performance curves PSCIA which are located in Section 7.

SIMILAR PRODUCTS

PART NUMBER	V $_{\text {GS(OFF) }}$ MAX (V)	$\mathrm{V}_{(B R) \text { GSS }}$ MIN (V)	\mathbf{g}_{fs} MIN (mS)	I DSS $^{\text {MAX }}$ (mA)
SST270	2.0	30	6	-15
SST271	4.5	30	8	-50

SOT-23
TOP VIEW

[^3]- Chips, Order J27XCHP

PRODUCT MARKING	
SST270	S70
SST271	S71

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	30	V
Gate-Source Voltage	V_{GS}	30	V
Gate Current	I_{G}	-50	mA
Power Dissipation	P_{D}	350	mW
Power Derating		2.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS					
PARAMETER	SYMBOL	TEST CONDITIONS			SST270		SST271		UNIT
				TYP ${ }^{2}$	MIN	MAX	MIN	MAX	
STATIC									
Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ Gss	$I_{G}=1 \mu \mathrm{~A}$	$=0 \mathrm{~V}$	45	30		30		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (ofF) }}$	$V_{\text {DS }}=-1$	-1 nA		0.5	2.0	1.5	4.5	V
Saturatlon Drain Current ${ }^{3}$	Idss	$V_{D S}=-15$	$=0 \mathrm{~V}$		-2	-15	-6	-50	mA
Gate Reverse Current	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$		10		200		200	pA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	5					nA
Gate Operating Current	I_{G}	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$		10					pA
Drain Cutoff Current	$\mathrm{I}_{\mathrm{D} \text { (OFF) }}$	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		-10					
Gate-Source Forward Voltage	$\mathrm{VGS}_{\text {(F) }}$	$\mathrm{I}_{\mathrm{G}}=-1 \mathrm{~mA}$	$=0 \mathrm{~V}$	-0.7					V
DYNAMIC									
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$			6	15	8	18	mS
Common-Source Output Conductance	gos					200		500	$\mu \mathrm{S}$
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$		20					pF
$\begin{aligned} & \text { Common-Source } \\ & \text { Reverse Transfer } \\ & \text { Capacitance } \end{aligned}$	$\mathrm{C}_{\text {rss }}$			4					
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{array}{r} V_{D S}=-10 \\ f= \end{array}$	$s=0 \mathrm{~V}$	20					$n / / \sqrt{\mathrm{Hz}}$

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

SST308 SERIES

N-Channel JFETs

The SST308 Series is the surface mount equivalent of our popular J308 Series. It features high-gain ($>8000 \mu \mathrm{~S}$), low noise (typically $<6 \mathrm{nV} \sqrt{\mathrm{Hz}}$) and low gate leakage (typically $<2 \mathrm{pA}$). Of special interest, however, is performance at high frequency. Even at 450 MHz , the SST308 Series offers high power gain and low noise. Tape and reel options are available to support automated assembly. (See Section 8.)

For additional design information and a closer look at high-frequency characteristics, please consult performance curves NZB which are located in Section 7.

PART NUMBER	$V_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{V}_{\text {(BR) GSS }}$ MIN (V)	$\mathrm{g}_{\text {fs }}$ MIN (mS)	I DSs $^{\text {MAX }}$ (mA)
SST308	-6.5	-25	8	60
SST309	-4	-25	10	30
SST310	-6.5	-25	8	60

SOT-23
TOP VIEW

1 GATE
2 DRAIN
3 SOURCE

PRODUCT MARKING	
SST308	Z08
SST309	Z09
SST310	Z10

SIMILAR PRODUCTS

- TO-92, See J308 Series
- TO-52, See U308 Series
- Dual, See U430 Series
- Chips, Order J30XCHP

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	SST308		SST309		SST310		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Gate-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }}$ Gss	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-35	-25		-25		-25		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{GS} \text { (OFF) }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$			-1	-6.5	-1	-4	-2	-6.5		
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			12	60	12	30	24	60	mA	
Gate Reverse Current	IGss	$\begin{gathered} V_{G S}=-15 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$		-0.002		-1		-1		-1	nA	
			$T_{A}=125^{\circ} \mathrm{C}$	-0.008		-1		-1		-1	$\mu \mathrm{A}$	
Gate Operating Current	I_{G}	$V_{D G}=9 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$		-15							pA	
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS }}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		35							Ω	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7							V	
DYNAMIC												
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$		14	8		10		8		mS	
Common-Source Output Conductance	gos			110		250		250		250	HS	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{G S}=-10 \mathrm{~V}, V_{D S}=10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		4		5		5		5	pF	
Common-Source Capacitance	$\mathrm{C}_{\text {rss }}$			1.9		2.5		2.5		2.5		
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, \\ & f=1 \end{aligned}$	$=10 \mathrm{~mA}$	6							$\frac{\mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$	
HIGH FREQUENCY												
Common-Gate Foward Transconductance	g_{fg}	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$	$\mathrm{f}=105 \mathrm{MHz}$	15							mS	
			$\mathrm{f}=450 \mathrm{MHz}$	13								
Common-Gate Output Conductance	g_{og}		$f=105 \mathrm{MHz}$	0.16								
			$\mathrm{f}=450 \mathrm{MHz}$	0.55								
Common-Gate Power Gain ${ }^{4}$	G_{pg}		$\mathrm{f}=105 \mathrm{MHz}$	16							dB	
			$\mathrm{f}=450 \mathrm{MHz}$	11.5								
Noise Figure	NF		$f=105 \mathrm{MHz}$	1.5								
			$\mathrm{f}=450 \mathrm{MHz}$	2.7								

NOTES:

1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. Gain $\left(\mathrm{G}_{\mathrm{pg}}\right)$ measured at optimum input noise match.

N-Channel JFET Pairs

The SST404 Series is the surface mount equivalent of our U401 Series. It is available in a SO-8 package with three ranges of offset and drift specifications. It features extremely low noise and gate leakage and is intended for use in a wide range of precision instrumentation. For ease of manufacturing, the symmetrical pinout prevents improper orientation. Finally, tape and reel options are available to make this product compatible with automatic assembly methods. (See Section 8.)
For additional design information please see performance curves NNR, which are located in Section 7.

SIMILAR PRODUCTS

- TO-71, See U401 Series
- Chips, Order U40XCHP

PART NUMBER	$\mathbf{V}_{(B R) G S S}$ MIN (V)	g_{fs} MIN (mS)	\mathbf{I}_{G} MAX $^{(\mathrm{pA})}$	$\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{GS}_{2}}$ MAX (mV)
SST404	-50	2	-15	15
SST405	-50	2	-15	20
SST406	-50	2	-15	40

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Gate-Drain Voltage		$V_{G D}$	-50	V
Gate-Source Voltage		$V_{G S}$	-50	
Forward Gate Current		I_{G}	10	mA
Power Dissipation	Per Side	PD	300	mW
	Total		500	
Power Derating	Per Side		2.4	mW/ ${ }^{\circ} \mathrm{C}$
	Total		4	
Operating Junction Temperature		TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to 200	
Lead Temperature ($1 / 16$ " from case for 10 seconds)		T_{L}	300	

Siliconix
incorporated

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	SST404		SST405		SST406		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ Gss	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$,	Ss $=0 \mathrm{~V}$		-58	-50		-50		-50		
Gate-Gate Breakdown Voltage	$V_{\text {(BR) } \mathrm{G}^{\prime}-\mathrm{G} 2}$	$\begin{gathered} \mathrm{I}_{\mathrm{G}}= \pm 1 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{GS}} \end{gathered}$	$\mathrm{oss}=0 \mathrm{~V}$	-58	± 50		± 50		± 50		\checkmark	
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (off) }}$	$V_{D S}=15 \mathrm{~V}$	= 1 nA	-1.5	-0.5	-2.5	-0.5	-2.5	-0.5	-2.5		
Saturation Drain ${ }^{3}$ Current	$\mathrm{I}_{\text {DSs }}$	$V_{D S}=15 \mathrm{~V}$,	Gs $=0 \mathrm{~V}$	3.5	0.5	10	0.5	10	0.5	10	mA	
Gate Reverse Current	IGss	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{gathered}$		-2		-25		-25		-25	pA	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-1							nA	
Gate Operating Current	I_{G}	$\begin{aligned} & V_{D G}=15 \mathrm{~V} \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$		-2		-15		-15		-15	pA	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.8		-10		-10		-10	nA	
Drain-Source On-Resistance	ros(on)	$V_{G S}=0 \mathrm{~V}, I_{D}=0.1 \mathrm{~mA}$		250							Ω	
Gate-Source Voltage	V_{GS}	$V_{D G}=15 \mathrm{~V}$,	= 200 J A	-1		-2.3		-2.3		-2.3		
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}^{(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}$,	Ds $=0 \mathrm{~V}$	0.7								
DYNAMIC												
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D G}=15 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ f=1 \mathrm{kHz} \end{gathered}$		1.5	1	2	1	2	1	2	mS	
Common-Source Output Conductance	gos			1.3		2		2		2	$\mu \mathrm{S}$	
Common-Source Forward Transconductance	$\mathrm{g}_{\text {f }}$	$V_{D S}=\underset{f=1}{10 \mathrm{VHz}, V_{G S}}=0 \mathrm{~V}$		1.5	2	7	2	7	2	7	mS	
Common-Source Output Conductance	gos			10		20		20		20	$\mu \mathrm{S}$	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D G}= 15 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ & f=1 \mathrm{MHz} \end{aligned}$				8		8		8	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{Crss}^{\text {r }}$			1.5		3		3		3		
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{array}{r} V_{D G}=15 \mathrm{~V} \\ f=1 \end{array}$	$\begin{aligned} & =200 \mu \mathrm{~A} \\ & \mathrm{~Hz} \end{aligned}$	10		20		20		20	$n \mathrm{n} / \sqrt{\mathrm{Hz}}$	

MATCHING

Differential Gate-Source Voltage	$\left\|\mathrm{V}_{\mathrm{GS} 1} \mathrm{~V}_{\mathrm{GS} 2}\right\|$	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$				15		20	40	mV
Gate-Source Voltage Differential Change with Temperature	$\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$	$\left\|\begin{array}{l} V_{D G}=10 \mathrm{~V} \\ I_{D}=200 \mu \mathrm{~A} \end{array}\right\|$	$\mathrm{T}=-55$ to $25^{\circ} \mathrm{C}$			25		40	80	$\mu \mathrm{V} / \circ^{\circ} \mathrm{C}$
	ΔT		$\mathrm{T}=25$ to $125^{\circ} \mathrm{C}$			25		40	80	
Common Mode Rejection Ratio	CMRR	$V_{D G}=10$ to $20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$		102	95		90			dB

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

N-Channel JFET Pairs

The SST440 Series are monolithic pairs of JFETs mounted in a single SO-8 package. The SST440 Series features high speed amplification (slew rate), high gain (typically $>6 \mathrm{mS}$), and low gate leakage (typically $<1 \mathrm{pA}$). This performance makes these devices perfect for use as wideband differential amplifiers in demanding test and measurement applications. Finally, its SO-8 package is available in tape and reel to support automated assembly. (See Section 8.)

For additional design information please see performance curves NNZ, which are located in Section 7.

SIMILAR PRODUCTS

PART NUMBER	$V_{(B R) G S S}$ MIN (V)	g_{fs} MIN (mS)	I_{G} MAX (pA)	$\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{GS}_{2}}$ MAX (mV)
SST440	-25	4.5	-500	10
SST441	-25	4.5	-500	20

- TO-71, See U440 Series
- TO-78, See U443 Series
- Low Noise, See SST404 Series
- Chips, Order U44XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Gate-Drain Voltage		V_{GD}	-25	V
Gate-Source Voltage		$V_{G S}$	-25	
Forward Gate Current		1_{G}	50	mA
Power Dissipation	Per Side	P_{D}	300	mW
	Total		500	
Power Derating	Per Side		2.4	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Total		4	
Operating Junction Temperature		TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	SST440		SST441		UNIT	
				MIN	MAX	MIN	MAX			
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ ass	$\mathrm{I}_{\mathrm{G}}=-$	$V_{\text {DS }}=0 \mathrm{~V}$		-35	-25		-25		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (oFF) }}$	$\mathrm{V}_{\mathrm{DS}}=$	$D=1 \mathrm{nA}$	-3.5	-1	-6	-1	-6		
Saturation Drain Current ${ }^{3}$	I DSs	$V_{\text {DS }}=$	$V_{G S}=0 \mathrm{~V}$	15	6	30	6	30	mA	
Gate Reverse Current	IGss	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}$		-1		-500		-500	pA	
		$V_{D S}=$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.2					nA	
Gate Operating Current	I_{G}	$V_{D G}=10 \mathrm{~V}$		-1		-500		-500	pA	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.2					nA	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7					V	
DYNAMIC										
Common-Source Forward Transconductance	$\mathrm{g}_{\text {ts }}$	$\begin{aligned} V_{D G}= & 10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$		6	4.5	9	4.5	9	mS	
Common-Source Output Conductance	$\mathrm{g}_{\text {os }}$			20		200		200	Ms	
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D G} & =10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ f & =100 \mathrm{MHz} \end{aligned}$		5.5					mS	
Common-Source Output Conductance	gos			30					山	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} V_{D G}= & 10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ & f=1 \mathrm{MHz} \end{aligned}$		3.5					pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			1						
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D G}= 10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ & f=10 \mathrm{kHz} \end{aligned}$		4					$\overline{n V / \sqrt{H z}}$	
MATCHING										
Differential Gate-Source Voltage	$\left\|\mathrm{V}_{\mathrm{GS1}}{ }^{-} \mathrm{V}_{\mathrm{GS} 2}\right\|$	$V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$		7		10		20	mV	
Gate-Source Voltage Differential Change with Temperature	$\Delta \mathrm{V}_{\mathrm{GS1}}-\mathrm{V}_{\mathrm{GS2} 2} \mid$	$\begin{aligned} & V_{D G}=10 \mathrm{~V} \\ & I_{D}=5 \mathrm{~mA} \end{aligned}$	-55 to $25^{\circ} \mathrm{C}$	10					$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
	ΔT		25 to $125^{\circ} \mathrm{C}$	10						
Saturation Drain Current Ratio	$\frac{I_{\text {DSS1 }}}{I_{D S S 2}}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.98						
Transconductance Ratio	$\overline{g_{\mathrm{fs} 1}}$	$\begin{aligned} & V_{D G}= 10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$		0.98						
Common Mode Rejection Ratio	CMRR	$V_{D D}=5$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		90					dB	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

N-Channel JFET

The SST4091 Series is the surface mount equivalent of our popular 2N4091 device types. Its low cost and rDS(on) make it a good choice for an all-purpose analog switch, while its high $g_{f s}$ and good high-frequency response also make this product useful in a high-gain amplifier mode. Like all SOT-23 products available from Siliconix, tape and reel capabilities exist for automated assembly. (See Section 8.)

PART NUMBER	V $_{\text {GS (OFF) }}$ MAX (V)	$\mathbf{r}_{\text {ds(ON) }}$ MAX (Ω)	$I_{\text {D(OFF) }}$ TYP (pA)	$\mathbf{t}_{\text {ON }}$ TYP (ns)
SST4091	-10	30	5	4
SST4092	-7	50	5	4
SST4093	-5	80	5	4

For further design information please consult the typical performance curves NCB which are located in Section 7.

SOT-23

1 GATE
2 DRAIN
3 SOURCE

SIMILAR PRODUCTS

- TO-18, See 2N4091 Series
- TO-92, See PN4091 Series
- Duals, See 2N5564 Series
- Chips, Order 2N409XCHP

PRODUCT MARKING	
SST4091	C41
SST4092	C42
SST4093	C43

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-35	V
Gate-Source Voltage	$\mathrm{V}_{\text {GS }}$	-35	
Gate Current	I_{G}	10	mA
Power Dissipation	PD	350	mW
Power Derating		2.8	mW/ ${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

N-Channel JFET

The SST4391 Series is the surface mount equivalent of our popular 2N4391 device types. Its low cost and rDS(on) make it a good choice for an all-purpose analog switch, while its high g fs and good high-frequency response also make this product useful in a high-gain amplifier mode. Like all SOT-23 products available from Siliconix, tape and reel capabilities exist for automated assembly. (See Section 8.)

For further design information please consult the typical performance curves NCB which are located in Section 7.

PART NUMBER	$\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}$ MAX (V)	$\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$ MAX (Ω)	$\mathrm{I}_{\text {D(OFF) }}$ TYP (pA)	$\mathbf{t}_{\text {ON }}$ TYP (ns)
SST4391	-10	30	5	4
SST4392	-5	60	5	4
SST4393	-3	100	5	4

SOT-23

1 GATE
2 DRAIN
3 SOURCE

TOP VIEW
1 (1)

SIMILAR PRODUCTS

- TO-18, See 2N4391 Series
- TO-92, See PN4391 Series
- Duals, See 2N5564 Series
- Chips, Order 2N439XCHP

PRODUCT MARKING	
SST4391	C91
SST4392	C92
SST4393	C93

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-35	V
Gate-Source Voltage	$V_{G S}$	-35	
Gate Current	I_{G}	50	mA
Power Dissipation	PD	350	mW
Power Derating		2.8	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

Siliconix
incorporated

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

N-Channel JFET

The SST4416 is the SOT-23 equivalent of our popular PN4416 Series, designed to provide high-performance amplification, especially at high-frequency. These parts feature low noise, high gain, and provide a wide bandwidth. To

PART NUMBER	$V_{\text {GS (OFF) }}$ MAX (V)	$V_{(B R) \text { GSS }}$ MIN (V)	$\mathbf{g}_{\text {fs }}$ MIN (mS)	IDSS MAX (mA)
SST4416	-6	-30	4.5	15

For additional design information please see performance curves NH , which are located in Section 7.

SIMILAR PRODUCTS

- TO-72, See 2N4416
- TO-92, See PN4416
- Chips, Order PN4416CHP

SOT-23
TOP VIEW

[^4]

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-30	V
Gate-Source Voltage	V_{GS}	-30	10
Gate Current	I_{G}	350	mA
Power Dissipation	P_{D}	3.18	mW
Power Derating		-55 to 135	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ_{J}	-65 to 150	
Storage Temperature	$\mathrm{T}_{\text {Stg }}$	300	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}		

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	SST4416		UNIT
				MIN	MAX	
STATIC						
Gate-Source Breakdown Voltage	$V_{(B R) G S S}$	$I_{G}=-1 \mu \mathrm{~A}, V_{D S}=0 \mathrm{~V}$	-36	-30		
Gate-Source Cutoff Voltage	$V_{\text {GS (OFF) }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-3		-6	
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	10	5	15	mA
Gate Reverse Current	IGss	$V_{G S}=-15 \mathrm{~V}$ $V_{D S}=0 V \quad T_{A}=125^{\circ} \mathrm{C}$	$\begin{array}{\|c\|} \hline-0.002 \\ \hline-0.6 \\ \hline \end{array}$		-1	nA
Gate Operating Current	I_{G}	$V_{D G}=10 \mathrm{~V}, I_{D}=1 \mathrm{~mA}$	-20			
Drain Cutoff Current	ID (OFF)	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-6 \mathrm{~V}$	2			
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	150			Ω
Gate-Source Forward Voltage	$\mathrm{V}_{\text {GS (f) }}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {DS }}=0 \mathrm{~V}$	0.7			V
DYNAMIC						
Common-Source Forward Transconductance ${ }^{3}$	$\mathrm{g}_{\text {fs }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	6	4.5	7.5	mS
Common-Source Output Conductance ${ }^{3}$	gos	$\mathrm{f}=1 \mathrm{kHz}$	15		50	$\mu \mathrm{S}$
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$		2.2		4	
Common-Source Reverse Transfer Capacitance	$\mathrm{Crss}^{\text {r }}$	$\begin{aligned} & V_{D S}= 15 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	0.7		0.8	pF
Common-Source Output Capacitance	Coss		1		2	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=100 \mathrm{~Hz} \end{gathered}$	9			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

N -Channel JFET

The SST4859 Series is the surface mount equivalent of our 2N4859 device types. Its low cost and ros(on) make it a good choice for an all-purpose analog switch, while its high $g_{f s}$ and good frequency response also make this product useful in a high-gain amplifier mode. Like all SOT-23 products available from Siliconix, tape and

PART NUMBER	$V_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$ MAX (Ω)	$\mathrm{I}_{\text {D(OFF) }}$ TYP (pA)	t_{ON} TYP (ns)
SST4859	-10	25	5	2
SST4860	-6	40	5	3
SST4861	-4	60	5	4

For further design information please consult the typical performance curves NCB which are located in Section 7.

SOT-23

TOP VIEW

> 1 GATE
> 2 DRAIN 3 SOURCE

SIMILAR PRODUCTS

- TO-18, See 2N4859 Series
- TO-92, See PN4091 Series
- Duals, See 2N5564 Series
- Chips, Order 2N485XCHP Series

PRODUCT MARKING	
SST4859	C59
SST4860	C60
SST4861	C61

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	-30	V
Gate-Source Voltage	V_{GS}	-30	F
Gate Current	I_{G}	50	mA
Power Dissipation	P_{D}	350	mW
Power Derating		2.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ_{J}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\text {Stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds)	T_{L}	300	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~S}$, duty cycle $\leq 3 \%$.

The SST5114 Series is a p-channel JFET analog switch designed to complement our n-channel SST4391 Series. They feature low on-resistance and good off-isolation as well as the fast switching associated with JFETs. They are housed in SOT-23 packages and are available tape and reeled to support automated assembly. (See Section 8.)

For additional design information please see performance curves PSCIA, which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See 2N5114 Series
- TO-92, See J174 Series
- Chips, Order 2N511XCHP

PART NUMBER	V $_{\text {GS }(O F F)}$ MAX (V)	$\mathbf{r}_{\text {ds }(O N)}$ MAX (Ω)	$\mathrm{I}_{\text {D(OFF) }}$ MAX (PA)	\mathbf{t} ON MAX (ns)
SST5114	10	75	-500	16
SST5115	6	100	-500	30
SST5116	4	150	-500	60

SOT-23

> 1 GATE
> 2 DRAIN 3 SOURCE

PRODUCT MARKING	
SST5114	S14
SST5115	S15
SST5116	S16

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	30	V
Gate-Source Voltage	V_{GS}	30	50
Gate Current	I_{G}	ma	
Power Dissipation	P_{D}	350	mW
Power Derating		2.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ_{J}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\mathrm{Stg}}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds)	T_{L}	300	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

The SST5912 is a monolithic pair of JFETs mounted in a single SO-8 package. The SST5912 features high speed amplification (slew rate), high gain (typically $>6 \mathrm{mS}$), and low gate leakage (typically $<1 \mathrm{pA}$). This performance makes these devices

PART NUMBER	$V_{(B R) G S S}$ MIN (V)	$g_{f s}$ MIN (mS)	I_{G} MAX (pA)	$\mathrm{V}_{G S_{1}}-\mathrm{V}_{\mathrm{GS}}{ }_{2}$ MAX (mV)
SST5912	-25	5	-100	15

For additional design information please see performance curves NNZ, which are located in Section 7.

TOP VIEW

SIMILAR PRODUCTS

- TO-78, See M5911 Series
- Low Noise, See SST404 Series
- Chips, Order M5912CHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS	
Gate-Drain Voltage	$V_{G D}$	-25		
Gate-Source Voltage	$V_{G S}$	-25	V	
Forward Gate Current	I_{G}	50	mA	
Power Dissipation	Per Side	P_{D}		
Total		300	mW	
Power Derating	Per Side		500	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature		Total		4

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS				
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	SST5912		UNIT	
				MIN	MAX			
STATIC								
Gate-Source Breakdown Voltage	$V_{\text {(BR) GSS }}$	$I_{G}=-1 \mu \mathrm{~A}, V_{D S}=0 \mathrm{~V}$			-35	-25		V
Gate-Source Cutoff Voltage	V_{GS} (OFF)	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-3.5	-1	-5		
Saturation Drain Current ${ }^{3}$	I DSs	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		15	7	40	mA	
Gate Reverse Current	IGSs	$V_{G S}=-15 \mathrm{~V}$		-1		-100	PA	
		$V_{D S}=$	$\mathrm{T}_{\text {A }}=125^{\circ} \mathrm{C}$	-0.2			nA	
Gate Operating Current	I_{G}	$\begin{aligned} & V_{D G}=10 \mathrm{~V} \\ & I_{D}=5 \mathrm{~mA} \end{aligned}$		-1		-100	pA	
		$I_{D}=5$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.2			nA	
Gate-Source Voltage	$V_{G S}$	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		-1.5	-0.3	-4	V	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7				
DYNAMIC								
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} V_{D G}= & 10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$		6	5	10	mS	
Common-Source Output Conductance	gos			20		100	$\mu \mathrm{S}$	
Common-Source Forward Transconductance	$\mathrm{g}_{\text {f }}$	$\begin{aligned} V_{D G} & =10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ f & =100 \mathrm{MHz} \end{aligned}$		6	5	10	mS	
Common-Source Output Conductance	gos			30		150	य	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} V_{D G}= & 10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ & f=1 \mathrm{MHz} \end{aligned}$		3.5		5	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			1		1.2		
Equivalent Input Noise Voltage	\bar{e}_{n}	$V_{D G}=$	$\begin{aligned} & I_{\mathrm{D}}=5 \mathrm{~mA} \\ & \mathrm{kHz} \end{aligned}$	4		20	$\frac{\mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$	
Noise Figure	NF	$\begin{aligned} & V_{D G}= \\ & f=10 \mathrm{k} \end{aligned}$	$\begin{aligned} & I_{D}=5 \mathrm{~mA} \\ & G=100 \mathrm{k} \Omega \end{aligned}$	0.1		1	dB	
MATCHING								
Differential Gate-Source Voltage	$\left\|\mathrm{V}_{\mathrm{GS1}}-\mathrm{V}_{\mathrm{GS2}}\right\|$	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		7		15	mV	
Gate-Source Voltage Differential Change with Temperature	$\Delta\left\|V_{\mathrm{GS1}}-\mathrm{V}_{\mathrm{GS2}}\right\|$	$V_{\text {DG }}=10 \mathrm{~V}$	$\mathrm{T}=-55$ to $25^{\circ} \mathrm{C}$	10		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
	ΔT	$\mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$	$\mathrm{T}=25$ to $125^{\circ} \mathrm{C}$	10		40		
Saturation Drain Current Ratio	$\frac{I_{\mathrm{DSS} 1}}{\mathrm{I}_{\mathrm{DSs} 2}}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.98	0.95	1		
Transconductance Ratio	$\frac{g_{\mathrm{fs} 1}}{g_{\mathrm{fs} 2}}$	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$		0.98	0.95	1		
Differential Gate Current	$\left\|\left.\right\|_{\mathrm{G} 1}{ }^{-1} \mathrm{G} 2\right\|$	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ T_{A}=125^{\circ} \mathrm{C} \end{gathered}$		0.01		20	nA	
Common Mode Rejection Ratio	CMRR	$V_{D D}=5$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		90			dB	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

SST6908 SERIES

N-Channel JFET Circuits

The SST6908 Series is much more than a JFET. The addition of back-to-back diodes effectively clamps input "over-voltage" while a highperformance JFET provides an effective amplification stage. With the addition of a source resistor, a complete common-source amplifier is created which provides both low leakage and very low noise. This performance is especially effective as a small signal pre-amplifier as well as impedance matching between low and high impedance sources. Finally, its SOT-143 package provides a cost effective design solution and is available tape and reeled to support automated assembly. (See Section 8.)

For additional design information please see performance curves NBB, which are located in Section 7.

SIMILAR PRODUCTS

- TO-72, See 2N6908 Series
- Chips, Order 2N69XXCHP

PART NUMBER	V $_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{V}_{\text {(BR) GSS }}$ MIN (V)	g_{fs} MIN $(\mu \mathrm{S})$	I DSS $^{\text {MAX }}$ (mA)
SST6908	-1.8	-30	100	2
SST6909	-2.3	-30	400	3.5
SST6910	-3.5	-30	1200	5

SOT-143

1 GATE
2 DRAIN
3 SOURCE
4 DIODES (4TH)

PRODUCT MARKING	
SST6908	B08
SST6909	B09
SST6910	B10

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-30	V
Gate-Source Voltage	$V_{G S}$	-30	
Forward Gate Current	I_{G}	10	mA
Power Dissipation	$P_{\text {D }}$	350	mW
Power Derating		2.8	mW/ ${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	SST6908		SST6909		SST6910		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$\begin{gathered} \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, V_{\mathrm{DS}}=0 \mathrm{~V} \\ V_{G 4}=0 V \end{gathered}$	-50	-30		-30		-30		
Gate-Source Cutoff Voltage	$V_{\text {GS(OFF) }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA} \\ V_{G 4}=0 \mathrm{~V} \end{gathered}$		-0.3	-1.8	-0.6	-2.3	-0.9	-3.5	V
Saturation Drain Current ${ }^{3}$	Idss	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{G} 4}=0 \mathrm{~V} \end{gathered}$		0.05	2	0.2	3.5	0.6	5	mA
Gate Reverse Current	I gss	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{G} 4}=0 \mathrm{~V} \end{gathered}$	-2		-25		-25		-25	pA
			-1							nA
Gate Operating Current	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~m}$	-2							pA
Forward Gate Diode Current 4	$\mathrm{I}_{\mathrm{G} 4}$	$V_{\mathrm{G} 4}= \pm 100 \mathrm{mV}$	± 1		± 10		± 10		± 10	
Gate-Source Forward Voltage	$\mathrm{VGS}_{\text {(F) }}$	$\begin{gathered} \mathrm{I}_{\mathrm{G}}= \pm 0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{G} 4}=0 \mathrm{~V} \end{gathered}$	± 0.7		± 1.2		± 1.2		± 1.2	V
DYNAMIC										
Common-Source Forward Transconductance	$\mathrm{g}_{\text {f }}$	$\begin{gathered} V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{G} 4}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		0.1	3	0.4	3.5	1.2	4	mS
Common-Source Output Conductance	gos				50		75		100	$\mu \mathrm{S}$
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ V_{G 4}=0 \mathrm{~V}, f=1 \mathrm{MHz} \end{gathered}$	3.2		5		5		5	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		1.5		2		2		2	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=10 \mathrm{~Hz} \end{gathered}$	12		25		25		25	$n / \sqrt{\mathrm{Hz}}$
Noise Figure	NF	$\begin{gathered} V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\ \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega \end{gathered}$	0.1		1		1		1	dB

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. Forward diode current when a voltage is applied between gate and fourth lead.

The SSTDPAD5 Series of extremely low-leakage diodes provides a superior alternative to conventional diode technology when reverse current (leakage) must be minimized. These devices feature leakage currents ranging from -5 pA (SSTDPAD5) to -100 pA (SSTDPAD100) to support a wide range of applications. With two diodes per package, the SSTDPAD5 Series is well suited for use in applications such as input protection for operational amplifiers. Its SO-8 package allows designers to maximize circuit performance while maintaining the objectives of low cost and compact packaging. Tape and reel is available for use with automated assembly techniques. (See Section 8.)

SIMILAR PRODUCTS

- TO-71/TO-78, See DPAD1 Series
- TO-92, See JPAD5 Series
- SOT-23, See SSTPAD5 Series
- TO-18, See PAD1 Series
- Chips, Order DPADXXCHP

PART NO.	$\mathbf{I}_{\mathbf{R}}$ (pA)
SSTDPAD5	-5
SSTDPAD10	-10
SSTDPAD20	-20
SSTDPAD50	-50
SSTDPAD100	-100

1 CATHODE 1
2 CATHODE 1
3 ANODE 1
4 N/C
5 CATHODE 2
6 CATHODE 2
7 ANODE 2
8 N/C

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Forward Current	I_{F}	50	mA
Total Device Dissipation	P_{D}	400	mW
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	

ELECTRICAL CHARACTERISTICS

			LIMITS				
	PARAMETER	SYMBOL	TEST CONDITIONS	TYP 2	MIN	MAX	UNIT

STATIC

Reverse Current	I_{R}	$V_{R}=-20 \mathrm{~V}$	SSTDPAD5	-2		-5	pA
			SSTDPAD10	-2		-10	
			SSTDPAD20	-5		-20	
			SSTDPAD50	-10		-50	
			SSTDPAD100	-10		-100	
Reverse Breakdown Voltage	BV_{R}	$I_{R}=-1 \mu \mathrm{~A}$		-50	-30		V
Forward Voltage Drop	V_{F}	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$		0.8		1.5	
DYNAMIC							
Reverse Capacitance	C_{R}	$V_{R}=-5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		2		4	pF
Differential Capacitance	$\left\|C_{R 1}-c_{R 2}\right\|$	$V_{\mathrm{R} 1}=\mathrm{V}_{\mathrm{R} 2}=-5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		0.1		0.5	

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.

Low-Leakage Pico-Amp Diodes

The SSTPAD5 Series of low-leakage diodes provides a superior alternative to conventional diode technology when reverse current (leakage) must be minimized. These devices feature leakage currents ranging from -5 pA (SSTPAD5) to -500 pA (SSTPAD500) to support varying system requirements. Its SOT-23 package allows designers to maximize circuit performance while maintaining the objectives of low cost and compact packaging. Tape and reel is available for use with automated assembly techniques. (See Section 8.)

PART NO.	$\mathbf{I}_{\mathbf{R}}$ (pA)
SSTPAD5	-5
SSTPAD10	-10
SSTPAD20	-20
SSTPAD50	-50
SSTPAD100	-100
SSTPAD200	-200
SSTPAD500	-500

SIMILAR PRODUCTS

- TO-92, See JPAD5 Series
- TO-18, See PAD1 Series
- Duals, See SSTDPAD5 Series
- Chips, Order PADXXCHP

PRODUCT MARKING	
SSTPAD5	005
SSTPAD10	010
SSTPAD20	020
SSTPAD50	050
SSTPAD100	100
SSTPAD200	200
SSTPAD500	500

SOT-23

1 ANODE
2 CATHODE
3 CATHODE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Forward Current	I_{F}	10	mA
Total Device Dissipation	P_{D}	350	mW
Storage Temperature	$T_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$

PARAMETER	SYMBOL	TEST CONDITIONS	LIMITS			UNIT
			TYP ${ }^{2}$	MIN	MAX	

STATIC

Reverse Current	$I_{\text {R }}$	$V_{R}=-20 \mathrm{~V}$	SSTPAD5	-1		-5	pA
			SSTPAD10	-2		-10	
			SSTPAD20	-4		-20	
			SSTPAD50	-5		-50	
			SSTPAD100	-10		-100	
			SSTPAD200	-15		-200	
			SSTPAD500	-25		-500	
Reverse Breakdown Voltage	$B V_{R}$	$I_{R}=-1 \mu A$		-60	-35		V
Forward Voltage Drop	V_{F}	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$		0.8		1.5	

DYNAMIC

Reverse Capacitance	C_{R}	$\mathrm{V}_{\mathrm{R}}=-5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	1.5		2	pF

[^5]2. For design aid only, not subject to production testing.

N-Channel JFET

The U290 Series is a high-performance JFET analog switch which offers ultra low on-resistance and fast switching. It features the lowest available on-resistance of any JFET available in the industry today. It is packaged in a hermetically sealed TO-52 can which makes it suitable for military applications. (See Section 1 for details.)

For further design information please consult the typical performance curves NVA which are located in Section 7.

SIMILAR PRODUCTS

- TO-92, See J105 Series
- Chips, Order U29XCHP

PART NUMBER	V $_{\text {GS (OFF) }}$ MAX (V)	$\mathrm{r}_{\text {ds }(O N)}$ MAX (Ω)	$I_{\text {D(OFF) }}$ MAX (nA)	$\mathbf{t}_{\text {ON }}$ MAX (ns)
U290	-10	3	1	35
U291	-4.5	7	1	35

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-30	
Gate-Source Voltage	$V_{G S}$	-30	V
Gate Current	I_{G}	100	mA
Power Dissipation	P_{D}	500	mW
Power Derating		4.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 200	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS					
PARAMETER	SYMBOL	TEST CONDITIONS		U290		U291		UNIT
			TYP ${ }^{2}$	MIN	MAX	MIN	MAX	
STATIC								
Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ Gss	$\mathrm{I}_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{D S}=0 \mathrm{~V}$	-35	-30		-30		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{nA}$		-4	-10	-1.5	-4.5	
Saturation Drain Current ${ }^{3}$	IDSS	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		500		200		mA
Gate Reverse Current	IGSS	$\begin{aligned} & V_{G S}=-15 \mathrm{~V} \\ & V_{D S}=0 \mathrm{~V} \end{aligned}$	-0.02		-1		-1	nA
			-0.04		-1		-1	$\mu \mathrm{A}$
Gate Operating Current	${ }^{\prime}{ }_{G}$	$V_{D G}=10 \mathrm{~V}, I_{D}=25 \mathrm{~mA}$	-0.01					nA
Drain Cutoff Current	$I_{\text {D (OFF) }}$	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	0.01		1		1	
		$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{G S}=-10 \mathrm{~V} \\ T_{A}=150^{\circ} \mathrm{C} \end{gathered}$	0.02		1		1	$\mu \mathrm{A}$
Drain-Source On-Voltage	$V_{\text {DS(ON) }}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$			30		70	mV
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(ON) }}$				3		7	Ω
Gate-Source Forward Voltage	$\mathrm{V}_{\text {GS (F) }}$	$\mathrm{I}_{G}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7					V
DYNAMIC								
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=25 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$	55					mS
Common-Source Output Conductance	$\mathrm{g}_{\text {os }}$		5					$\mu \mathrm{S}$
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$	$\begin{aligned} V_{G S} & =0 \mathrm{~V}, I_{D}=0 \mathrm{~mA} \\ f & =1 \mathrm{kHz} \end{aligned}$			3		7	Ω
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	120		160		160	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$	$\begin{gathered} V_{D S}=0 \mathrm{~V}, V_{G S}=-15 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	20		30		30	p
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=25 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$	3					$\frac{\mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$
SWITCHING								
Turn-on Time	$\mathrm{t}_{\mathrm{d}}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\mathrm{ON})}=0 \mathrm{~V}$	6		15		15	ns
	t_{r}		8		20		20	
Turn-off Time	$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{OFF})}$	$\begin{array}{llrl} \mathrm{U} 290 & 30 \mathrm{~mA} & -12 \mathrm{~V} & 50 \Omega \\ \mathrm{U} 291 & 30 \mathrm{~mA} & -7 \mathrm{~V} & 50 \Omega \end{array}$	5		15		15	
	t_{f}		9		20		20	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

The U308 Series offers superb amplification characteristics. High-gain ($>10,000 \mu \mathrm{~S}$), low noise (typically $<6 \mathrm{nV} \sqrt{\mathrm{Hz}}$) and low gate leakage (typically $<2 \mathrm{pA}$) are features of this series. Of special interest, however, is performance at high frequency. Even at 450 MHz , the U308 Series offers high power gain and low noise. Finally, with its TO-52 hermetically sealed package, full military processing is available. (See Section 1.)

For additional design information and a closer look at high-frequency characteristics, please consult performance curves NZB which are located in Section 7.

SIMILAR PRODUCTS

- TO-92, See J308 Series

PART NUMBER	$\mathbf{V}_{\mathrm{GS}(\mathrm{OFF})}$ MAX (V)	$\mathbf{V}_{(\mathrm{BR}) \text { GSS }}$ MIN (V)	\mathbf{g}_{fs} MIN (mS)	$\mathbf{I}_{\text {DSS }}$ MAX (mA)
U 308	-6	-25	10	60
U 309	-4	-25	10	30
U 310	-6	-25	10	60

- SOT-23, See SST308 Series

TO-206AC (TO-52)
BOTTOM VIEW

- Dual, See U430 Series
- Chips, Order U30XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	V_{GD}	-25	V
Gate-Source Voltage	V_{GS}	-25	20
Gate Current	I_{G}	500	mA
Power Dissipation	P_{D}	4	mW
Power Derating		-55 to 150	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-65 to 175	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	300	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds)	T_{L}		

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	U308		U309		U310		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Gate-Source Breakdown Voltage	$V_{(B R) G S S}$	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-35	-25		-25		-25		V
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(OFF) }}$	$V_{D S}=10 \mathrm{~V}, I_{D}=1 \mathrm{nA}$			-1	-6	-1	-4	-2.5	-6		
Saturation Drain Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			12	60	12	30	24	60	mA	
Gate Reverse Current		$\begin{gathered} V_{G S}=-15 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$		-2		-150		-150		-150	pA	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.8		-150		-150		-150	nA	
Gate Operating Current	I_{G}	$V_{D G}=9 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$		-15							pA	
Drain-Source On-Resistance	${ }^{\text {D }}$ (SS(ON)	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		35							Ω	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{F})$	$\mathrm{I}_{G}=10 \mathrm{~mA}, \mathrm{~V}_{D S}=0 \mathrm{~V}$		0.7		1		1		1	V	
DYNAMIC												
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$		14	10		10		10		mS	
Common-Source Output Conductance	gos			110		250		250		250	HS	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$			4		5		5		5	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			1.9		2.5		2.5		2.5		
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D S}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=100 \mathrm{~Hz} \end{gathered}$		6							$\mathrm{ny} / \sqrt{\mathrm{Hz}}$	
HIGH FREQUENCY												
Common-Gate Foward Transconductance	g_{fg}	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$	$\mathrm{f}=105 \mathrm{MHz}$	15								
			$\mathrm{f}=450 \mathrm{MHz}$	13								
Common-Gate Output Conductance	$\mathrm{g}_{\text {og }}$		$\mathrm{f}=105 \mathrm{MHz}$	0.16							ms	
			$\mathrm{f}=450 \mathrm{MHz}$	0.55								
Common-Gate Power Gain ${ }^{4}$	G_{pg}		$\mathrm{f}=105 \mathrm{MHz}$	16	14		14		14		dB	
			$\mathrm{f}=450 \mathrm{MHz}$	11.5	10		10		10			
Noise Figure	NF		$\mathrm{f}=105 \mathrm{MHz}$	1.5		2		2		2		
			$\mathrm{f}=450 \mathrm{MHz}$	2.7		3.5		3.5		3.5		

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. Gain $\left(G_{p g}\right)$ measured at optimum input noise match.

N-Channel JFET Ring Demodulator

The U350 is a set of four matched n-channel JFETs connected as a ring demodulator. The matched set of JFETs has low $\mathrm{rDS}_{\mathrm{DS}}(\mathrm{ON})$, high g_{fs}, and square law operation which gives high conversion gain and a very high intermodulation intercept point. Best

PART NUMBER	$V_{(B R) \text { Gss }}$ MIN (V)	$g_{\text {fs }}$ MIN (mS)	I Gss MAX (nA)	NF TYP (dB)
U350	-25	10	-1	7

BOTTOM VIEW

1 GATE 1, GATE 3
2 DRAIN 1, DRAIN 4
3 SOURCE 1, SOURCE 2
4 GND \& CASE
5 SOURCE 3, SOURCE 4
6 DRAIN 2, DRAIN 3
7 GATE 2, GATE 4

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-25	
Gate-Source Voltage	$V_{G S}$	-25	V
Forward Gate Current	I_{G}	25	mA
Power Dissipation	P_{D}	1	W
Power Derating		-55 to 150	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-65 to 150	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	300	
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}		

U350

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	U350		UNIT
				MIN	MAX	
STATIC						
Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ GSS	$\mathrm{I}_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{D S}=0 \mathrm{~V}$	-35	-25		V
Gate-Source Cutoff Voltage ${ }^{4}$	$\mathrm{V}_{\text {GS (OFF) }}$	$\mathrm{V}_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-3	-2	-6	
Saturation Drain Current ${ }^{3,4}$	IDSS	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	45	24	60	mA
Gate Reverse	$I_{\text {GSS }}$	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}$	-0.002		-1	nA
Current 4	GSS	$V_{D S}=0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.001		-1	$\mu \mathrm{A}$
Gate-Source Forward Voltage ${ }^{4}$	$V_{G S(F)}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7		1	V
DYNAIMIC						
Common-Source Forward Transconductance ${ }^{4}$	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$	15	10	18	mS
Common-Source Output Conductance ${ }^{4}$	gos		100		150	$\mu \mathrm{S}$
Drain-Source On-Resistance	$r_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$	33		90	Ω
Common-Source Input Capacitance	C_{gs}	$\begin{gathered} V_{G S}=-10 V_{1} I_{D}=0 \mathrm{~mA} \\ f=1 \mathrm{MHz} \end{gathered}$	4		5	pF
Common-Source Reverse Transfer Capacitance	C_{gd}	$\begin{gathered} V_{G D}=-10 \mathrm{~V}, I_{\mathrm{S}}=0 \mathrm{~mA} \\ f=1 \mathrm{MHz} \end{gathered}$	2		2.5	
Conversion Gain	G_{c}	$\begin{gathered} V_{D S}=20 \mathrm{~V}, V_{G S}=1 / 2 V_{G S(O F F)} \\ f=100 \mathrm{MHz}, R_{L}=1700 \Omega \\ \text { See Figure } 1 \end{gathered}$	4			dB
Noise Figure	NF		7			
Intercept Point			33			dBm
MATCHING						
Saturation Drain Current Ratio ${ }^{3}$	$\frac{I_{D S S}}{I_{D S S}}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	0.95	0.9	1	
Transconductance Ratio	$\frac{\mathrm{g}_{\mathrm{fs}}}{\mathrm{g}_{\mathrm{fs}}}$	$\begin{gathered} V_{D S}=15 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$	0.95	0.9	1	
Output Conductance Ratio	$\frac{g_{0 s}}{g_{\text {os }}}$		0.95	0.9	1	
Gate-Source Cutoff Voltage Ratio	$\frac{\mathrm{V}_{\mathrm{GS} \text { (OFF) }}}{\mathrm{V}_{\mathrm{GS} \text { (OFF) }}}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	0.95	0.9	1	

NOTES:

1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. Other gate terminal clamped to -8 V .

N-Channel JFETs

The U401 Series of high-performance monolithic dual JFETs features extremely low noise, tight offset voltage and drift over temperature specifications. It is targeted for use in a wide range of precision instrumentation applications. The U401 Series has a wide selection of both offset and drift specifications with the prime device, the U401, featuring 5 mV offset and $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift. The six devices allow designers to make important cost/benefit decisions. This series is available in a TO-71 hermetically sealed package and is available with military screening. (See Section 1.)

For additional design information please see performance curves NNR, which are located in Section 7.

SIMILAR PRODUCTS

- High-Gain, See 2N5911 Series
- SO-8, See SST404 Series
- Chips, Order U40XCHP

PART NUMBER	$V_{(B R) G S S}$ MIN (V)	g_{fs} MIN (mS)	I_{G} MAX (pA)	$\mathrm{V}_{\mathrm{Gs}_{1}}-\mathrm{V}_{\mathrm{GS}_{2}}$ MAX (mV)
U401	-50	2	-15	5
U402	-50	2	-15	10
U403	-50	2	-15	10
U404	-50	2	-15	15
U405	-50	2	-15	20
U406	-50	2	-15	40

TO-71
BOTTOM VIEW

1 SOURCE 1
2 DRAIN 1
3 GATE 1
4 SOURCE 2
5 DRAIN 2
6 GATE 2

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Gate-Drain Voltage		V_{GD}	-50	V
Gate-Source Voltage		V_{GS}	-50	
Forward Gate Current		I_{G}	10	mA
Power Dissipation	Per Side	P_{D}	300	mW
	Total		500	
Power Derating	Per Side		2.4	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Total		4	
Operating Junction Temperature		TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 200	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	U404		U405		U406		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ Gss	$I_{G}=-1 \mu \mathrm{~A}$,	DS $=0 \mathrm{~V}$		-58	-50		-50		-50		
Gate-Gate Breakdown Voltage	$V_{\text {(BR) G1 - G2 }}$	$\begin{gathered} \mathrm{I}_{\mathrm{G}}= \pm 1 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{GS}} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{VV} \end{aligned}$	-58	± 50		± 50		± 50		V	
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (}}$ (ofF)	$V_{D S}=15 \mathrm{~V}$	$D=1 \mathrm{nA}$	-1.5	-0.5	-2.5	-0.5	-2.5	-0.5	-2.5		
Saturation Drain ${ }^{3}$ Current	Idss	$V_{\text {DS }}=10 \mathrm{~V}$	Gs $=0 \mathrm{~V}$	3.5	0.5	10	0.5	10	0.5	10	mA	
Gate Reverse Current	IGss	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{gathered}$		-2		-25		-25		-25	pA	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-1							nA	
Gate Operating Current	I_{G}	$V_{D G}=15 \mathrm{~V}$		-2		-15		-15		-15	pA	
		$I_{D}=200 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.8		-10		-10		-10	nA	
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~mA}$		250							Ω	
Gate-Source Voltage	V_{GS}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		-1		-2.3		-2.3		-2.3	V	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7								
DYNAMIC												
Common-Source Forward Transconductance	$\mathrm{g}_{\text {f }}$	$\begin{gathered} V_{D G}=15 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ f=1 \mathrm{kHz} \end{gathered}$		1.5	1	2	1	2	1	2	mS	
Common-Source Output Conductance	$\mathrm{g}_{\text {os }}$			1.3		2		2		2	$\mu \mathrm{S}$	
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		4	2	7	2	7	2	7	mS	
Common-Source Output Conductance	gos			5		20		20		20	$\mu \mathrm{S}$	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D G}=15 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ f=1 \mathrm{MHz} \end{gathered}$		4		8		8		8	pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			1.5		3		3		3		
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=15 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ f=10 \mathrm{~Hz} \end{gathered}$		10		20		20		20	$\frac{\mathrm{nV} / \sqrt{\mathrm{Hz}}}{}$	

MATCHING

Differential Gate-Source Voltage	$\left\|V_{G S 1}-V_{G S 2}\right\|$	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$				15		20	40	mV
Gate-Source Voltage Differential Change with Temperature	$\Delta\left\|V_{G S 1}-V_{G S 2}\right\|$	$\left\|\begin{array}{l} V_{D G}=10 \mathrm{~V} \\ I_{D}=200 \mu \mathrm{~A} \end{array}\right\|$	$\mathrm{T}=-55$ to $25^{\circ} \mathrm{C}$			25		40	80	$\mu \mathrm{V} / \circ^{\circ} \mathrm{C}$
			$\mathrm{T}=25$ to $125^{\circ} \mathrm{C}$			25		40	80	
Common Mode Rejection Ratio	CMRR	$V_{D G}=10$ to	$20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	102	95		90			dB

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

U421 SERIES

N-Channel JFET Pairs

The U421 Series are monolithic pairs of n-channel JFETs designed to provide very high input impedance for differential amplification and impedance matching. Among its many unique features, this series offers operating gate current specified at -250 fA (U421-3), high gain at low operating currents, and tight matching (10 mV for U421 and U424). Additionally, its TO-78 package is hermetically sealed and may be screened per MIL-S-19500. (See Section 1.)

For additional design information please see

PART NUMBER	$V_{(B R) G S S}$ MIN (V)	g_{fs} MIN (mS)	I_{G} MAX (pA)	$\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{GS}_{2}}$ MAX (mV)
$U 421$	-40	0.3	-0.25	10
$U 422$	-40	0.3	-0.25	15
$U 423$	-40	0.3	-0.25	25
$U 424$	-40	0.3	-0.5	10
$U 425$	-40	0.3	-0.5	15
$U 426$	-40	0.3	-0.5	25

TO-78
BOTTOM VIEW

SIMILAR PRODUCTS

- Low-Noise, See U401 Series
- High-Gain, See 2N5911 Series
- Chips, Order U42XCHP

1 SOURCE 1
2 DRAIN 1
3 GATE 1
4 CASE
5 SOURCE 2
6 DRAIN 2
7 GATE 2

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Gate-Drain Voltage		V_{GD}	-40	V
Gate-Source Voltage		V_{GS}	-40	
Gate-Gate Voltage		$V_{G G}$	± 40	
Forward Gate Current		I_{G}	10	mA
Power Dissipation	Per Side	P_{D}	400	mW
	Total		750	
Power Derating	Per Side		3.2	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Total		6	
Operating Junction Temperature		TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 150	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	U421		U422		U423		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

Gate-Source Breakdown Voltage	$V_{\text {(BR) }}$ Gss	$I_{G}=-1 \mu \mathrm{~A}, V_{D S}=0 \mathrm{~V}$		-60	-40		-40		-40		V
Gate-Gate Breakdown Voltage	$V_{G G}$	$I_{G}=-1 \mu \mathrm{~A}, I_{D}=0, I_{S}=0$		± 55	± 40		± 40		± 40		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-1.2	-0.4	-2	-0.4	-2	-0.4	-2	
Saturation Drain Current ${ }^{3}$	IDSs	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		400	60	1000	60	1000	60	1000	$\mu \mathrm{A}$
Gate Reverse Current	IGss	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{gathered}$		-0.6		-1		-1		-1	pA
			$\mathrm{T}_{\text {A }}=125^{\circ} \mathrm{C}$	-0.3		-1		-1		-1	nA
Gate Operating Current	I_{G}	$\begin{aligned} & V_{D G}=10 \mathrm{~V} \\ & I_{D}=30 \mu \mathrm{~A} \end{aligned}$		-0.2		-0.25		-0.25		-0.25	pA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-150		-250		-250		-250	
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(ON) }}$	$V_{G S}=0 \mathrm{~V}, I_{\text {D }}=10 \mu \mathrm{~A}$		2000							Ω
Gate-Source Voltage	$V_{G S}$	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mu \mathrm{~A}$		-0.8		-1.8		-1.8		-1.8	V
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{G}=1 \mathrm{~mA}, \mathrm{~V}_{\text {DS }}=0 \mathrm{~V}$		0.7							

DYNAMIC

Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$	0.6	0.3	1.5	0.3	1.5	0.3	1.5	mS
Common-Source Output Conductance	$\mathrm{g}_{\text {os }}$		4		10		10		10	μ
Common-Source Forward Transconductance 而	g_{fs}	$\begin{aligned} & V_{D G}= 10 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A} \\ & f=1 \mathrm{kHz} \end{aligned}$	0.2	0.12	0.35	0.12	0.35	0.12	0.35	mS
Common-Source Output Conductance	gos		0.4		3		3		3	山S
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	1.4		3		3		3	pF
$\begin{aligned} & \text { Common-Source } \\ & \text { Reverse Transfer } \\ & \text { Capacitance } \\ & \hline \end{aligned}$	$\mathrm{Cr}_{\text {rss }}$		0.7		1.5		1.5		1.5	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A} \\ f=10 \mathrm{~Hz} \end{gathered}$	30		70		70		70	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Noise Figure	NF	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A} \\ & f=10 \mathrm{~Hz}, R_{G}=10 \mathrm{M} \Omega \end{aligned}$			1		1		1	dB

MATCHING

Differential Gate-Source Voltage	$\left\|V_{G S 1}{ }^{-} \mathrm{V}_{\mathrm{GS} 2}\right\|$	$V_{D G}=10 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A}$				10		15		25	mV
Gate-Source Voltage Differentlal Change with Temperature	$\Delta\left\|V_{G S 1}-\mathrm{V}_{\mathrm{GS2}}\right\|$	$\begin{aligned} & V_{D G}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=30 \mu \mathrm{~A} \end{aligned}$	$T=-55$ to $25^{\circ} \mathrm{C}$			10		25		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	ΔT		$\mathrm{T}=25$ to $125^{\circ} \mathrm{C}$			10		25		40	
Common Mode Rejection Ratio	CMRR	$V_{D G}=10$ to	$20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mu \mathrm{~A}$	102	90		80		80		dB

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

U421 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	U424		U425		U426		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

Gate-Source Breakdown Voltage	$V_{\text {(BR) }{ }^{\text {GSS }}}$	$I_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{D S}=0 \mathrm{~V}$		-60	-40		-40		-40		V
Gate-Gate Breakdown Voltage	$V_{G G}$	$I_{G}=-1 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{D}}=0, I_{S}=0$		± 55	± 40		± 40		± 40		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(OFF) }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-2	-0.4	-3	-0.4	-3	-0.4	-3	
Saturation Drain Current ${ }^{3}$	IDSs	$V_{D S}=10 \mathrm{~V}$	Gs $=0 \mathrm{~V}$	800	60	1800	60	1800	60	1800	$\mu \mathrm{A}$
Gate Reverse Current	$I_{\text {gss }}$	$\begin{gathered} V_{G S}=-20 \mathrm{~V} \\ V_{D S}=0 \mathrm{~V} \end{gathered}$		-0.8		-3		-3		-3	pA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.4		-3		-3		-3	nA
Gate Operating Current	I_{G}	$\begin{aligned} & V_{D G}=10 \mathrm{~V} \\ & I_{D}=30 \mu \mathrm{~A} \end{aligned}$		-0.3		-0.5		-0.5		-0.5	pA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-200		-500		-500		-500	
Drain-Source On-Resistance	$r_{\text {DS }}$ (ON)	$V_{G S}=0 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A}$		2000							Ω
Gate-Source Voltage	V_{GS}	$V_{D G}=10 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A}$		-1.5		-2.9		-2.9		-2.9	V
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.7							
DYNAMIC											
Common-Source Forward Transconductance	$\mathrm{g}_{\text {f }}$	$\begin{aligned} V_{D S}= & 10 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$		0.6	0.3	1.5	0.3	1.5	0.3	1.5	mS
Common-Source Output Conductance	$g_{\text {os }}$			4		10		10		10	$\mu \mathrm{S}$
Common-Source Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D G}= 10 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A} \\ & f=1 \mathrm{kHz} \end{aligned}$		0.2	0.12	0.35	0.12	0.35	0.12	0.35	mS
Common-Source Output Conductance	gos			0.4		3		3		3	山 S
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$		1.4		3		3		3	pF
Common-Source Reverse Transfer Capacitance	$\mathrm{Crss}^{\text {r }}$			0.7		1.5		1.5		1.5	
Equivalent Input Noise Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A} \\ f=10 \mathrm{~Hz} \end{gathered}$		30		70		70		70	$n / \sqrt{\mathrm{Hz}}$
Noise Figure	NF	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A} \\ & f=10 \mathrm{~Hz}, R_{G}=10 \mathrm{M} \Omega \end{aligned}$				1		1		1	dB

MATCHING

Differential Gate-Source Voltage	$\left\|V_{G S 1}-V_{G S 2}\right\|$	$V_{D G}=10 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A}$				10		15		25	mV
Gate-Source Voltage Differential Change with Temperature	$\Delta\left\|V_{G S 1}-V_{G S 2}\right\|$	$\begin{aligned} & V_{D G}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=30 \mu \mathrm{~A} \end{aligned}$	$\mathrm{T}=-55$ to $25^{\circ} \mathrm{C}$			10		25		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	ΔT		$\mathrm{T}=25$ to $125^{\circ} \mathrm{C}$			10		25		40	
Common Mode Rejection Ratio	CMRR	$V_{D G}=10$ to	$20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mu \mathrm{~A}$	100	90		80		80		dB

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

N-Channel JFET Pairs

The U430 Series are pairs of matched JFETs assembled in one TO-78 package. They feature high gain, low noise and low gate leakage and are intended for high performance, high slew rate, mixing and differential amplification. Additionally, these devices offer good power gain even as

PART NUMBER	$V_{(B R) G S S}$ MIN (V)	g_{fs} MIN (mS)	I_{G} TYP (pA)	$\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{GS}_{2}}$ TYP (mV)
U430	-25	10	-15	25
U431	-25	10	-15	25

For additional design information please consult performance curves NZB which are located in Section 7.

SIMILAR PRODUCTS

- Low-Noise, See U401 Series
- High-Gain, See 2N5911 Series
- Low-Leakage, See U421 Series

BOTTOM VIEW

1 SOURCE 1
2 GATE 1
3 DRAIN 1
4 CASE
5 DRAIN 2
6 GATE 2
7 SOURCE 2

- Chips, Order U43XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Gate-Drain Voltage		V_{GD}	-25	V
Gate-Source Voltage		$V_{G S}$	-25	
Forward Current		I_{G}	10	mA
Power Dissipation	Per Side	$P_{\text {D }}$	300	mW
	Total		500	
Power Derating	Per Side		2.4	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Total		4	
Operating Junction Temperature		T_{J}	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 200	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	U430		U431		UNIT	
				MIN	MAX	MIN	MAX			
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$I_{G}=-1 \mu \mathrm{~A}$	DS $=0 \mathrm{~V}$		-35	-25		-25		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(OFF) }}$	$V_{D S}=10 \mathrm{~V}$	$D=1 \mathrm{nA}$		-1	-4	-2	-6		
Saturation Drain Current ${ }^{3}$	I DSS	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	$\mathrm{GS}=0 \mathrm{~V}$		12	30	24	60	mA	
Gate Reverse Current	IGss	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{gathered}$		-5		-150		-150	pA	
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-10		-150		-150	nA	
Gate Operating Current	I_{G}	$\begin{aligned} & V_{D G}=10 \mathrm{~V} \\ & I_{D}=5 \mathrm{~mA} \end{aligned}$		-15					pA	
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-10					nA	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$		0.8		1		1	V	
DYNAMIC										
Common-Source Forward Transconductance g_{fs}		$\begin{gathered} V_{D S}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$		15	10		10		mS	
Common-Source Output Conductance	$\mathrm{g}_{\text {os }}$			100		250		250	μ	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{G S}=-10 \mathrm{~V}, V_{D S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		4.5		5		5	pF	
Common-Source Reverse Transfe Capacitance	$\mathrm{C}_{\text {rss }}$			2		2.5		2.5		
Equivalent Input Nolse Voltage	\bar{e}_{n}	$\begin{aligned} & V_{D S}= 10 \mathrm{~V}, \\ & f=1 \end{aligned}$	$=10 \mathrm{~mA}$	6					$\frac{\mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$	

HIGH FREQUENCY

Common-Source Forward Transconductance	g_{fs}	$\begin{gathered} V_{D S}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=100 \mathrm{MHz} \end{gathered}$	14					mS
Common-Source Output Conductance	gos		0.13					
Power-Match Source Admittance	g_{g}		12					

MATCHING

Differential Gate-Source Voltage	$\mid \mathrm{V}_{\mathrm{GS} 1} \mathrm{~V}_{\mathrm{GS2}}$ \|	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	25					mV
Saturation Drain ${ }^{4}$ Current Ratio	$\frac{I_{\text {DSS1 }}}{\text { IDSS2 }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	0.95	0.9	1	0.9	1	
Transconductance ${ }^{4}$ Ratio	$\frac{g_{f s 1}}{g_{f s 2}}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$	0.95	0.9	1	0.9	1	
Gate-Source Cutoff Voltage Ratio	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{GS}(\mathrm{OFF}) 1} \\ & \mathrm{~V}_{\mathrm{GS}(\mathrm{OFF}) 2} \\ & \hline \end{aligned}$	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	0.95	0.9	1	0.9	1	
Differential Gate Current	$\left\|l_{\mathrm{G} 1} \mathrm{I}_{\mathrm{G} 2}\right\|$	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$	-2					pA
Common Mode Rejection Ratio	CMRR	$V_{D D}=5$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	75					dB

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. Assumes smaller value in the numerator.

N-Channel JFET Pairs

The U440 Series are matched pairs of JFETs mounted in a single TO-71 package. This two chip design reduces parasitic performance at high frequency while ensuring extremely tight matching. The U440 features high speed amplification (slew rate), high gain (typically $>6 \mathrm{mS}$), and low gate

PART NUMBER	$V_{(B R) G S S}$ MIN (V)	g_{fs} MIN (mS)	I_{G} MAX (pA)	$\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{GS}_{2}}$ MAX (mV)
U 440	-25	4.5	-500	10
U 441	-25	4.5	-500	20

For additional design information please see performance curves NZF, which are located in Section 7.

SIMILAR PRODUCTS

- TO-78, See U443 Series
- SO-8, See SST440 Series
- Low Noise, See U401 Series
- Low Leakage, See U421 Series
- Chips, Order U44XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Gate-Drain Voltage		$V_{G D}$	-25	V
Gate-Source Voltage		$V_{G S}$	-25	
Gate-Gate Voltage		$V_{G G}$	± 50	
Gate Current		I_{G}	50	mA
Power Dissipation	Per Side	PD	250	mW
	Total		350	
Power Derating	Per Side		2	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Total		2.8	
Operating Junction Temperature		TJ	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 150	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	U440		U441		UNIT	
				MIN	MAX	MIN	MAX			
STATIC										
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$I_{G}=-1 \mu \mathrm{~A}$	DS $=0 \mathrm{~V}$		-35	-25		-25		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS (OFF) }}$	$V_{D S}=10$	$\mathrm{D}=1 \mathrm{nA}$	-3.5	-1	-6	-1	-6		
Saturation Drain Current ${ }^{3}$	IDSs	$V_{D S}=10$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	15	6	30	6	30	mA	
Gate Reverse Current	IGss	$\begin{gathered} V_{\mathrm{GS}}=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{gathered}$		-1		-500		-500	pA	
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-2					nA	
Gate Operating Current	1_{G}	$\begin{aligned} & V_{D G}=10 \mathrm{~V} \\ & I_{D}=5 \mathrm{~mA} \end{aligned}$		-1		-500		-500	pA	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.3					nA	
Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{F})}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}$	DS $=0 \mathrm{~V}$	0.7					V	
DYNAMIC										
Common-Source Forward Transconductance	$\mathrm{g}_{\text {f }}$	$\begin{aligned} V_{D G}= & 10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$		6	4.5	9	4.5	9	mS	
Common-Source Output Conductance	$\mathrm{g}_{\text {os }}$			70		200		200	נ	
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} V_{D G}= & 10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ & f=1 \mathrm{MHz} \end{aligned}$		3					pF	
Common-Source Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			1						
Equivalent Input Nolse Voltage	\bar{e}_{n}	$\begin{gathered} V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ f=10 \mathrm{kHz} \end{gathered}$		4					$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	

MATCHING

Differential Gate-Source Voltage	$\left\|V_{G S 1}-V_{G S 2}\right\|$	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		6	10	20	mV
Gate-Source Voltage Differential Change with Temperature	$\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS2}}\right\|$	$\begin{aligned} & V_{D G}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA} \end{aligned}$	$\mathrm{T}=-55$ to $25^{\circ} \mathrm{C}$	20			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	ΔT		$\mathrm{T}=25$ to $125^{\circ} \mathrm{C}$	20			
Saturation Drain Current Ratio	$\frac{I_{\text {DSS1 }}}{I_{\text {DSS2 }}}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.97			
Transconductance Ratio	$\frac{g_{\mathrm{fs} 1}}{g_{\mathrm{fs} 2}}$	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\ & f=1 \mathrm{kHz} \end{aligned}$		0.97			
Common Mode Rejection Ratio	CMRR	$V_{D D}=5$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		85			dB

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

The U443 Series are matched pairs of JFETs mounted in a single TO-78 package. This two chip design reduces parasitic performance at high frequency while ensuring extremely tight matching. The U443 features high speed amplification (slew rate), high gain (typically $>6 \mathrm{mS}$), and low gate leakage (typically $<1 \mathrm{pA}$). This performance makes these devices perfect for use as wideband differential amplifiers in demanding test and measurement applications. Finally, its TO-78 hermetically sealed package is available with military screening per MIL-S-19500. (See Section 1.)

For additional design information please see performance curves NZF, which are located in Section 7.

SIMILAR PRODUCTS

- TO-71, See U440 Series
- SO-8, See SST440 Series
- Low Noise, See U401 Series
- Low Leakage, See U421 Series
- Chips, Order U44XCHP

PART NUMBER	$\mathbf{V}_{(\mathrm{BR}) \mathrm{GSS}}$ MIN (V)	g_{fs} MIN (mS)	I_{G} MAX (pA)	$\mathrm{V}_{\mathrm{Gs}_{1}}-\mathrm{V}_{\mathrm{GS}}$ MAX (mV)
U 443	-25	4.5	-500	10
U 444	-25	4.5	-500	20

1 SOURCE 1
2 DRAIN 1
3 GATE 1
4 CASE
5 SOURCE 2
6 DRAIN 2
7 GATE 2

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS
Gate-Drain Voltage		$V_{G D}$	-25	
Gate-Source Voltage		$V_{\text {GS }}$	-25	V
Gate-Gate Voltage		$V_{G G}$	± 50	
Forward Gate Current		I_{G}	50	mA
Power Dissipation	Per Side	PD	367	mW
Power Derating	Per Side		3	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Total		4	
Operating Junction Temperature		TJ	-55 to 150	
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

N-Channel JFET

The U1897 Series is a multi-purpose n-channel JFET designed to economically enhance circuit performance. These devices are especially well suited for analog switching applications but function efficiently as high-gain amplifiers, particularly at high-frequency. Our low-cost TO-92 packaging offers affordable performance with flexibility for designers, as these devices can be ordered with a variety of lead forms or tape and reel for automated insertion. (See Section 8.)

For additional design information please consult the typical performance curves NCB which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See 2N4091 Series
- SOT-23, See SST4091 Series
- Duals, See 2N5564Series
- Chips, Order U189XCHP

PART NUMBER	V $_{\text {GS (OFF) }}$ MAX (V)	$\mathbf{r}_{\text {ds(ON) }}$ MAX (Ω)	$I_{\text {D(OFF) }}$ MAX (pA)	t ON MAX $(\mathbf{n s)}$
U1897	-10	30	200	25
U1898	-7	50	200	35
U1899	-5	80	200	60

TO-92

BOTTOM VIEW

1 DRAIN
2 SOURCE
3 GATE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS
Gate-Drain Voltage	$V_{G D}$	-40	V
Gate-Source Voltage	$V_{G S}$	-40	
Gate Current	I_{G}	10	mA
Power Dissipation	PD	360	mW
Power Derating		3.27	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 135	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300	

U1897 SERIES

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

JFET Voltage Controlled Resistors

The VCR2N, VCR4N, VCR7N, and VCR3P line of JFET voltage controlled resistors utilize the JFET's linear output characteristics in the resistive region. This area of operation is around $V_{D S}=0 \vee$ and extends for a range up to several hundred millivolts - up to the point I_{D} begins to saturate. Key to device performance is the predictable $r_{D S}$ change versus $V_{G S}$ bias where:

$$
r_{D S} \text { bias } \approx \frac{r_{D S}\left(@ V_{G S}=0\right)}{1-\left|\frac{V_{G S}}{V_{G S(O F F)}}\right|}
$$

This series features three n-channel devices with rDS(ON) ranging from $20-8000 \Omega$. Also featured is a p-channel device with rDS(ON) specified between 70 and 200Ω. All packages are hermetically sealed and may be processed per MIL-S-19500. (See Section 1.)

For additional design information please consult typical performance curves (Section 7) as follows:

PART NUMBER	$V_{G S}$ (OFF) MAX (V)	V (BR) GSS MIN (Ω)	$\mathrm{r}_{\mathrm{ds}}(\mathrm{ON})$	
			$\begin{aligned} & \mathrm{MIN} \\ & (\Omega) \end{aligned}$	$\begin{gathered} \text { MAX } \\ (\Omega) \end{gathered}$
VCR2N	-3.5	-15	20	60
VCR4N	-7	-15	200	600
VCR7N	-5	-15	4000	8000
VCR3P	5	15	70	200

TO-72

BOTTOM VIEW

2 DRAIN
3 GATE
4 SUBSTRATE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT		UNITS
		VCR2N-7N	VCR3P	
Gate-Drain Voltage	$V_{G D}$	-15	15	V
Gate-Source Voltage	V_{GS}	-15	15	
Gate Current	I_{G}	10	-10	mA
Power Dissipation (Case $25^{\circ} \mathrm{C}$)	PD	300		mW
Power Derating		2		mW/ ${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 175		${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 175		
Lead Temperature (1/16" from case for 10 seconds)	TL	300		

VCR2N, VCR4N, VCR7N, VCR3P

N-CHANNEL

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
		TEST CONDITIONS	TYP ${ }^{2}$	VCR2N		VCR4N		VCR7N		UNIT
PARAMETER	SYMBOL			MIN	MAX	MIN	MAX	MIN	MAX	
STATIC										
Gate-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) GSS }}$	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-55	-15		-15		-15		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{GS} \text { (OFF) }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$		-1	-3.5	-3.5	-7	-2.5	-5	v
Gate Reverse Current	IGss	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-5		-0.2		-0.1	nA
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		20	60	200	600	4000	8000	Ω
Gate-Source Forward Voltage	$V_{G S(F)}$	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.7							V
DYNAMIC										
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$	$\begin{gathered} V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~A} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		20	60	200	600	4000	8000	Ω
Drain-Gate Capacitance	C_{dg}	$\begin{gathered} V_{G D}=-10 \mathrm{~V}, I_{S}=0 \mathrm{~A} \\ f=1 \mathrm{MHz} \end{gathered}$			7.5		3		1.5	pF
Source-Gate Capacitance	$\mathrm{C}_{\text {sg }}$	$\begin{gathered} V_{G S}=-10 \mathrm{~V}, I_{D}=0 \mathrm{~A} \\ f=1 \mathrm{MHz} \end{gathered}$			7.5		3		1.5	

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	VCR3P		UNIT
				MIN	MAX	
STATIC						
Gate-Source Breakdown Voltage	$V_{\text {(BR) Gss }}$	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	50	15		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {GS(}}$ (OFF)	$V_{D S}=-10 \mathrm{~V}, I_{D}=-1 \mu \mathrm{~A}$	2.5	1	5	V
Gate Reverse Current	$I_{\text {gSs }}$	$V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	0.005		20	nA
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS }}(\mathrm{ON})$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$	100	70	200	Ω
Gate-Source Forward Voltage	$V_{G S(F)}$	$\mathrm{I}_{\mathrm{G}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-0.7			V
DYNAMIIC						
Drain-Source On-Resistance	$\mathrm{r}_{\text {ds }}(\mathrm{ON})$	$\begin{gathered} V_{G S}=0 \mathrm{~V}, I_{D}=0 \mathrm{~A} \\ f=1 \mathrm{kHz} \end{gathered}$	100	70	200	Ω
Drain-Gate Capacitance	C_{dg}	$\begin{gathered} V_{G D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0 \mathrm{~A} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$	6		25	pF
Source-Gate Capacitance	C_{sg}	$\begin{gathered} V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~A} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$	6		15	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.

General Information

Cross Reference Selector Guide JFETs DMOS

Low Power MOS
Performance Curves
Package Outlines
Applications
Worldwide Sales Offices and Distributors

DMOS

INTRODUCTION

DMOS products from Siliconix utilize a lateral double-diffused MOS process to offer the ultimate low-cost yet highly reliable switches. It's unique lateral construction affords all the benefits critical to small-signal switching applications. Ultra fast switching speed, exceptionally low capacitance, good off-isolation, and high operating frequency are all available to design engineers today!

Key applications which benefit from this technology include video switching and precision sample and hold applications. In fact, any high performance application which benefits from $<1 \mathrm{~ns}$ turn-on time, $<0.5 \mathrm{pF}$ capacitance, and operating frequencies up to 1 GHz , should utilize Siliconix' lateral DMOS as an optimal design solution.

Packaging options are diversified and range from surface mount to hermetically sealed metal cans and both single and quad array switches may be purchased. With our high reliability silicon gate process, full military processing is available per MIL-S-19500 on all hermetically sealed packages.

For additional technical information please see "Switching DMOS Fast" (LPD-11), "An Ultra Broadband Analog Switch" (LPD-20), and "High speed Depletion-mode DMOS FETs" (LPD-12). These application notes are located in section nine and provide useful insight into device operation.

N-Channel Lateral DMOS FETs

The 2N7104 Series of lateral DMOS FETs is designed for high speed switching in audio, video, and high-frequency applications. These devices are designed on the Siliconix DMOS process and utilize lateral construction to achieve low capacitance and ultra-fast switching speeds. For long term reliablitly this series features a polysilicon gate, making Siliconix 2N7104 devices the perfect choice for high-performance military applications.

For additional design information please see performance curves DMCB, which are located in Section 7.

SIMILAR PRODUCTS

- Quad Array, See 2N7116 Series
- SO-14 Array, See SD5400 Series
- Zener Protection, See 2N7105 Series

PART NUMBER	$\mathrm{V}_{(B R) D S}$ MAX (V)	$\mathbf{r}_{\text {ds }}(\mathrm{ON})$ MAX (Ω)	$\mathrm{C}_{\text {rss }}$ MAX (pF)	$\mathbf{t}_{\text {ON }}$ MAX (ns)
2 N7104	20	70	0.5	2
2N7106	10	70	0.5	2
2 2N7108	15	70	0.5	2

- SOT-143, See SST211 Series

TO-72
BOTTOM VIEW

1 SOURCE
2 DRAIN
3 GATE
4 SUBSTRATE, CASE

- Chips, Order 2N710XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT			UNITS
		2N7104	2N7106	2N7108	
Gate-Source, Gate-Drain Gate-Substrate Voltage	$\mathrm{V}_{\mathrm{GS}}, \mathrm{V}_{\mathrm{GD}}, \mathrm{V}_{\mathrm{GB}}$	± 40	± 40	± 40	V
Drain-Source Voltage	$V_{D S}$	30	10	20	
Source-Drain Voltage	$V_{S D}$	10	10	20	
Drain-Substrate Voltage	$V_{D B}$	30	15	25	
Source-Substrate Voltage	$V_{S B}$	15	15	25	
Drain Current	$I_{\text {D }}$	50	50	50	mA
Power Dissipation ($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$)	PD	300	300	300	mW
Power Derating		2.4	2.4	2.4	mW/ ${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 150			${ }^{\circ} \mathrm{C}$
Storage Temperature	T stg	-65 to 200			
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300			

STATIC

Drain-Source Breakdown Voltage ${ }^{3}$	$V_{\text {(BR)DS }}$	$V_{G S}=V_{B S}=0 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A}$		35	30						V
		$V_{G S}=V_{B S}=-5 \mathrm{~V}, \mathrm{I}_{S}=10 \mathrm{nA}$		30	10		10		20		
Source-Drain Breakdown Voltage ${ }^{3}$	$V_{(B R) S D}$	$V_{G D}=V_{B D}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$		22	10		10		20		
Drain-Substrate Breakdown Voltage ${ }^{3}$	$V_{(B R) D B}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GB}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA} \end{aligned}$	rce OPEN	35	15		15		25		
Source-Substrate Breakdown Voltage ${ }^{3}$	$V_{(B R) S B}$	$\begin{aligned} & V_{G B}=0 \mathrm{~V} \\ & I_{S}=10 \mu \mathrm{~A} \end{aligned}$	ain OPEN	35	15		15		25		
Drain-Source Leakage	IDS(OFF)	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	0.4		10		10			nA
			$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}$	0.9						10	
		$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{D S}=10 \mathrm{~V}$	0.4		5		5			$\mu \mathrm{A}$
			$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}$	0.9						5	
Source-Drain Leakage	$I_{\text {SD (OFF) }}$	$V_{G D}=V_{B D}=-5 \mathrm{~V}$	$\mathrm{V}_{\text {SD }}=10 \mathrm{~V}$	0.5		10		10			nA
			$\mathrm{V}_{\text {SD }}=20 \mathrm{~V}$	1						10	
		$\begin{aligned} & V_{G D}=-5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {SD }}=10 \mathrm{~V}$	0.5		5		5			$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{SD}}=20 \mathrm{~V}$	1						5	
Gate Leakage	IGSS	$\begin{gathered} V_{D S}=V_{S B}=0 \mathrm{~V} \\ V_{G S}=12 \mathrm{~V} \end{gathered}$				100		100		100	nA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$			1		1		1	上 A
Zero Gate Voltage Drain Current	IDSS	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0 \mathrm{~V}$				10					
Threshold Voltage	$\mathrm{V}_{G S}($ th $)$	$\begin{gathered} V_{D S}=V_{G S}=V_{G S(t h)}, I_{S}=1 \mu \mathrm{~A} \\ V_{S B}=0 V \end{gathered}$		0.7	0.5	2.0	0.1	2.0	0.1	2.0	V
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		58		70		70		70	Ω

DYNAMIC

Forward Transconductance ${ }^{3}$	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{S B}=0 \mathrm{~V} \\ & I_{D}=20 \mathrm{~mA}, f=1 \mathrm{kHz} \end{aligned}$	11				mS
Output Conductance ${ }^{3}$	gos		0.9				
Gate Node Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ V_{G S}=V_{B S}=-15 \mathrm{~V} \end{gathered}$	2.5	3.5	3.5	3.5	pF
Reverse Transfer Capacitance	$\mathrm{Crss}^{\text {r }}$		0.2	0.5	0.5	0.5	

SWITCHING

Turn-ON Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=680 \Omega \\ & \mathrm{~V}_{\mathbb{I N}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=50 \Omega \end{aligned}$	0.5	1	1	1	ns
	t_{r}		0.6	1	1	1	
Turn-OFF Time ${ }^{3}$	$\mathrm{t}_{\mathrm{d} \text { (}} \mathrm{OFF}_{\mathrm{f}}$		2				
	t_{f}		6				

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. This parameter not registered with JEDEC.

N-Channel Lateral DMOS FETs

The $2 N 7105$ Series of single-pole, single-throw analog switches is designed for high speed switching in audio, video, and high-frequency applications. These devices are designed on the Siliconix DMOS process and utilize lateral construction to achieve low capacitance and ultra-fast switching speeds. This series also feature an integrated Zener diode designed to protect the gate from electrical "spikes" or overstress.

For additional design information please see performance curves DMCB, which are located in Section 7.

SIMILAR PRODUCTS

- Quad Array, See 2N7116 Series
- SO-14 Array, See SD5400 Series
- SOT-143, See SST211 Series

TO-72
BOTTOM VIEW

- Chips, Order 2N710XCHP

PART NUMBER	$V_{(B R) D S}$ MAX (V)	$r_{\text {ds }(O N)}$ MAX (Ω)	$C_{\text {rss }}$ MAX (pF)	$\mathrm{t}_{\text {ON }}$ MAX (ns)
2 N7105	10	70	0.5	2
2 N7107	10	70	0.5	2
$2 N 7109$	20	70	0.5	2

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT			UNITS
		2N7105	2N7107	2N7109	
Gate-Source, Gate-Drain Voltage	$V_{G S}, V_{G D}$	-30/25	-15/25	-25/30	V
Gate-Substrate Voltage ${ }^{1}$	$V_{G B}$	-0.3/25	-0.3/25	-0.3/30	
Drain-Source Voltage	$V_{D S}$	30	10	20	
Source-Drain Voltage	$V_{S D}$	10	10	20	
Drain-Substrate Voltage	$V_{D B}$	30	15	25	
Source-Substrate Voltage	$V_{S B}$	15	15	25	
Drain Current	I_{D}	50	50	50	mA
Power Dissipation ($\left.\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right)$	P_{D}	300	300	300	mW
Power Derating		2.4	2.4	2.4	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 150			${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 200			
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300			

[^6]2N7105 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N7105		2N7107		2N7109		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

Drain-Source Breakdown Voltage ${ }^{3}$	$V_{\text {(BR) }{ }^{\text {ds }}}$	$V_{G S}=V_{B S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$		35	30						V
		$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{nA}$		30	10		10		20		
Source-Drain Breakdown Voltage ${ }^{3}$	$V_{\text {(BR) }}$ SD	$V_{G D}=V_{B D}=-5 \mathrm{~V}, I_{D}=10 \mathrm{nA}$		22	10		10		20		
Drain-Substrate Breakdown Voltage ${ }^{3}$	$V_{\text {(BR) }{ }^{\text {di }}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GB}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA} \end{aligned}$	rce OPEN	35	15		15		25		
Source-Substrate Breakdown Voltage ${ }^{3}$	$V_{(B R) S B}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GB}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=10 \mu \mathrm{~A} \end{aligned}$	in OPEN	35	15		15		25		
Drain-Source Leakage	IDS(OFF)	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	0.4		10		10			nA
			$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$	0.9						10	
		$\begin{gathered} V_{G S}=V_{B S}=-5 \mathrm{~V} \\ T_{A}=125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\text {DS }}=10 \mathrm{~V}$	0.4		5		5			$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$	0.9						5	
Source-Drain Leakage	$I_{\text {SD (OFF) }}$	$\mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V}$	$\mathrm{V}_{\text {SD }}=10 \mathrm{~V}$	0.5		10		10			nA
			$\mathrm{V}_{\text {SD }}=20 \mathrm{~V}$	1						10	
		$\begin{aligned} & V_{G D}=-5 \mathrm{~V} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {SD }}=10 \mathrm{~V}$	0.5		5		5			$\mu \mathrm{A}$
			$\mathrm{V}_{\text {SD }}=20 \mathrm{~V}$	1						5	
Gate Leakage	IGss	$V_{D S}=V_{S B}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{GS}}=25 \mathrm{~V}$			1		1			
			$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}$							1	
		$\begin{gathered} V_{D S}=V_{S B}=0 \mathrm{~V} \\ T_{A}=125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\mathrm{GS}}=25 \mathrm{~V}$			100		100			
			$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}$							100	
Zero Gate Voltage Drain Current	IDSs	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0 \mathrm{~V}$				10					
Threshold Voltage	$\mathrm{VGS}_{\text {(th) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{GS}(\text { th) })}, I_{\mathrm{S}}=1 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \end{gathered}$		0.7	0.5	2	0.1	2	0.1	2	V
Drain-Source On-Resistance	$r_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		58		70		70		70	Ω

DYNAMIC

Forward Transconductance ${ }^{3}$	g_{fs}	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{S B}=0 \mathrm{~V} \\ & I_{D}=20 \mathrm{~mA}, f=1 \mathrm{kHz} \end{aligned}$	11				mS
Output Conductance ${ }^{3}$	$\mathrm{g}_{\text {os }}$		0.9				
Gate Node Capacitance	$\mathrm{C}_{\text {Iss }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-15 \mathrm{~V} \end{gathered}$	2.5	3.5	3.5	3.5	pF
Reverse Transfer Capacitance	$C_{\text {rss }}$		0.2	0.5	0.5	0.5	
SWITCHING							
Turn-ON Time	$t_{d}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=680 \Omega \\ & \mathrm{~V}_{\mathbb{N}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=50 \Omega \end{aligned}$	0.5	1	1	1	$n s$
	t_{r}		0.6	1	1	1	
Turn-OFF Time ${ }^{3}$	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		2				
	t_{f}		6				

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. This parameter not registered with JEDEC.

N-Channel Lateral DMOS Quad FETs

The Siliconix 2 N 7116 series is a monolithic array of single-pole, single-throw analog switches designed for high speed switching in audio, video and high frequency applications in communications, instrumentation, and process control. Designed on the Siliconix DMOS process, the $2 N 7116$ is rated for analog signals of $\pm 10 \mathrm{~V}$, while the 2 N 7117 and

PART NUMBER	$\mathrm{V}_{(\mathrm{BR}) \text { DS }}$ MIN (V)	$\mathrm{V}_{\text {GS }(t h)}$ MAX (V)	$\mathrm{r}_{\text {ds }}(\mathrm{ON})$ MAX (Ω)	$\mathbf{t}_{\text {ON }}$ MAX (ns)
2N7116	20	2.0	70	2
2N7117	10	2.0	70	2
2N7118	15	2.0	70	2

These bidirectional switches feature very low interelectrode capacitance and on-resistance to achieve low insertion loss, crosstalk, and feedthrough performance. The threshold voltage for all switches is 2 V maximum, simplifying driver requirements for low level signal applications.

For additional design information please see performance curves DMCA-1B, which are located in Section 7.

SIMILAR PRODUCTS

- SOT-143, See SST211 Series
- TO-18, See SD211DE Series
- SO-14, See SD5400 Series
- Chips, Order 2N711XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAIMETERS/TEST CONDITIONS		SYMBOL	LIMIT			UNITS	
		2N7116	2N7117	2N7118			
Gate-Source, Gate-Drain Voltage			$\mathrm{V}_{\mathrm{GS}}, \mathrm{V}_{\mathrm{GD}}$	25/-25	25/-15	30/-22.5	V
Drain-Substrate, Source-Substrate Voltage		$\mathrm{V}_{\mathrm{DB}}, \mathrm{V}_{\text {SB }}$	25	15	22.5		
Drain-Source, Source-Drain Voltage		$V_{D S}, V_{S D}$. 20	10	15		
Gate-Substrate Voltage 1		$V_{G B}$	30/-0.3	25/-0.3	30/-0.3		
Drain Current		$1{ }^{\text {D }}$	50			mA	
Power Dissipation	Package	PD	640			mW	
	Each Device			300			
Power Derating (Package)			5			$\mathrm{mW} /{ }^{\circ} \mathrm{C}$	
Operating Junction Temperature		TJ	-55 to 125			${ }^{\circ} \mathrm{C}$	
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to 150				
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300				

${ }^{1}$ These devices feature an internal Zener procted gate.

2N7116 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	2N7116		2N7117		2N7118		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Drain-Source Breakdown Voltage ${ }^{3}$	$V_{(B R) D S}$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$			35	30						V
		$V_{G S}=V_{B S}=-5 \mathrm{~V}, \mathrm{I}_{S}=10 \mathrm{nA}$		30	10		10		20			
$\begin{aligned} & \text { Source-Drain } \\ & \text { Breakdown Voltage }{ }^{3} \end{aligned}$	$\mathrm{V}_{\text {(BR) } \mathrm{SD}}$	$V_{G D}=V_{B D}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$		22	10		10		20			
Drain-Substrate Breakdown Voltage ${ }^{3}$	$V_{(B R) D B}$	$\begin{aligned} & V_{G B}=0 \mathrm{~V} \\ & I_{D}=10 \mathrm{nA} \end{aligned}$		35	15		15		25			
Source-Substrate Breakdown Voltage ${ }^{3}$	$V_{(B R) S B}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{GB}}=0 \mathrm{~V} & \text { Drain OPE } \\ \mathrm{I}_{\mathrm{S}}=10 \mu \mathrm{~A} \end{array}$		35	15		15		25			
Drain-Source Leakage	Ids(ofF)	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V}$	$V_{D S}=10 \mathrm{~V}$	0.4				10			nA	
			$V_{D S}=15 \mathrm{~V}$	0.7						10		
			$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}$	0.9		10						
		$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V} \\ T_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{gathered}$	$V_{D S}=10 \mathrm{~V}$	0.4				5			$\mu \mathrm{A}$	
			$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}$	0.7						5		
			$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}$	0.9		5						
Source-Drain Leakage	$I_{\text {SD (OFF) }}$	$\mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V}$	$\mathrm{V}_{\text {SD }}=10 \mathrm{~V}$	0.5				10			nA	
			$\mathrm{V}_{\text {SD }}=15 \mathrm{~V}$	0.7						10		
			$\mathrm{V}_{\mathrm{SD}}=20 \mathrm{~V}$	1		10						
		$\begin{gathered} V_{G D}=V_{B D}=-5 \mathrm{~V} \\ T_{A}=125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\text {SD }}=10 \mathrm{~V}$	0.5				5			$\mu \mathrm{A}$	
			$\mathrm{V}_{\text {SD }}=15 \mathrm{~V}$	0.7						5		
			$\mathrm{V}_{\mathrm{SD}}=20 \mathrm{~V}$	1		5						
Gate Leakage	IGss	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\text {SB }}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{GS}}=25 \mathrm{~V}$					1				
			$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}$			1				1		
		$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{SB}}=0 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\mathrm{GS}}=25 \mathrm{~V}$					10				
			$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}$			10				10		
Zero Gate Voltage Drain Current	I DSs	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0 \mathrm{~V}$				10						
Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$\begin{gathered} V_{D S}=V_{G S}=V_{G S(\text { th) })}, I_{D}=1 \mu \mathrm{~A} \\ V_{S B}=0 V \end{gathered}$		0.7	0.1	2	0.1	2	0.1	2	V	
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(ON }}$)	$\begin{gathered} V_{G S}=5 \mathrm{~V}, I_{D}=1 \mathrm{~mA} \\ V_{B S}=0 \mathrm{~V} \end{gathered}$		58		70		70		70	Ω	
DYNAMIC												
$\begin{aligned} & \text { Forward } \\ & \text { Transconductance }{ }^{3} \end{aligned}$	g_{fs}	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{S B}=0 \mathrm{~V} \\ & I_{D}=20 \mathrm{~mA}, f=1 \mathrm{kHz} \end{aligned}$		11							mS	
$\begin{aligned} & \text { Output } \\ & \text { Conductance }{ }^{3} \end{aligned}$	g os			0.9								
Gate Node Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ V_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-15 \mathrm{~V} \end{gathered}$		2.5		3.5		3.5		3.5	pF	
Reverse Transfer Capacitance	$C_{\text {rss }}$			0.2		0.5		0.5		0.5		
SWITCHING												
Turn-ON Time	$\mathrm{t}_{\mathrm{d}}(\mathrm{ON})$	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, R_{L}=680 \Omega \\ & V_{I N}=5 \mathrm{~V}, R_{G}=50 \Omega \end{aligned}$		0.5		1		1		1	ns	
	t_{r}			0.6		1		1		1		
Turn-OFF Time ${ }^{3}$	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$			2								
	t_{f}			6								

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. This parameter not registered with JEDEC.

N-Channel Lateral DMOS FETs

The SD210DE Series of single-pole, single-throw analog switches is designed for high speed switching in audio, video, and high-frequency applications. These devices are designed on the Siliconix DMOS process and utilize lateral construction to achieve low capacitance and ultra-fast switching speeds. For long term reliability, this series also features a poly-silicon gate.

For additional design information please see performance curves DMCB, which are located in Section 7.

SIMILAR PRODUCTS

- Quad Array, See SD5000 Series
- SO-14 Array, See SD5400 Series
- Zener Protection, See SD211DE Series
- SOT-143, See SST211 Series

TO-72
BOTTOM VIEW

1 SOURCE
2 DRAIN
3 GATE
4 SUBSTRATE, CASE

- Chips, Order SD21XCHP

PART NUMBER	$V_{(B R) D S}$ MAX (V)	$r_{\text {ds }}(\mathrm{ON})$ MAX (Ω)	$C_{\text {rss }}$ MAX (pF)	ION MAX (ns)
SD210DE	20	45	0.5	2
SD212DE	10	45	0.5	2
SD214DE	15	45	0.5	2

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS							
	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	SD210DE		SD212DE		SD214DE		UNIT
PARAMETER				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

DYNAMIC

Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{S B}=0 \mathrm{~V} \\ & I_{D}=20 \mathrm{~mA}, f=1 \mathrm{kHz} \end{aligned}$	11	10		10		10		ms
Output Conductance	g os		0.9							
Gate Node Capacitance	C (GS+GD+GB)	$\begin{gathered} V_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-15 \mathrm{~V} \end{gathered}$	2.5		3.5		3.5		3.5	pF
Drain Node Capacitance	$C_{(G D+D B)}$		1.1		1.5		1.5		1.5	
Source Node Capacitance	$C_{(G S+S B)}$		3.7		5.5		5.5		5.5	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		0.2		0.5		0.5		0.5	

SWITCHING

Turn-ON Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{gathered} V_{D D}=5 \mathrm{~V}, R_{L}=680 \Omega \\ V_{\mathbb{N}}=0 \text { to } 5 \mathrm{~V} \end{gathered}$	0.5	1	1	1	ns
	t_{r}		0.6	1	1	1	
Turn-OFF Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		2				
	t_{f}		6				

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.

N-Channel Lateral DMOS FETs

The SD211DE Series of single-pole, single-throw analog switches is designed for high speed switching in audio, video, and high-frequency applications. These devices are designed on the Siliconix DMOS process and utilize lateral construction to achieve low capacitance and ultra-fast switching speeds. This series also features an integrated zener diode designed to protect the gate from electrical "Spikes" or overstress.

For additional design information please see performance curves DMCB, which are located in Section 7.

SIMILAR PRODUCTS

- Quad Array, See SD5000 Series
- SO-14 Array, See SD5400 Series
- SOT-143, See SST211 Series
- Chips Order, SD21XCHP

PART NUMBER	$\mathbf{V}_{(\mathrm{BR}) \mathrm{DS}}$ MAX (V)	$\mathrm{r}_{\text {ds }}(\mathrm{ON})$ MAX (Ω)	$\mathbf{C}_{\text {rss }}$ MAX (pF)	\mathbf{t}_{ON} MAX (ns)
SD211DE	10	45	0.5	2
SD213DE	10	45	0.5	2
SD215DE	20	45	0.5	2

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT			UNITS
		SD211DE	SD213DE	SD215DE	
Gate-Source, Gate-Drain Voltage	$V_{G S}, V_{G D}$	-30/25	-15/25	-25/30	V
Gate-Substrate Voltage	$V_{G B}{ }^{1}$	-0.3/25	-0.3/25	-0.3/30	
Drain-Source Voltage	$V_{D S}$	30	10	20	
Source-Drain Voltage	$V_{S D}$	10	10	20	
Drain-Substrate Voltage	$V_{\text {DB }}$	30	15	25	
Source-Substrate Voltage	$V_{S B}$	15	15	25	
Drain Current	$1{ }^{\text {D }}$	50	50	50	mA
Power Dissipation ($25^{\circ} \mathrm{C}$ Case)	P_{D}	1200	1200	1200	mW
Power Derating		9.6	9.6	9.6	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 150			${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 200			
Lead Temperature (1/16" from case for 10 seconds)	TL	300			

${ }^{1}$ This series features an internal zener diode for gate protection

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.

SD/SST2100 SERIES

N-Channel Depletion-Mode Lateral DMOS FETs

The SD/SST2100 Series is a depletion-mode MOSFET which utilizes our lateral DMOS process to provide low capacitance, fast switching, and high operating frequency. This DMOS process effectively bridges the operating frequency gap between JFETs and costly gallium-arsenide devices. Additionally, this series is available in both a TO-72 hermetically sealed can as well as the SOT-143 package for commercial applications.

For additional design information please see performance curves DMCD, which are located in Section 7. Application hints can be found in LPD-12 (See Section 9).

PART NUMBER	$\mathrm{V}_{(B R) D S}$ MAX (V)	$\mathrm{r}_{\text {ds }(\mathrm{ON})}$ MAX (Ω)	Crss MAX (pF)	$\mathbf{t}_{\text {ON }}$ TYP (ns)
SD2100	15	50	2	1.1
SST2100	15	50	2	1.1

SIMILAR PRODUCTS

- Chips, Order SD2100CHP

SOT-143

TOP VIEW

1 GATE
2 DRAIN
3 SOURCE
4 SUBSTRATE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT		UNITS
		SD2100	SST2100	
Gate-Source Voltage	$V_{G S}$	± 25	± 25	V
Drain-Source Voltage	$V_{D S}$	25	25	
Drain Current	$I^{\text {D }}$	50	50	mA
Power Dissipation ($T_{A}=25^{\circ} \mathrm{C}$)	P_{D}	350	350	mW
Power Derating		2.8	2.8	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	-55 to 150		${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150		
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300		

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS				
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	SD/SST2100		UNIT	
				MIN	MAX			
STATIC								
Drain-Source Breakdown Voltage	$V_{\text {(BR) } \mathrm{DS}}$	$V_{G S}=V_{B S}=-5 V, I_{D}=1 \mu \mathrm{~A}$			25	15		V
Gate Reverse Current	1 gss	$V_{G S}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{BS}}=0 \mathrm{~V}$		± 0.05		± 1	nA	
Saturation Drain Current	IDSs	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0 \mathrm{~V}$		7	0.5	10	mA	
Gate-Source Cutoff	$\mathrm{V}_{\text {GS (OFF) }}$	$\begin{gathered} V_{D S}=10 V, I_{D}=1 \mu \mathrm{~A} \\ V_{B S}=0 V \end{gathered}$		-1.5		-2	V	
Gate-Source Voltage	$V_{G S}$	$\begin{aligned} & V_{D G}=10 \mathrm{~V} \\ & V_{B S}=0 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$	-0.3	-1	1		
			$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	0.4	0	1.5		
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(ON) }}$	$\begin{gathered} \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{BS}}=0 \mathrm{~V} \end{gathered}$	$V_{G S}=0 \mathrm{~V}$	120		200	Ω	
			$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$	40		50		
DYNAMIC								
Forward Transconductance	g_{fs}	$\begin{gathered} V_{D S}=10 \mathrm{~V}, V_{G S}=V_{B S}=0 \mathrm{~V} \\ f=1 \mathrm{kHz} \end{gathered}$		8000	1000		$\mu \mathrm{S}$	
Output Conductance	g os			250		500		
Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, V_{B S}=0 \mathrm{~V} \\ & I_{D}=10 \mathrm{~mA}, f=1 \mathrm{kHz} \end{aligned}$		10000	7000			
Output Conductance	g os			350		500		
Common-Source Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V} \end{gathered}$		5		6	pF	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			1		2		
SWITCHING								
Turn-ON Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{gathered} V_{D D}=5 \mathrm{~V}, R_{L}=680 \Omega \\ V_{I N}=-4 \mathrm{~V} \text { to }-2 \mathrm{~V} \end{gathered}$		0.7			ns	
	t_{r}			0.4				
Turn-OFF Time	${ }^{\text {t OFF }}$			5				

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.

N-Channel Lateral DMOS Quad FETs

The Siliconix SD5000 Series is a monolithic array of single-pole, single-throw analog switches designed for high speed switching in audio, video and high-frequency applications in communications, instrumentation, and process control. Designed on the Siliconix DMOS process, the SD5000 is rated for analog signals of $\pm 10 \mathrm{~V}$, while the SD5001 and SD5002 are rated for $\pm 5 \mathrm{~V}$ and $\pm 7.5 \mathrm{~V}$ respectively.

These bidirectional switches feature very low interelectrode capacitance and on-resistance to

PART NUMBER	PACKAGE	$\mathrm{V}_{\text {GS(TH) }}$ MAX (V)	$\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$ MAX $^{(\Omega)}$	t_{ON} MAX (ns)
SD5000N	PLASTIC	2.0	70	2
SD5001N	PLASTIC	2.0	70	2
SD5002N	PLASTIC	2.0	70	2
SD50001	CERAMIC	2.0	70	2
SD50011	CERAMIC	2.0	70	2
SD50021	CERAMIC	2.0	70	2

For additional design information please see performance curves DMCA-1B, which are located in Section 7.

SIMILAR PRODUCTS

- SO-14, See SD5400 Series
- TO-18, See SD211DE Series
- SOT-143, See SST211 Series
- Chips, Order SD500XCHP

16-PIN DIP QUAD PLASTIC

16-PIN DIP SIDE BRAZE QUAD

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT			UNITS	
		SD5000	SD5001	SD5002			
Gate-Source, Gate-Drain Voltage			$\mathrm{V}_{\mathrm{GS}}, \mathrm{V}_{\mathrm{GD}}$	30/-25	25/-15	30/-22.5	V
Drain-Substrate, Source-Substrate Voltage		$V_{D B}, V_{S B}$	25	15	22.5		
Drain-Source, Source-Drain Voltage		$V_{D S}, V_{S D}$	20	10	15		
Gate-Substrate Voltage 1		$V_{G B}$	30/-0.3	25/-0.3	30/-0.3		
Drain Current		1 D	50			mA	
Power Dissipation	Package	PD	640			mW	
	Each Device			300			
Power Derating (Package)			5.12			$\mathrm{mW} /{ }^{\circ} \mathrm{C}$	
Operating Junction Temperature		TJ	-55 to 125			${ }^{\circ} \mathrm{C}$	
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 150				
Lead Temperature ($1 / 16^{"}$ from case for 10 seconds)		T_{L}	300				

[^7]SD5000 SERIES
ELECTRICAL CHARACTERISTICS ${ }^{1}$

PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	SD5000		SD5001		SD5002		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	

STATIC

Drain-Source Breakdown Voltage	$V_{\text {(BR)DS }}$	$V_{G S}=V_{B S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$		30	20		10		15		V
Source-Drain Breakdown Voltage	$V_{(B R) S D}$	$V_{G D}=V_{B D}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{nA}$		22	20		10		15		
Drain-Substrate Breakdown Voltage	$V_{(B R) D B}$	$\begin{array}{ll} V_{G B}=0 \mathrm{~V} & \text { Source OPEI } \\ I_{D}=10 \mathrm{nA} & \\ \hline \end{array}$		35	25		15		22.5		
Source-Substrate Breakdown Voltage	$V_{(B R) S B}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{GB}}=0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=10 \mu \mathrm{~A} & \text { Drain OPEN } \end{array}$		35	25		15		22.5		
Drain-Source Leakage	Ids(off)	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$	0.9		10					nA
			$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	0.4				10			
			$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$	0.7						10	
Source-Drain Leakage	$I_{\text {SD (OFF) }}$	$V_{G D}=V_{B D}=-5 \mathrm{~V}$	$\mathrm{V}_{\text {SD }}=20 \mathrm{~V}$	1		10					
			$\mathrm{V}_{\text {SD }}=10 \mathrm{~V}$	0.5				10			
			$\mathrm{V}_{\text {SD }}=15 \mathrm{~V}$	0.8						10	
Gate Leakage	$I_{\text {GBS }}$	$\mathrm{V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GB}}=30 \mathrm{~V}$		10^{-5}		1		1		1	$\mu \mathrm{A}$
Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{GS}(\mathrm{th})}, \mathrm{I}_{\mathrm{S}}=1 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \end{gathered}$		0.7	0.1	2.0	0.1	2.0	0.1	2.0	V
Drain-Source On-Resistance	ros(ON)	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$	58		70		70		70	Ω
			$\mathrm{V}_{\text {GS }}=10 \mathrm{~V}$	38							
			$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}$	30							
			$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$	26							
Resistance Match		$\begin{gathered} \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \end{gathered}$		1		5		5		5	

DYNAMIC

Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{S B}=0 \mathrm{~V} \\ & I_{D}=20 \mathrm{~mA}, f=1 \mathrm{kHz} \end{aligned}$	11	10		10		10		mS
Gate Node Capacitance	C (GS+GD+GB)	$\begin{gathered} V_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-15 \mathrm{~V} \end{gathered}$	2.5		3.5		3.5		3.5	pF
Drain Node Capacitance	C (GD+DB)		1.1		1.6		1.6		1.6	
Source Node Capacitance	$C_{(G S+S B)}$		3.7		5		5		5	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		0.2		0.5		0.5		0.5	
Crosstalk		$f=3 \mathrm{kHz}$, See Test Circuits in DMCA Performance Curves	-107							dB

SWITCHING

Turn-ON Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{gathered} V_{D D}=5 \mathrm{~V}, R_{L}=680 \Omega \\ V_{I N}=5 \mathrm{~V} \end{gathered}$	0.5	1	1	1	ns
	t_{r}		0.6	1	1	1	
Turn-OFF Time	t_{d} (OFF)		2				
	${ }_{f}$		6				

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.

N-Channel Lateral DMOS Quad FETs

The Siliconix SD5400 series is a monolithic array of single-pole, single-throw analog switches designed for high-speed switching in audio, video and high frequency applications in communications, instrumentation, and process control. Designed with the Siliconix DMOS process, the SD5400 is rated for analog signals of $\pm 10 \mathrm{~V}$, while the SD5401 and SD5402 are rated for $\pm 5 \mathrm{~V}$ and $\pm 7.5 \mathrm{~V}$ respectively.

PART NUMBER	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DS}}$ MIN (V)	$\mathrm{V}_{\text {GS }(\mathrm{TH})}$ MAX (V)	$\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$ MAX (Ω)	t ON MAX (ns)
SD5400CY	20	2.0	70	2
SD5401CY	10	2.0	70	2
SD5402CY	15	2.0	70	2

These bidirectional switches feature very low -interelectrode capacitance and on-resistance to achieve low insertion loss, crosstalk, and feedthrough performance. The threshold voltage for all switches is 2 V maximum, simplifying driver requirements for low level signal applications.

For additional design information please see performance curves DMCA, which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See SD211DE Series

TOP VIEW

- 16-Pin DIP, See SD5000 Series
- SOT-143, See SST211 Series
- Chips, Order SD540XCHP

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT			UNITS	
		SD5400	SD5401	SD5402			
Gate-Source, Gate-Drain Voltage			$\mathrm{V}_{\mathrm{GS}}, \mathrm{V}_{\mathrm{GD}}$	30/-25	25/-15	30/-22.5	V
Drain-Substrate, Source-Substrate Voltage		$V_{D B}, V_{S B}$	25	15	22.5		
Drain-Source, Source-Drain Voltage		$V_{D S}, V_{S D}$	20	10	15		
Gate-Substrate Voltage 1		$V_{G B}$	30/-0.3	25/-0.3	30/-0.3		
Drain Current		$1{ }^{\text {D }}$	50			mA	
Power Dissipation	Package	PD	500			mW	
	Each Device			300			
Power Derating (Package)			5			$\mathrm{mW} /{ }^{\circ} \mathrm{C}$	
Operating Junction Temperature		TJ	-55 to 125			${ }^{\circ} \mathrm{C}$	
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to 125				
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300				

${ }^{1}$ These devices feature an internal Zener protected gate.

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	SD5400CY		SD5401CY		SD5402CY		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
StATIC												
Drain-Source Breakdown Voltage	$V_{\text {(BR) }}$ DS	$V_{G S}=V_{B S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$			30	20		10		15		V
Source-Drain Breakdown Voltage	$V_{\text {(BR) }}$ SD	$V_{G D}=V_{B D}=-5 \mathrm{~V}, I_{S}=10 \mathrm{nA}$		22	20		10		15			
Drain-Substrate Breakdown Voltage	$V_{(B R) D B}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GB}}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA} \end{aligned}$		35	25		15		22.5			
Source-Substrate Breakdown Voltage	$V_{(B R) S B}$	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{GB}}=0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=10 \mu \mathrm{~A} & \text { Drain OPE } \\ \hline \end{array}$		35	25		15		22.5			
Drain-Source Leakage	IDS(OFF)	$V_{G S}=V_{B S}=-5 V$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$	0.9		10					nA	
			$V_{D S}=10 \mathrm{~V}$	0.4				10				
			$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}$	0.7						10		
Source-Drain Leakage	$I_{\text {SD (OFF) }}$	$V_{G D}=V_{B D}=-5 \mathrm{~V}$	$\mathrm{V}_{\text {SD }}=20 \mathrm{~V}$	1		10						
			$\mathrm{V}_{\text {SD }}=10 \mathrm{~V}$	0.5				10				
			$\mathrm{V}_{\text {SD }}=15 \mathrm{~V}$	0.8						10		
Gate Leakage	$I_{\text {GBS }}$	$V_{D B}=V_{S B}=0 \mathrm{~V}, \mathrm{~V}_{G B}=30 \mathrm{~V}$		10^{-5}		1		1		1	$\mu \mathrm{A}$	
Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$\begin{gathered} V_{D S}=V_{G S}=V_{G S(\text { th })}, I_{S}=1 \mu \mathrm{~A} \\ V_{S B}=0 V \end{gathered}$		0.7	0.1	2	0.1	2	0.1	2	V	
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(ON) }}$	$\begin{aligned} & I_{D}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$	58		70		70		70	Ω	
			$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	38								
			$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}$	30								
			$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$	26								
Resistance Match		$\begin{gathered} \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \end{gathered}$		1		5		5		5		
DYNAMIC												
Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V} \\ & I_{D}=20 \mathrm{~mA}, f \end{aligned}$	$\begin{aligned} & \mathrm{SB}=0 \mathrm{~V} \\ & =1 \mathrm{kHz} \end{aligned}$	11	10		10		10		mS	
Gate Node Capacitance	C (GS+GD+GB)	$\begin{gathered} V_{D S}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-15 \mathrm{~V} \end{gathered}$		2.5		3.5		3.5		3.5	pF	
Drain Node Capacitance	$C_{(G D+D B)}$			1.1		2		2		2		
Source Node Capacitance	$\mathrm{C}_{(\mathrm{GS}+\mathrm{SB})}$			3.7		6		6		6		
Reverse Transfer Capacitance	$C_{\text {rss }}$			0.2		0.5		0.5		0.5		
Crosstalk		$f=3 \mathrm{kHz}$, See Test Circuits in DMCA Performance Curves		-107							dB	
SWITCHING												
Turn-ON Time	$\mathrm{t}_{\mathrm{d}}(\mathrm{ON})$	$\begin{gathered} V_{D D}=5 \mathrm{~V}, R_{L}=680 \Omega \\ V_{\mathbb{N}}=5 \mathrm{~V} \end{gathered}$		0.5		1		1		1	ns	
	t_{r}			0.6		1		1		1		
Turn-OFF Time	$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{OFF})}$			2								
	t_{f}			6								

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.

DMOS Double-Balanced Mixers

The Si8901 Ring Demodulator/Balanced Mixer offers significant improvements for RF mixer application where low third order harmonic distortion has been a problem. Combining matching with very low junction capacitance, ($<3 \mathrm{pF}$), low on-resistance (30Ω) and very high off-resistance ($>10^{9} \Omega$), the

PART NUMBER	PACKAGE	$\mathbf{V}_{(B R) D S}$ MIN (V)	$\mathrm{V}_{\text {GS }}($ th $)$ MAX (V)	$\mathrm{r}_{\text {ds (ON) }}$ MAX (Ω)
Si8901A	TO-78	15	2.0	70
Si8901CY	SO-14	15	2.0	70

SIMILAR PRODUCTS

- Chips, order Si8901CHP

TO-78

ABSOLUTE MAXIMUM RATINGS (TA $=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT		UNITS
		Si8901A	Si8901CY	
Gate-Source, Gate-Drain Voltage	$\mathrm{V}_{G S}, \mathrm{~V}_{\mathrm{GD}}$	30/-22.5	30/-22.5	V
Drain-Substrate, Source-Substrate Voltage	$V_{D B}, V_{S B}$	22.5	22.5	
Drain-Source Voltage	$V_{D S}$	15	15	
Gate-Substrate Voltage 1	$V_{G B}$	30/-0.3	30/-0.3	
Drain Current	$1{ }^{\text {d }}$	50		mA
Power Dissipation (Package)	PD	500		mW
Power Derating		5		$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 125		${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 150		
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300		

${ }^{1}$ These devices feature an internal Zener protected gate.

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	Si8901A		Si8901CY		UNIT	
				MIN	MAX	MIN	MAX			
STATIC										
Draln-Source Breakdown Voltage	$V_{(B R) D S}$	$V_{G S}=V_{B S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$			30	15		15	-	V
Source-Drain Breakdown Voltage	$V_{(B R) S D}$	$\mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{nA}$		22	15		15			
Draln-Substrate Breakdown Voltage	$V_{(B R) D B}$	$\begin{array}{ll} V_{G B}=0 \mathrm{~V} & \text { Source OPEN } \\ I_{D}=10 \mathrm{nA} & \end{array}$		35	22.5		22.5			
Source-Substrate Breakdown Voltage	$V_{(B R) S B}$	$\begin{array}{ll}\mathrm{V}_{\mathrm{GB}}=0 \mathrm{~V} \\ \mathrm{IS}_{\mathrm{S}}=10 \mathrm{nA} & \text { Drain OPEN }\end{array}$		35	22.5		22.5			
Drain-Source Leakage	Ids(off)	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}$		0.7					nA	
Source-Drain Leakage	$I_{\text {SD (OFF) }}$	$\mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=15 \mathrm{~V}$		0.8						
Gate Leakage	$I_{\text {GBS }}$	$\mathrm{V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GB}}=30 \mathrm{~V}$		0.01		2		2	$\mu \mathrm{A}$	
Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	$\begin{gathered} V_{D S}=V_{G S}=V_{G S(t h)}, I_{S}=1 \mu \mathrm{~A} \\ V_{S B}=0 V \end{gathered}$		0.7	0.1	2	0.1	2	V	
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(ON) }}$	$\begin{aligned} & I_{D}=10 \mathrm{~mA} \\ & V_{S B}=0 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$	60		75		75	Ω	
			$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	40						
			$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}$	33						
			$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$	29						
Resistance Match		$\begin{gathered} \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \end{gathered}$		1		7		7		
DYNAMIC										
$\mathrm{LO}_{1}-\mathrm{LO}_{2}$ Capacitance	C_{gg}	$\begin{gathered} V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=-5.5 \mathrm{~V} \\ V_{G S}=4 \mathrm{~V} \end{gathered}$		4.4					pF	
Conversion Loss	L_{c}	See Figure 1, $\mathrm{P}_{\text {LO }}=+17 \mathrm{dBm}$		8					dB	
Third Order Intercept	$1 \mathrm{MD}_{3}$			35						
Maximum Operation Frequency	$f_{\text {MAX }}$			250					MHz	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.

N-Channel Lateral DMOS FETs

The SST211 Series is a single-pole, single-throw analog switch designed for high speed switching in audio, video, and high-frequency applications. These devices are designed on the Siliconix DMOS process and utilize lateral construction to achieve low capacitance and ultra-fast switching speeds. These devices also feature an integrated Zener diode designed to protect the gate from electrical "spikes" or overstress.

For additional design information please see performance curves DMCB, which are located in Section 7.

SIMILAR PRODUCTS

- TO-18, See SD211DE Series
- Quad Array, See SD5000 Series
- SO-14 Array, See SD5400 Series
- Chips, Order SD21XCHP

PART NUMBER	$\mathrm{V}_{(\mathrm{BR}) \text { DS }}$ MAX (V)	$\mathrm{r}_{\text {ds }(\mathrm{ON})}$ MAX (Ω)	$\mathrm{C}_{\text {rss }}$ MAX (pF)	$\mathrm{t}_{\text {ON }}$ MAX (ns)
SST211	10	50	0.5	2
SST213	10	50	0.5	2
SST215	20	50	0.5	2

SOT-143

TOP VIEW

1 SOURCE
2 DRAIN
3 GATE
4 SUBSTRATE

PRODUCT MARKING	
SST211	D11
SST213	D13
SST215	D15

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT			UNITS
		SST211	SST213	SST215	
Gate-Source, Gate-Drain Voltage	$\mathrm{V}_{\mathrm{GS}}, \mathrm{V}_{\mathrm{GD}}$	-30/25	-15/25	-25/30	V
Gate-Substrate Voltage ${ }^{1}$	$V_{G B}$	-0.3/25	-0.3/25	-0.3/30	
Drain-Source Voltage	$V_{D S}$	30	10	20	
Source-Drain Voltage	$V_{S D}$	10	10	20	
Drain-Substrate Voltage	$V_{D B}$	30	15	25	
Source-Substrate Voltage	$V_{S B}$	15	15	25	
Drain Current	10	50	50	50	mA
Power Dissipation	P_{D}	350	350	350	mW
Power Derating		2.8	2.8	2.8	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-55 to 150			${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 150			
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)	T_{L}	300			

${ }^{1}$ These devices feature an internal Zener diode

SST211 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS								
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	SST211		SST213		SST215		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX			
STATIC												
Drain-Source Breakdown Voltage	$V_{(B R) D S}$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$			35	30						V
		$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{nA}$		30	10		10		20			
Source-Drain Breakdown Voltage	$V_{\text {(BR) }}$ SD	$\mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$		22	10		10		20			
Drain-Substrate Breakdown Voltage	$V_{(B R) D B}$	$V_{G B}=0 \mathrm{~V}$ Source OPEN		35	15		15		25			
Source-Substrate Breakdown Voltage	$V_{(B R) S B}$	$\mathrm{V}_{\mathrm{GB}}=0 \mathrm{~V}$$\mathrm{IS}_{\mathrm{S}}=10 \mu \mathrm{~A}$$\quad$ Drain OPEN		35	15		15		25			
Drain-Source Leakage	Ids(off)	$V_{G S}=V_{B S}=-5 \mathrm{~V}$	$V_{D S}=10 \mathrm{~V}$	0.4		10		10			nA	
			$\mathrm{V}_{D S}=20 \mathrm{~V}$	0.9						10		
Source-Drain Leakage	IsD(OFF)	$\mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=-5 \mathrm{~V}$	$V_{S D}=10 \mathrm{~V}$	0.5		10		10				
			$\mathrm{V}_{\text {SD }}=20 \mathrm{~V}$	1						10		
Gate Leakage	$I_{\text {GBS }}$	$\mathrm{V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GB}}= \pm 25 \mathrm{~V}$		10^{-5}		10		10		10	$\mu \mathrm{A}$	
Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	$\begin{gathered} V_{D S}=V_{G S}=V_{G S(t h)}, I_{S}=1 \mu \mathrm{~A} \\ V_{S B}=0 V \end{gathered}$		0.7	0.5	2	0.1	2	0.1	2	V	
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(ON) }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$	58		75		75		75	Ω	
			$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	38		50		50		50		
			$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}$	30								
			$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$	26								
			$\mathrm{V}_{\mathrm{GS}}=25 \mathrm{~V}$	24								
DYNAMIC												
Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{S B}=0 \mathrm{~V} \\ & I_{D}=20 \mathrm{~mA}, f=1 \mathrm{kHz} \end{aligned}$		11	9		9		9		mS	
Output Conductance	g os			0.9								
Gate Node Capacitance	C (GS+GD+GB)	$\begin{gathered} V_{D S}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=-15 \mathrm{~V} \end{gathered}$		2.5		3.5		3.5		3.5	pF	
Drain Node Capacitance	$C_{(G D+D B)}$			1.1		1.5		1.5		1.5		
Source Node Capacitance	$C_{(G S+S B)}$			3.7		6		6		6		
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			0.2		0.5		0.5		0.5		
SWITCHING												
Turn-ON Time	$\mathrm{t}_{\mathrm{d}}(\mathrm{ON})$	$\begin{gathered} V_{D D}=5 \mathrm{~V}, R_{L}=680 \Omega \\ V_{\mathbb{I N}}=0 \text { to } 5 \mathrm{~V} \end{gathered}$		0.5		1		1		1	ns	
	t_{r}			0.6		1		1		1		
Turn-OFF Time	$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{OFF})}$			2								
	t_{f}			6								

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
*

Cross Reference Selector Guide JFETs DMOS
Low Power MOS

Performance Curves

Package Outlines
Applications
Worldwide Sales Offices and Distributors

LOW POWER MOS

INTRODUCTION

Low Power MOS products from Siliconix utilize a vertical DMOS process to offer a wide range of both n- and p-channel Enhancement-mode and n-channel Depletion-mode devices. The vertical structure allows high breakdown voltage, low on-resistance, low capacitance, and fast switching. Inherent in its MOS process, these devices also feature a high-impedance gate and freedom from the thermal runaway typically associated with bipolar devices.

To meet a wide range of applications Siliconix' Low Power MOS product line features n-channel Enhancement-mode devices with breakdown voltages ranging from $30-500$ volts, onresistance as low as 1.2Ω, and many devices with threshold voltages less than 2.5 volts. Pchannel devices designed to complement n-channel products are offered with breakdown voltage ranging from $30-240$ volts, on-resistance as low as 1.8Ω, and a family of low threshold devices again with threshold voltages less than 2.5 volts.

A recent unique addition to this product line was a family of high voltage n-channel Depletionmode products. This series features normally "on" operation, breakdown voltage up to 240 volts, and on-resistance as low as 6Ω. Depletion-mode performance is perfect for use in telecommunications and industrial process control applications.

Packaging options are diverse and include SOT-23, TO-92, TO-237, and 14-pin DIPs for commercial applications and TO-39, TO-52, and 14-pin ceramic packages for demanding industrial or military applications. Full military processing is available per MIL-S-19500 on all hermetically sealed packages.

For additional technical information please see "High-Side Switching" (LPD-17), "Depletionmode Applications" (LPD-18), "Logic compatable MOS" (LPD-19), and "FETs in Telecom" (LPD-16). These application notes are located in section nine and provide useful design tips and device information.

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
35	1.8	1.4	TO-205AD

Performance Curves: VNDQ06 (See Section 7)

1 SOURCE
2 GATE
3 DRAIN \& CASE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{TC}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	2N6659	UNITS
Drain-Source Voltage		$V_{D S}$	35	V
Gate-Source Voltage		$V_{G S}$	± 20	
Continuous Drain Current ${ }^{1}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	1.4	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		1	
Pulsed Drain Current ${ }^{1}$		$I_{\text {DM }}$	3	
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD	6.25	W
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		2.5	
Operating Junction Temperature		T_{j}	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature ${ }^{2}$		$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	2N6659	UNITS
Junction-to-Ambient ${ }^{2}$	$R_{\text {thJA }}$	170	
Junction-to-Case	$R_{\text {thJc }}$	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^8]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | | TYP ${ }^{2}$ | 2N6659 | | UNIT |
| | | | | | MIN | MAX | |
| STATIC | | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{(B R) D S S}$ | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$ | | | | 70 | 35 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\text {GS(th) }}$ | $V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$ | | | 1.5 | 0.8 | 2 | | |
| Gate-Body Leakage | IGss | $\begin{aligned} & V_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$ | | 125° | ± 1 | | ± 100 +500 | nA | |
| Zero Gate Voltage Drain Current | Ioss | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ | $\mathrm{V}_{\text {DS }}=35 \mathrm{~V}$ | | 0.05 | | 10 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | | 0.3 | | 500 | | |
| On-State Drain Current ${ }^{3}$ | $I_{\text {D(ON })}$ | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}$ | | | 1.8 | 1.5 | | A | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON }}$ | ${ }^{4} \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$ | | | 1.8 | | 5 | Ω | |
| | | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=1 \mathrm{~A} \end{aligned}$ | | | 1.3 | | 1.8 | | |
| | | | | ${ }^{4} \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 2.6 | | 3.6 | | |
| Drain-Source On-Voltage ${ }^{3}$ | $\mathrm{V}_{\text {DS(ON) }}$ | $4 \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$ | | | 0.54 | | 1.5 | V | |
| | | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=1 \mathrm{~A} \end{aligned}$ | | | 1.3 | | 1.8 | | |
| | | | | ${ }^{4} \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 2.6 | | 3.6 | | |
| Forward
 Transconductance ${ }^{3}$ | g_{FS} | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | | | 350 | 170 | | mS | |
| Common Source Output Conductance ${ }^{3,4}$ | gos | $V_{D S}=10 \mathrm{~V}, I_{D}=0.1 \mathrm{~A}$ | | | 1100 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | | |
| Small Signal DrainSource On-Resistance | $\mathrm{r}_{\text {ds }}(\mathrm{ON})$ | $\begin{gathered} V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$ | | | 1.3 | | 1.8 | Ω | |
| Drain-Source Capacitance | $C_{\text {ds }}$ | $\begin{aligned} & V_{D S}= 24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ | | | 30 | | 40 | pF | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{aligned} & V_{D S}=24 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ | | | 38 | | 50 | | |
| Output Capacitance ${ }^{4}$ | $\mathrm{C}_{\text {oss }}$ | | | | 28 | | 40 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | | 8 | | 10 | | |
| SWITCHING | | | | | | | | | |
| Turn-On Time | ${ }^{\text {t }} \mathrm{ON}$ | $\begin{gathered} V_{D D}=25 \mathrm{~V}, R_{L}=23 \Omega \\ I_{D}=1 \mathrm{~A}, \mathrm{~V}_{G E N}=10 \mathrm{~V}, R_{G}=25 \Omega \end{gathered}$
 (Switching time is essentially independent of operating temperature) | | | 8 | | 10 | ns | |
| Turn-Off Time | t OfF | | | | 9 | | 10 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=80 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.
4. This parameter not registered with JEDEC.

N-Channel Enhancement-Mode MOS Transistor

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
60	3	1.1	TO-205AD

Performance Curves: VNDQ06 (See Section 7)

TO-205AD (TO-39) BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN \& CASE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	2N6660	UNITS
Drain-Source Voltage		$V_{D S}$	60	V
Gate-Source Voltage		$V_{G S}$	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	1.1	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.8	
Pulsed Drain Current ${ }^{1}$		IDM	3	
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD	6.25	W
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		2.5	
Operating Junction Temperature ${ }^{2}$		Tj	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	2N6660	UNITS
Junction-to-Ambient ${ }^{2}$	$R_{\text {thJA }}$	170	
Junction-to-Case	$R_{\text {thJC }}$	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^9]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | | TYP ${ }^{2}$ | 2N6660 | | UNIT |
| | | | | | MIN | MAX | |
| STATIC | | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }{ }^{\text {dss }}}$ | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$ | | | | 70 | 60 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | $V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$ | | | 1.5 | 0.8 | 2 | | |
| Gate-Body Leakage | IGss | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$ | | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | ± 1 ± 5 | | ± 100 ± 500 | nA | |
| Zero Gate Voltage Drain Current | IDSs | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ | $\mathrm{V}_{\text {DS }}=60 \mathrm{~V}$ | | 0.05 | | 10 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{V}_{\text {DS }}=48 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | | 0.3 | | 500 | | |
| On-State Drain Current ${ }^{3}$ | $I_{\text {D(ON })}$ | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ | | | 1.8 | 1.5 | | A | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | ${ }^{4} \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$ | | | 1.8 | | 5 | Ω | |
| | | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=1 \mathrm{~A} \end{aligned}$ | | | 1.3 | | 3 | | |
| | | | | ${ }^{4} \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 2.6 | | 4.2 | | |
| Drain-Source On-Voltage ${ }^{3}$ | $\mathrm{V}_{\text {DS(ON) }}$ | $4 \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$ | | | 0.54 | | 1.5 | V | |
| | | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=1 \mathrm{~A} \end{aligned}$ | | | 1.3 | | 3 | | |
| | | | | ${ }^{4} \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 2.6 | | 4.2 | | |
| Forward Transconductance ${ }^{3}$ | $\mathrm{gFs}^{\text {f }}$ | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | | | 350 | 170 | | mS | |
| Common Source Output Conductance ${ }^{3,4}$ | gos | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$ | | | 1100 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | | |
| Small Signal DrainSource On-Resistance | $\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}$ | $\begin{gathered} V_{G S}=10 \mathrm{~V}, I_{D}=1 \mathrm{~A} \\ f=1 \mathrm{kHz} \end{gathered}$ | | | 1.3 | | 3 | Ω | |
| Drain-Source Capacitance | $C_{\text {ds }}$ | $\begin{gathered} V_{D S}=24 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHZ} \end{gathered}$ | | | 30 | | 40 | pF | |
| Input Capacitance | $C_{\text {iss }}$ | $\begin{aligned} & V_{\mathrm{DS}}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ | | | 38 | | 50 | | |
| Output Capacitance ${ }^{4}$ | $\mathrm{C}_{\text {oss }}$ | | | | 28 | | 40 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | | 8 | | 10 | | |
| SWITCHING | | | | | | | | | |
| Turn-On Time | t_{ON} | $\begin{gathered} V_{D D}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=23 \Omega \\ \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=25 \Omega \end{gathered}$
 (Switching time is essentially independent of operating temperature) | | | 8 | | 10 | ns | |
| Turn-Off Time | ${ }^{t}$ OFF | | | | 9 | | 10 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=80 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.
4. This parameter not registered with JEDEC

N-Channel Enhancement-Mode MOS Transistor

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
60	3	0.99	TO-205AD

Performance Curves: VNMA06 (See Section 7)

TO-205AD (TO-39)

1 SOURCE
2 GATE
3 DRAIN \& CASE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	2N6660	UNITS
Drain-Source Voltage		$V_{D S}$	60	V
Gate-Source Voltage		$V_{G S}$	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$I^{\text {D }}$	0.99	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.62	
Pulsed Drain Current ${ }^{1}$		IDM	3	
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD	6.25	W
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.725	
Operating Junction Temperature		Tj	-65 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 175	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	2N6660	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	170	
Junction-to-Case	$R_{\text {thJc }}$	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^10]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | | TYP ${ }^{2}$ | 2N6660 | | UNIT |
| | | | | | MIN | MAX | |
| STATIC | | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }}$ Dss | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$ | | | | 90 | 60 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | $\begin{aligned} & V_{D S}=V_{G S} \\ & I_{D}=1 \mathrm{~mA} \end{aligned}$ | | | 1.5 | 0.8 | 2 | | |
| | | | | $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ | 1.9 | | 2.5 | | |
| | | | | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 1 | 0.3 | | | |
| Gate-Body Leakage | IGss | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{aligned}$ | | | ± 1 | | ± 100 | nA | |
| | | | | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | ± 5 | | ± 100 | | |
| Zero Gate Voltage Drain Current | Idss | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ | $V_{D S}=48 \mathrm{~V}$ | | 0.0004 | | 1 | $\mu \mathrm{A}$ | |
| | | | | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 2 | | 100 | | |
| On-State Drain Current ${ }^{3,4}$ | ID(ON) | $\mathrm{V}_{\mathrm{DS}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ | | | 2 | | | A | |
| Drain-Source On-Resistance ${ }^{3,5}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\mathrm{V}_{G S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$ | | | 3.5 | | 5 | Ω | |
| | | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=1 \mathrm{~A} \end{aligned}$ | | | 2.25 | | 3 | | |
| | | | | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 4 | | 5.6 | | |
| Drain-Source On-Voltage ${ }^{3}$ | $V_{\text {DS(ON) }}$ | $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$ | | | 1.05 | | 1.5 | V | |
| | | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=1 \mathrm{~A} \end{aligned}$ | | | 2.25 | | 3 | | |
| | | | | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 4 | | 5.6 | | |
| Forward
 Transconductance ${ }^{3}$ | g_{FS} | $\mathrm{V}_{\mathrm{DS}}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.525 \mathrm{~A}$ | | | 275 | 170 | | mS | |
| Common Source Output Conductance ${ }^{3,4}$ | gos | $\mathrm{V}_{\mathrm{DS}}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$ | | | 900 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ | | | 30 | | 50 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | | 30 | | 40 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | | 5 | | 10 | | |
| SWITCHING | | | | | | | | | |
| Turn-On Time | ${ }^{\text {O }} \mathrm{ON}$ | ```\(V_{D D}=25 \mathrm{~V}, R_{L}=23 \Omega\) \(\mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V}\) \(R_{G}=50 \Omega\) (Switching time is essentially independent of operating temperature)``` | | | 7 | | 10 | ns | |
| Turn-Off Time | t OfF | | | | 6 | | 10 | | |

SOURCE-DRAIN DIODE RATINGS \& CHARACTERISTICS ${ }^{1}$			LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N6660		UNIT
				MIN	MAX	
Forward Voltage	$V_{S D}$	$\mathrm{I}_{\mathrm{S}}=0.99 \mathrm{~A}$	0.8	0.7	1.6	V

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=80 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.
4. This parameter not registered with MIL-Sं-19500/547A.
5. Not a measured value $r_{D S(O N)}=V_{D S(O N)} / I_{D}$.

N-Channel Enhancement-Mode MOS Transistor

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	rDS(ON) (Ω)	I_{D} (A)	PACKAGE
90	4	0.9	TO-205AD

ABSOLUTE MAXIMUM RATINGS ($\mathrm{TC}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	2N6661	UNITS
Drain-Source Voltage		$V_{D S}$	90	V
Gate-Source Voltage		$V_{G S}$	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	0.9	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.7	
Pulsed Drain Current ${ }^{1}$		IDM	3	
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD	6.25	W
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		2.5	
Operating Junction Temperature ${ }^{2}$		T	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		T stg	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	2N6661	UNITS
Junction-to-Ambient ${ }^{2}$	$R_{\text {thJA }}$	170	
Junction-to-Case	$R_{\text {thJc }}$	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^11]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | TYP ${ }^{2}$ | 2N6661 | | UNIT |
| | | | | MIN | MAX | |

STATIC

Drain-Source Breakdown Voltage	$V_{\text {(BR) }}$ DSs	$V_{G S}=0 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A}$			120	90		V
Gate Threshold Voltage	$V_{G S(t h)}$	$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$			1.6	0.8	2	
Gate-Body Leakage	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\pm \begin{aligned} & \pm 1 \\ & \pm 5\end{aligned}$		± 100 ± 500	nA
Zero Gate Voltage Drain Current	${ }^{\text {d }}$ DSs	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DS}}=90 \mathrm{~V}$		0.03		10	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {DS }}=72 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.3		500	
On-State Drain Current ${ }^{3}$	$I_{\text {d(ON }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$			1.8	1.5		A
Drain-Source On-Resistance ${ }^{3}$	$\left.\mathrm{r}_{\text {DS }} \mathrm{ON}\right)$	${ }^{4} \mathrm{~V}_{\text {GS }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$			4.2		5.3	Ω
		$\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A} \end{aligned}$			3.6		4	
				${ }^{4} \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	6.8		9	
Drain-Source On-Voltage ${ }^{3}$	$\mathrm{V}_{\text {DS(ON) }}$	${ }^{4} \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$			1.26		1.6	V
		$\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=1 \mathrm{~A} \end{aligned}$			3.6		4	
				${ }^{4} \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	6.8		9	
Forward Transconductance ${ }^{3,4}$	g_{FS}	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$			350	170		mS
Common Source Output Conductance ${ }^{3,4}$	gos	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$			225			$\mu \mathrm{S}$

DYNAMIC

Small Signal DrainSource On-Resistance	$\mathrm{r}_{\mathrm{ds}}(\mathrm{ON})$	$\begin{gathered} V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A} \\ f=1 \mathrm{kHz} \end{gathered}$	3.6	4	Ω
Drain-Source Capacitance	$C_{\text {ds }}$	$\begin{gathered} V_{D S}=24 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	30	40	pF
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{\mathrm{DS}}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	35	50	
Output Capacitance ${ }^{4}$	Coss		15	40	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		2	10	

SWITCHING

Turn-On Time	${ }^{\text {t }} \mathrm{ON}$	$\begin{gathered} V_{D D}=25 \mathrm{~V}, R_{L}=23 \Omega \\ I_{D}=1 \mathrm{~A}, V_{G E N}=10 \mathrm{~V}, R_{G}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)	6	10	ns
Turn-Off Time	${ }^{\text {t OFF }}$		8	10	

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=80 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.
4. This parameter not registered with JEDEC.

N-Channel Enhancement-Mode MOS Transistor

PRODUCT SUMMARY

$V_{\text {(BR)DSS }}$ (V)	$r_{\text {DS(ON) }}$ (Ω)	I_{D} (A)	PACKAGE
90	4	0.86	TO-205AD

Performance Curves: VNMA09 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	2N6661	UNITS
Drain-Source Voltage		$V_{D S}$	90	V
Gate-Source Voltage		$V_{G S}$	± 20	
Continuous Drain Current	$\mathrm{T}^{\text {c }}=25^{\circ} \mathrm{C}$	1 D	0.86	A
	$\mathrm{T}^{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.54	
Pulsed Drain Current ${ }^{1}$		IDM	3	
Power Dissipation	$\mathrm{T}^{\text {C }}=25^{\circ} \mathrm{C}$	PD	6.25	W
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.725	
Operating Junction Temperature		T_{j}	-65 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 175	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	$2 N 6661$	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	170	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case	$R_{\text {thJC }}$	20	

[^12]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | TYP ${ }^{2}$ | 2N6661 | | UNIT |
| | | | | MIN | MAX | |

Drain-Source Breakdown Voltage	$V_{\text {(BR) }}$ Dss	$V_{G S}=0 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A}$			130	90	2	V
Gate Threshold Voltage	$V_{\text {GS (th) }}$	$\begin{aligned} & V_{D S}=V_{G S} \\ & I_{D}=1 \mathrm{~mA} \end{aligned}$			1.3	0.8		
				$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	1.7		2.5	
				$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	0.8	0.3		
Gate-Body Leakage	Igss	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{aligned}$			± 1		± 100	nA
				$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	± 5		± 100	
Zero Gate Voltage Drain Current	Idss	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DS}}=72 \mathrm{~V}$		0.01		1	$\mu \mathrm{A}$
			$V_{D S}=72 \mathrm{~V}, T_{C}=125^{\circ} \mathrm{C}$		30		100	
On-State Draln Current ${ }^{3}, 4$	ID(ON)	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}$			1.7			A
Draln-Source On-Resistance ${ }^{3,5}$	$\mathrm{r}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$			4.3		5.3	Ω
		$\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=1 \mathrm{~A} \end{aligned}$			2.75		4	
				$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	5		7.5	
Draln-Source On-Voltage ${ }^{3}$	$\mathrm{V}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$			1.3		1.6	V
		$\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=1 \mathrm{~A} \end{aligned}$			2.75		4	
				$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	5		7.5	
Forward Transconductance ${ }^{3}$	gfs	$\mathrm{V}_{\mathrm{DS}}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.475 \mathrm{~A}$			250	170		mS
Common Source Output Conductance ${ }^{3,4}$	gos	$V_{D S}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$			425			$\mu \mathrm{S}$

DYNAMIC

Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	30	50	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		30	40	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		5	10	

SWITCHING

Turn-On Time	${ }^{t} \mathrm{ON}$	$\begin{gathered} V_{D D}=25 \mathrm{~V}, R_{\mathrm{L}}=23 \Omega \\ \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \\ R_{\mathrm{G}}=50 \Omega \end{gathered}$ (Switching time is essentlally independent of operating temperature)	8.5	10	ns
Turn-Off Time	${ }^{t}$ OFF		9.6	10	

SOURCE-DRAIN DIODE RATINGS \& CHARACTERISTICS ${ }^{1}$			LIMITS			
	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	2N6661		UNIT
PARAMETER				MIN	MAX	
Forward Voltage	$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\text {S }}=0.86 \mathrm{~A}$	0.9	0.7	1.4	V

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=80 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.
4. This parameter not registered with MIL-Sं-19500/547A.
5. Not a measured value $r_{D S}(O N)=V_{D S}(O N) / I_{D}$.

N-Channel Enhancement-Mode MOS Transistor

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}(\Omega)$ (Ω)	I_{D} (A)	PACKAGE
60	5	0.2	TO-92

BOTTOM VIEW

Performance Curves: VNDS06 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{TC}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	2N7000	UNITS
Drain-Source Voltage		$V_{D S}$	60	V
Gate-Source Voltage		V_{GS}	± 40	
Continuous Drain Current	$\mathrm{T}^{\text {C }}=25^{\circ} \mathrm{C}$	ID	± 0.2	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.13	
Pulsed Drain Current ${ }^{1}$		IDM	0.5	
Pulsed Power Dissipation ${ }^{2}$			3.1	W
Power Dissipation	$\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}$	PD	0.4	
	$T^{\prime} \mathrm{C}=100^{\circ} \mathrm{C}$		0.16	
Operating Junction Temperature		Tj	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)		TL	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	$2 N 7000$	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	312.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case	$R_{\text {thJC }}$	40	

${ }^{1}$ Pulse width limited by maximum junction temperature
${ }^{2}$ One second single, power pulse

ELECTRICAL CHARACTERISTICS ${ }^{1}$					LIMITS				
PARAMETER	SYMBOL	TEST CONDITIONS			TYP ${ }^{2}$	2N7000		UNIT	
					MIN	MAX			
STATIC									
Drain-Source Breakdown Voltage	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSs}}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$				70	60		V
Gate Threshold Voltage	$V_{G S(t h)}$	$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$			2.3	0.8	3		
Gate-Body Leakage	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$		${ }^{4} \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 1 \\ & \pm 5 \end{aligned}$		± 10	nA	
Zero Gate Voltage Drain Current	IDSS	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{V}_{\text {DS }}=48 \mathrm{~V}$		0.001		1	$\mu \mathrm{A}$	
			$\mathrm{V}_{\text {DS }}=48 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.02		1000		
On-State Drain Current ${ }^{3}$	ID(ON)	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}$			210	75		mA	
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON) }}$	${ }^{4} \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~mA}$			4.8		5.3	Ω	
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A} \end{aligned}$			2.5		5		
				$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	4.4		9		
Drain-Source On-Voltage ${ }^{3}$	$\mathrm{V}_{\text {DS(ON }}$	${ }^{4} \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~mA}$			0.36		0.4	V	
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A} \end{aligned}$			1.25		2.5		
				${ }^{4} \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	2.2		4.5		
Forward Transconductance ${ }^{3}$	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, I_{D}=0.2 \mathrm{~A} \\ f=1 \mathrm{kHz} \end{gathered}$			170	100		mS	
Common Source Output Conductance ${ }^{3,4}$	gos	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$			500			$\mu \mathrm{S}$	
DYNAMIC									
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$			16		60	pF	
Output Capacitance	$C_{\text {oss }}$				11		25		
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$				2		5		
SWITCHING									
Turn-On Time	${ }^{\text {t }} \mathrm{ON}$	$\begin{gathered} V_{D D}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=25 \Omega \\ \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)			7		10	ns	
Turn-Off Time	${ }^{\text {t OfF }}$				7		10		

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. This parameter not registered with JEDEC.

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
240	45	0.045	SOT-23

> 1 GATE
> 2 SOURCE
> 3 DRAIN

Performance Curves: VNDN24 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{TC}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	2N7001	UNITS
Drain-Source Voltage		$V_{D S}$	240	V
Gate-Source Voltage		V_{GS}	± 40	
Continuous Drain Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	0.045	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.029	
Pulsed Drain Current ${ }^{1}$		IDM	0.21	
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	200	mW
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		80	
Operating Junction Temperature		T_{j}	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		Tstg	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)		TL	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	2N7001	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	625	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS ${ }^{1}$					LIMITS				
PARAMETER	SYMBOL	TEST CONDITIONS			TYP ${ }^{2}$	2N7001		UNIT	
					MIN	MAX			
STATIC									
Drain-Source Breakdown Voltage	$V_{\text {(BR) DSS }}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$				270	240		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	$V_{D S}=V_{G S}, I_{D}=0.25 \mathrm{~mA}$			1.85	1	2.5		
Gate-Body Leakage	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{aligned}$		${ }^{4} \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 1 \\ & \pm 5 \end{aligned}$		± 10	nA	
Zero Gate Voltage Drain Current	Idss	$V_{G S}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DS}}=120 \mathrm{~V}$		0.001		0.1	$\mu \mathrm{A}$	
			$\mathrm{V}_{\mathrm{DS}}=120 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.5		1		
On-State Drain Current ${ }^{3}$	${ }^{\text {I }}$ (ON)	$V_{D S}=10 \mathrm{~V}, V_{G S}=10 \mathrm{~V}$			750	100		mA	
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$			35		85	Ω	
		$\begin{gathered} { }^{4} \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA} \end{gathered}$			40		45		
				$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	80		85		
Drain-Source On-Voltage ${ }^{3}$	$\mathrm{V}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$			1.75		2.25	v	
		$\begin{gathered} { }^{4} \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA} \end{gathered}$			0.8		0.9		
				$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	1.6		1.7		
Forward Transconductance ${ }^{3}$	g_{FS}	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$			80	30		mS	
Common Source Output Conductance ${ }^{3,4}$	gos				10			$\mu \mathrm{S}$	
DYNAMIC									
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{\mathrm{DS}}=25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$			15		30	pF	
Output Capacitance	$\mathrm{C}_{\text {oss }}$				4		15		
Reverse Transfer Capacitance	$C_{\text {rss }}$				1		10		
SWITCHING									
Turn-On Time	${ }^{\text {t }} \mathrm{ON}$	$\begin{gathered} V_{D D}=60 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega \\ \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \\ R_{\mathrm{G}}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)			7		30	ns	
Turn-Off Time	${ }^{\text {t OFF }}$				18		20		

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; $P W=80 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.
4. This parameter not registered with JEDEC.

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}(\Omega)$ (Ω)	I_{D} (A)	PACKAGE
60	7.5	0.115	SOT-23

TOP VIEW

$$
\begin{aligned}
& 1 \text { GATE } \\
& 2 \text { DRAIN } \\
& 3 \text { SOURCE }
\end{aligned}
$$

Performance Curves: VNDS06 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{TC}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	2N7002	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	60	V
Gate-Source Voltage		$V_{G S}$	± 40	
Continuous Drain Current	$\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$	ID	± 0.115	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		± 0.073	
Pulsed Drain Current ${ }^{1}$		IDM	0.8	
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD	200	mW
	$T_{C}=100^{\circ} \mathrm{C}$		80	
Operating Junction Temperature		T_{j}	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)		TL	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	2N7002	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	625	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS				
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	2N7002		UNIT	
				MIN	MAX			
STATIC								
Drain-Source Breakdown Voltage	$V_{\text {(BR) }{ }^{\text {dss }}}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$			70	60		V
Gate Threshold Voltage	$V_{G S(t h)}$	$V_{D S}=V_{G S}, I_{D}=0.25 \mathrm{~mA}$		2.15	1	2.5		
Gate-Body Leakage	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\frac{ \pm 1}{ \pm 5}$		± 100	nA	
Zero Gate Voltage Drain Current	I DSs	$\begin{aligned} & V_{G S}=0 \mathrm{~V} \\ & V_{D S}=60 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	0.02		$\frac{1}{500}$	$\mu \mathrm{A}$	
On-State Drain Current ${ }^{3}$	ID(ON)	$\mathrm{V}_{\mathrm{DS}} \geq 2 \mathrm{~V}_{\mathrm{DS}(\mathrm{ON})}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$		1000	500		mA	
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON }}$	$\begin{aligned} & V_{G S}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA} \end{aligned}$		5		7.5	Ω	
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	9		13.5		
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A} \end{aligned}$		2.5		7.5		
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	4.4		13.5		
Drain-Source On-Voltage ${ }^{3}$	$\mathrm{V}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$		0.25		0.375	V	
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A} \end{aligned}$		1.25		3.75		
			${ }^{4} \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	2.2		6.75		
Forward Transconductance ${ }^{3}$	$\mathrm{g}_{\text {f }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, I_{D}=0.2 \mathrm{~A} \\ f=1 \mathrm{kHz} \end{gathered}$		170	80		mS	
Common Source Output Conductance ${ }^{3,4}$	gos	$V_{D S}=5 \mathrm{~V}, I_{D}=50 \mathrm{~mA}$		500			$\mu \mathrm{S}$	
DYNAMIC								
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		16		50	pF	
Output Capacitance	$C_{\text {oss }}$			11		25		
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			2		5		
SWITCHING								
Turn-On Time	${ }^{\text {t O }}$	$\begin{gathered} V_{D D}=30 \mathrm{~V}, R_{L}=150 \Omega \\ I_{D}=0.2 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$ ching time is essentially independent ting temperature)		7		20	ns	
Turn-Off Time	${ }^{\text {t OfF }}$			7		20		

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=80 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.
4. This parameter not registered with JEDEC.

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
240	45	0.065	TO-92

TO-92

[^13]BOTTOM VIEW

Performance Curves: VNDN24 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	2N7007	UNITS
Drain-Source Voltage		$V_{D S}$	240	V
Gate-Source Voltage		V_{GS}	± 40	
Continuous Drain Current	$\mathrm{T}^{\mathrm{C}}=25^{\circ} \mathrm{C}$	${ }^{1}$	0.065	A
	$T_{C}=100^{\circ} \mathrm{C}$		0.041	
Pulsed Drain Current ${ }^{1}$		IDM	0.260	
Power Dissipation	$\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}$	PD	0.4	w
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.16	
Operating Junction Temperature		Tj	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$T_{\text {stg }}$	-55 to 150	
$\begin{aligned} & \hline \text { Lead Temperature } \\ & \text { (1/16" from case for } 10 \text { seconds) } \end{aligned}$		TL	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	2N7007	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	312.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS ${ }^{1}$					LIMITS				
PARAMETER	SYMBOL	TEST CONDITIONS			TYP ${ }^{2}$	2N7007		UNIT	
					MIN	MAX			
STATIC									
Drain-Source Breakdown Voltage	$V_{\text {(BR) }}$ DSs	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$				270	240		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$V_{\text {DS }}=V_{G S}, I_{D}=0.25 \mathrm{~mA}$			1.85	1	2.5		
Gate-Body Leakage	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	± 1		± 10	nA	
Zero Gate Voltage Drain Current	Ioss	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DS}}=120 \mathrm{~V}$		0.001		0.1	$\mu \mathrm{A}$	
			$V_{D S}=120 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.6		1		
On-State Draln Current ${ }^{3}$	ID(ON)	$V_{D S}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$		100	50		mA	
			$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$		170	150			
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA} \end{aligned}$			40		45	Ω	
				$T_{C}=125^{\circ} \mathrm{C}$	80		85		
		$\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=50 \mathrm{~mA} \end{aligned}$			35		45		
				$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	75		85		
Drain-Source On-Voltage ${ }^{3}$	VDS(ON)	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}$			0.8		0.9	V	
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA} \end{aligned}$			1.75		2.25		
				${ }^{4} \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	3.75		4.25		
Forward Transconductance ${ }^{3}$	$\mathrm{g}_{\text {fs }}$	$\begin{gathered} V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$			50	30		mS	
Common Source Output Conductance ${ }^{3,4}$	gos	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$			10			$\mu \mathrm{S}$	
DYNAMIC									
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$			15		30	pF	
Output Capacitance	$\mathrm{C}_{\text {oss }}$				4		15		
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$				1		10		
SWITCHING									
Turn-On Time	${ }^{\text {t ON }}$	$\begin{gathered} V_{D D}=60 \mathrm{~V}, R_{L}=1.2 \mathrm{k} \Omega \\ \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}, \mathrm{~V}_{\text {GEN }}=10 \mathrm{~V} \\ \mathrm{R}_{\mathrm{G}}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)			7		30	ns	
Turn-Off Time	${ }^{\text {t OfF }}$				18		20		

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; PW $=80 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.
4. This parameter not registered with JEDEC.

N-Channel Enhancement-Mode MOS Transistor

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
60	7.5	0.15	TO-92

BOTTOM VIEW

$\begin{array}{ll}1 & \text { SOURCE } \\ 2 \text { GATE } \\ 3 \text { DRAIN }\end{array}$

Performance Curves: VNDS06 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{TC}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	2N7008	UNITS
Drain-Source Voltage		$V_{D S}$	60	V
Gate-Source Voltage		$V_{G S}$	± 40	
Continuous Drain Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	1 D	0.15	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.1	
Pulsed Drain Current ${ }^{1}$		IDM	1	
Power Dissipation	$\mathrm{T}^{\text {C }}=25^{\circ} \mathrm{C}$	PD	400	mW
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		160	
Operating Junction Temperature		T	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)		TL	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	2N7008	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	312.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Pulse width limited by maximum junction temperature

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=80 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.
4. This parameter not registered with JEDEC.

P-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$\mathbf{r D S}^{\prime}(O N)$ (Ω)	I_{D} $(\mathrm{~mA})$	PACKAGE
$3 N 163$	-40	250	-50	TO-72
$3 N 164$	-30	300	-50	TO-72

Performance Curves: MRA (See Section 7)

1 DRAIN
2 GATE
3 GUUSTRATE, CASE
4 SOUURCE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	3N163	3N164	UNITS
Drain-Source Voltage	$V_{\text {DS }}$	-40	-30	V
Gate-Source Voltage	$V_{G S}$	± 40	± 30	
Transient Gate-Source Voltage		± 125	± 125	
Continuous Drain Current	ID	-50	-50	mA
Power Dissipation	PD	375	375	mW
Power Derating		3	3	
Operating Junction	TJ	-55 to 150		${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-65 to 200		
Lead Temperature (1/16" from case for 10 seconds)	T_{L}	300		

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	3N163		3N164		UNIT	
				MIN	MAX	MIN	MAX			
STATIC										
Drain-Source Breakdown Voltage	$V_{\text {(BR) }}$ DSs	$\mathrm{V}_{\mathrm{Gs}}=0 \mathrm{~V}$	$=-10 \mu \mathrm{~A}$		-70	-40		-30		V
Source-Drain Breakdown Voltage	$V_{\text {(BR) SDS }}$	$\mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=$	$I_{s}=-10 \mu \mathrm{~A}$	-70	-40		-30			
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	$V_{G S}=V_{D S}, I_{D}=-10 \mu \mathrm{~A}$		-2.5	-2	-5	-2	-5		
Gate-Source Voltage	V_{GS}	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~mA}$		-3.5	-3	-6.5	-2.5	-6.5		
Gate-Body Leakage	IGss	$\begin{gathered} V_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=-40 \mathrm{~V} \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	<-1 -1		-10			pA	
		$V_{\text {DS }}=0 \mathrm{~V}$		<-1				-10		
		$V_{G S}=-30 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-1				-25		
Zero Gate Voltage Drain Current	IDSs	$\begin{gathered} V_{D S}=-15 \mathrm{~V} \\ V_{G S}=0 \mathrm{~V} \end{gathered}$		-8		-200		-400		
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-20					nA	
Zero-Gate Voltage Source Current	$I_{\text {SDS }}$	$\begin{gathered} V_{S D}=-20 \mathrm{~V} \\ V_{G D}=V_{D B}=0 \mathrm{~V} \end{gathered}$		-10		-400		-800	pA	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-25					nA	
On-State Drain Current ${ }^{3}$	${ }^{\text {I }}$ (ON)	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$		-10	-5	-30	-3	-30	mA	
Draln-Source On-Resistance ${ }^{3}$	$\left.\mathrm{r}_{\text {DS }} \mathrm{ON}\right)$	$\begin{aligned} & V_{G S}=-20 \mathrm{~V} \\ & I_{D}=-100 \mu \mathrm{~A} \end{aligned}$		180		250		300	Ω	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	270						

DYNAMIC

Forward Transconductance ${ }^{3}$	g_{fs}	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$	2.7	2	4	1	4	mS
Common Source Output Conductance ${ }^{3}$	Gos		150		250		250	US
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mathrm{~mA} \\ f=1 \mathrm{MHz} \end{gathered}$	2.4		2.5		2.5	pF
Output Capacitance	Coss		2.5		3		3	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		0.5		0.7		0.7	

SWITCHING

Turn-On Time	${ }^{\text {d }}$ (ON)	$\begin{gathered} V_{D D}=-15 \mathrm{~V}, R_{L}=1500 \Omega \\ I_{D}=-10 \mathrm{~mA}, V_{G E N}=12 \mathrm{~V} \\ R_{G}=50 \Omega \end{gathered}$ (Switching time is essentially Independent of operating temperature)	5	12	12	ns
	t_{r}		13	24	24	
Turn-Off Time	${ }^{\text {t OFF }}$		25	50	50	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; $P W=300 \mu s$, duty cycle $\leq 2 \%$.

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
200	28	0.12	TO-92

[^14]Performance Curves: VNDQ20 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T} C=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	BS107	UNITS
Drain-Source Voltage	$V_{D S}$	200	± 25
Gate-Source Voltage	$V_{G S}$	0.12	A
Continuous Drain Current $\left(T_{A}=25^{\circ} \mathrm{C}\right)$	I_{D}	0.5	-55 to 150
Power Dissipation ($\left.T_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	P_{D}	300	${ }^{\circ} \mathrm{C}$
Operating Junction and Storage Temperature	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	T_{L}	
Lead Temperature $\left(1 / 16^{\prime \prime}\right.$ from case for 10 seconds $)$			

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	BS107	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	BS107		UNIT
				MIN	MAX	
STATIC						
Drain-Source Breakdown Voltage	$V_{\text {(BR) }{ }^{\text {dss }}}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$	225	200		
Gate Threshold Voltage	$V_{G S(t h)}$	$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$	1.45	0.8	3	V
Gate-Body Leakage	$I_{\text {GSS }}$	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V}$	± 1		± 10	nA
Drain Leakage Current	IDSX	$\mathrm{V}_{\mathrm{DS}}=70 \mathrm{~V}, \mathrm{~V}_{G S}=0.2 \mathrm{~V}$			1	$\mu \mathrm{A}$
Zero Gate Voltage Drain Current	Idss	$V_{D S}=130 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	0.001		30	nA
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=2.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}$	6		28	Ω
Forward Transconductance ${ }^{3}$	g_{FS}	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$	180			mS
DYNAMIC						
Input Capacitance	$C_{\text {iss }}$		35			
Output Capacitance	$C_{\text {oss }}$	$\begin{gathered} V_{D S}=20 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	9			pF
Reverse Transfer Capacitance	$C_{\text {rss }}$		1			
SWITCHING						
Turn-On Time	${ }^{\text {t ON }}$	$\mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=125 \Omega$$\mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V}$$\mathrm{R}_{\mathrm{G}}=25 \Omega$(Switching time is essentially independentof operating temperature)	5			ns
Turn-Off Time	${ }^{\text {t }}$ OFF		14			

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=80 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.

N-Channel Enhancement-Mode MOS Transistor

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
60	5	0.5	TO-92

1 DRAIN
2 GATE
3 SOURCE

Performance Curves: VNDS06 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{TC}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	BS170	UNITS
Drain-Source Voltage		$V_{D S}$	60	V
Gate-Source Voltage		V_{GS}	± 25	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	0.5	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.175	
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)		PD	0.83	W
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	BS170	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS			
	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	BS170		
PARAMETER				MIN	MAX	UNIT

STATIC

Drain-Source Breakdown Voltage	$V_{\text {(BR) }{ }^{\text {d }} \text { (}}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$	70	60		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$	2.3	0.8	3	
Gate-Body Leakage	IGss	$V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V}$	± 1		± 10	nA
Zero Gate Voltage Drain Current	I DSs	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	0.02		0.5	$\mu \mathrm{A}$
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS }}(\mathrm{ON})$	$V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}$	2.5		5	Ω
$\begin{aligned} & \text { Forward } \\ & \text { Transconductance }{ }^{3} \end{aligned}$	$\mathrm{gFS}^{\text {S }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}$	230	100		mS

DYNAMIC

Input Capacitance	$C_{\text {iss }}$	$V_{\text {DS }}=$$10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ $\mathrm{f}=1 \mathrm{MHz}$	16		60

SWITCHING

Turn-On Time	${ }^{\text {ton }}$	$\begin{gathered} V_{D D}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=125 \Omega \\ \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)	7	10	ns
Turn-Off Time	$t_{\text {OFF }}$		7	10	

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=80 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	rDS(ON) (Ω)	I_{D} (A)	PACKAGE
-200	14	-0.2	TO-92 RM

1 DRAIN
2 GATE
3 SOURCE

RM $=$ Reverse Mold

Performance Curves: VPDV24 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	BS208	UNITS
Drain-Source Voltage	V $_{\text {DS }}$	-200	V
Gate-Source Voltage	$\mathrm{V}_{\text {GS }}$	± 20	V
Continuous Drain Current	I_{D}	-0.2	A
Pulsed Drain Current ${ }^{1}$	I_{DM}	-0.8	0.83
Power Dissipation	P_{D}	-55 to 150	W
Operating Junction and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	300	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds)	T_{L}		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	BS208	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	BS208		UNIT
				MIN	MAX	
STATIC						
Drain-Source Breakdown Voltage	$V_{(B R) D S s}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}$	-230	-200		
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$V_{D S}=V_{G S}, I_{D}=-1 \mathrm{~mA}$	-1.9			
Gate-Body Leakage	IGSS	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V}$	± 1		± 10	nA
Zero Gate Voltage Drain Current	IDSs	$\mathrm{V}_{\mathrm{DS}}=-130 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-0.002		-1	$\mu \mathrm{A}$
	IDSX	$\mathrm{V}_{\mathrm{DS}}=-70 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-0.2 \mathrm{~V}$	-8		-25	
On-State Drain Current ${ }^{3}$	$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$	-300			mA
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS }}(\mathrm{ON})$	$V_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}$	10		14	Ω
DYNAMIC						
Input Capacitance	$\mathrm{c}_{\text {iss }}$	$\begin{gathered} V_{D S}=-20 \mathrm{~V} \\ V_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$	70			pF
Output Capacitance	$C_{\text {oss }}$		25			
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		11			
SWITCHING						
Turn-On Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{gathered} V_{D D}=-25 \mathrm{~V}, R_{L}=125 \Omega \\ \mathrm{I}_{\mathrm{D}}=-200 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GEN}}=-10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)	6			ns
	t_{r}		8			
Turn-Off Time	$t_{\text {d (OFF) }}$		18			
	t_{f}		17			

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{\text {DS (ON) }}$ (Ω)	I_{D} (A)	PACKAGE
-45	14	-0.18	TO-92RM

RM = Reverse Mold

1 SOURCE
2 GATE
3 DRAIN

Performance Curves: VPDS06 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	BS250	UNITS
Drain-Source Voltage	V_{DS}	-45	V
Gate-Source Voltage	V_{GS}	-0.18	V
Continuous Drain Current $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	I_{D}	0.83	A
Power Dissipation	PD_{D}	W	
Operating Junction and Storage Temperature	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\mathrm{stg}}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	BS250	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS			
		TEST CONDITIONS	TYP ${ }^{2}$	BS250		UNIT
PARAMETER	SYMBOL			MIN	MAX	

STATIC

Drain-Source Breakdown Voltage	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}$	-70	-45		
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$	-2	-1	-3.5	V
Gate-Body Leakage	$\mathrm{I}_{\mathrm{GSS}}$	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V}$	± 1		± 20	nA
Zero Gate Voltage Drain Current	$\mathrm{I}_{\mathrm{DSS}}$	$\mathrm{V}_{\mathrm{DS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-0.20		-500	n
Drain-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.2 \mathrm{~A}$	6		14	Ω	
Forward	g_{FS}	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.2 \mathrm{~A}$	125			mS

DYNAMIC

Input Capacitance	$C_{\text {iss }}$	$\begin{gathered} V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$	15		pF
SWITCHING					
Turn-On Time	${ }^{\text {ton }}$	$I_{D}=-0.2 \mathrm{~A}$	8	10	ns
Turn-Off Time	${ }^{\text {t OfF }}$		8	10	

SOURCE-DRAIN DIODE RATINGS \& CHARACTERISTICS ${ }^{1}$			LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	BS250		UNIT
				MIN	MAX	
Continuous Current	Is				-0.18	A
Forward Voltage ${ }^{3}$	$V_{S D}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{S}=-0.18 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0 \mathrm{~V}$	0.85			V

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

PRODUCT SUMMARY

$V_{\text {(BR)DSS }}$ (V)	$r_{D S(O N)}(\Omega)$ (Ω)	I_{D} (A)	PACKAGE
200	6	0.3	TO-92 CD

$C D=$ Center Drain

TO-92-18
BOTTOM VIEW

1 GATE
2 DRAIN
3 SOURCE

Performance Curves: VNDB24 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	BSS89	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Pulse width limited by maximum junction temperature

BSS89

ELECTRICAL CHARACTERISTICS ${ }^{1}$		LIMITS				
				BSS89		
	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	MIN	MAX	UNIT

STATIC

Drain-Source Breakdown Voltage	$V_{\text {(BR) }{ }^{\text {d S }}}$	$V_{G S}=0 \mathrm{~V}, I_{D}=250 \mu \mathrm{~A}$	270	200		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$	1.4	0.8	2.8	
Gate-Body Leakage	$\mathrm{I}_{\text {gss }}$	$V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=20 \mathrm{~V}$	1		100	nA
Zero Gate Voltage Drain Current	I DSs	$\begin{array}{l\|l} \mathrm{V}_{\mathrm{DS}}=200 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} & \mathrm{~T}_{J}=125^{\circ} \mathrm{C} \\ \hline \end{array}$	0.01 1		60	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	5		200	nA
Drain-Source On-Resistance	$\mathrm{r}_{\text {DS(ON }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.4 \mathrm{~A}$	5		6	Ω
Forward Transconductance	$\mathrm{gFs}^{\text {S }}$	$V_{D S}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.4 \mathrm{~A}$	0.4	0.14		S
DYNAMIC						
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	105			pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		25			
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		5			
SWITCHING						
Turn-On Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{gathered} V_{D D}=30 \mathrm{~V}, R_{L}=100 \Omega \\ \mathrm{I}_{\mathrm{D}}=0.28 \mathrm{~A}, \mathrm{~V}_{\text {GEN }}=10 \mathrm{~V} \\ R_{\mathrm{G}}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)	3		20	ns
	t_{r}		2		60	
Turn-Off Time	${ }^{\text {t }}$ (OFF)		15		90	
	t_{f}		34		55	

SOURCE-DRAIN DIODE RATINGS \& CHARACTERISTICS ${ }^{1}$			LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	BSS89		UNIT
				MIN	MAX	
Forward Voltage ${ }^{3}$	$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{S}=-0.6 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	0.9		1.4	V

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

P-Channel Enhancement-Mode MOS Transistor

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
-200	20	-0.15	TO-92 CDRM

$C D=$ Center Drain, RM = Reverse Mold, TO-18 Lead Form

TO-92-18
BOTTOM VIEW

1 SOURCE
2 DRAIN
3 GATE

Performance Curves: VPDQ20 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	BSS92	UNITS
Drain-Source Voltage		$V_{D S}$	-200	V
Gate-Source Voltage		$V_{G S}$	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	-0.15	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		-0.09	
Pulsed Drain Current 1		IDM	-0.60	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	1.0	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.40	
Operating Junction and Storage Temperature		$T_{j}, T_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature$(1 / 16$ " from case for 10 seconds)		T_{L}	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	BSS92	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^15]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | TYP ${ }^{2}$ | BSS92 | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | |
| Draln-Source Breakdown Voltage | $V_{\text {(BR) }{ }^{\text {dss }}}$ | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$ | -220 | -200 | | |
| Gate Threshold Voltage | $V_{G S(t h)}$ | $V_{D S}=V_{G S}, I_{D}=-1 \mathrm{~mA}$ | -1.9 | -0.8 | -2.8 | v |
| Gate-Body Leakage | IGss | $V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-20 \mathrm{~V}$ | ± 1 | | ± 100 | nA |
| Zero Gate Voltage Drain Current | Idss | $V_{D S}=-60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ | -0.01 | | -0.2 | $\mu \mathrm{A}$ |
| | | $V_{D S}=-200 \mathrm{~V}$ | -0.02 | | -60 | |
| | | $V_{G S}=0 \mathrm{~V} \quad \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$ | -3 | | -200 | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON }}$ | $V_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}$ | 11.4 | | 20 | Ω |
| Forward Transconductance ${ }^{3}$ | grs | $V_{D S}=-25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}$ | 150 | 60 | | mS |
| DYNAMIC | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{gathered} V_{D S}=-25 \mathrm{~V} \\ V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$ | 30 | | | pF |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | 10 | | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | 2 | | | |
| SWITCHING | | | | | | |
| Turn-On Time | $t_{\text {d }}(\mathrm{ON})$ | $\begin{gathered} V_{D D}=-30 \mathrm{~V}, R_{L}=120 \Omega \\ I_{D}=-0.25 \mathrm{~A}, V_{G E N}=-10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$
 (Switching time is essentially independent of operating temperature) | 6 | | | ns |
| | t_{r} | | 8 | | | |
| Turn-Off Time | $\mathrm{t}_{\mathrm{d} \text { (OFF) }}$ | | 18 | | | |
| | $\mathrm{t}_{\text {f }}$ | | 17 | | | |

SOURCE-DRAIN DIODE RATINGS \& CHARACTERISTICS ${ }^{1}$			LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	BSS92		UNIT
				MIN	MAX	
Forward Voltage ${ }^{3}$	$V_{S D}$	$I_{F}=I_{S}=-0.3 \mathrm{~A}, \mathrm{~V}_{G S}=0 \mathrm{~V}$	-0.9		-1.2	V

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

N-Channel Depletion-Mode MOS Transistor

PRODUCT SUMMARY

$V_{(B R) D S V}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
230	20	0.15	TO-92 CDRM

$C D=$ Center Drain, RM $=$ Reverse Mold

TO-92-18

BOTTOM VIEW

1 GATE
2 DRAIN
3 SOURCE

Performance Curves: VDDV24 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	BSS129	UNITS
Drain-Source Voltage	$V_{D S}$	230	± 20
Gate-Source Voltage	$V_{G S}$	0.15	V
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=35^{\circ} \mathrm{C}$	I_{D}	0.60
Pulsed Drain Current ${ }^{1}$	I_{DM}	1	A
Power Dissipation	P_{D}	-55 to 150	W
Operating Junction and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	${ }^{\circ} \mathrm{C}$	
Lead Temperature $(1 / 16 "$ from case for 10 seconds $)$	T_{L}	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	BSS129	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^16]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | TEST CONDITIONS | TYP ${ }^{2}$ | BSS129 | | UNIT |
| PARAMETER | SYMBOL | | | MIN | MAX | |
| STATIC | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }{ }^{\text {d }} \text { (}}$ | $V_{G S}=-3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mathrm{~mA}$ | 260 | 230 | | V |
| Gate-Source Cutoff Voltage | $\mathrm{V}_{\text {GS (OFF) }}$ | $V_{D S}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$ | -2.3 | -0.7 | | |
| Gate-Body Leakage | IGSs | $\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=20 \mathrm{~V}$ | ± 1 | | ± 100 | nA |
| Drain Cutoff Current | ID(OFF) | $\begin{array}{l\|} \mathrm{V}_{\mathrm{DS}}=230 \mathrm{~V} \\ \mathrm{~V}_{\text {GS }}=-3 \mathrm{~V} \end{array} \quad \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | $\begin{gathered} 0.04 \\ \hline 7.5 \\ \hline \end{gathered}$ | | $\begin{aligned} & 0.1 \\ & \hline 200 \\ & \hline \end{aligned}$ | $\mu \mathrm{A}$ |
| Drain-Source On-Resistance | $\mathrm{r}_{\text {DS(ON }}$) | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=14 \mathrm{~mA}$ | 4 | | 20 | Ω |
| Forward
 Transconductance | g_{FS} | $V_{D S}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mathrm{~mA}$ | 175 | 140 | | mS |
| DYNAMIC | | | | | | |
| Input Capacitance | $C_{\text {Iss }}$ | $\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=-5 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$ | 70 | | | pF |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | 20 | | | |
| Reverse Transfer Capacitance | $\mathrm{Crss}^{\text {r }}$ | | 10 | | | |
| SWITCHING | | | | | | |
| Turn-On Time | $t_{\text {d }}(\mathrm{ON})$ | $\begin{gathered} V_{D D}=25 \mathrm{~V}, R_{L}=830 \Omega \\ I_{D}=30 \mathrm{~mA}, V_{G E N}=-5 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$
 (Switching time is essentially independent of operating temperature) | 15 | | | ns |
| | t_{r} | | 75 | | | |
| Turn-Off Time | $t^{\text {d (OFF }}$) | | 40 | | | |
| | t_{f} | | 100 | | | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

P-Channel Enhancement-Mode MOS Transistor

PRODUCT SUMMARY

PART NUMBER	$V_{(B R)} D S S$ (V)	$g_{f s}$ (mS)	I_{D} $(\mathrm{~mA})$	PACKAGE
MFE823	-25	1	-30	TO-18

TO-18

1 DRAIN
2 GATE
3 SOURCE, SUBSTRATE CASE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	MFE823	UNITS
Drain-Source Voltage		$V_{D S}$	-25	V
Gate-Source Voltage		$V_{G S}$	± 10	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	-30	mA
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	375	mW
Power Derating			3	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction		T_{J}	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-65 to 200	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS			
	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	MFE823		UNIT
PARAMETER				MIN	MAX	

STATIC

Drain-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$	$V_{G S}=0$	$=-10 \mu \mathrm{~A}$	-70	-25		V
Gate Threshold Voltage	$V_{G S(t h)}$	$V_{D S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$		-2.5	-2	-6	
Gate-Body Leakage	IGss	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V} \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$			-1	pA
Zero Gate Voltage Drain Current	Idss	$\begin{gathered} V_{\mathrm{DS}}=-10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.01		-20	nA
On-State Drain Current ${ }^{3}$	ID(ON)	$V_{D S}=-10 \mathrm{~V}, V_{G S}=-10 \mathrm{~V}$		-10	-3		mA
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS }}(\mathrm{ON})$	$V_{G S}=-20 \mathrm{~V}, I_{D}=-100 \mu \mathrm{~A}$		180			Ω

DYNAMIC

Forward Transconductance ${ }^{3}$	g_{fs}	$\begin{gathered} V_{D S}=-10 \mathrm{~V}, I_{D}=-2 \mathrm{~mA} \\ f=1 \mathrm{kHz} \end{gathered}$	1.5	1		mS
Common Source Output Conductance ${ }^{3}$	gos		35			$\mu \mathrm{S}$
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=-10 \mathrm{~V}, V_{G S}=-10 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	2.4		6	pF
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		0.5		1.5	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; $P W=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

ND2012 SERIES

PRODUCT SUMMARY

PART NUMBER	$\mathbf{V}_{(B R) D S V}$ (V)	(DS(ON) (Ω)	I $_{\mathrm{D}}$ (A)	PACKAGE
ND2012L	200	12	0.16	TO-92
ND2012E	200	12	0.22	TO-206AC

Performance Curves: VDDQ20 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	ND2012L	ND2012E ${ }^{2}$	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	200	200	V
Gate-Source Voltage		$V_{\text {GS }}$	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	0.16	0.22	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.10	0.14	
Pulsed Drain Current ${ }^{1}$		IdM	0.8	0.8	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.80	1.5	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.60	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Lead Temperature } \\ & (1 / 16 \text { " from case for } 10 \text { seconds) } \end{aligned}$		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	ND2012L	ND2012E	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	400	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^17]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | ND2012 | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{(B R) D S V}$ | $V_{G S}=-8 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A}$ | | | 220 | 200 | -4 | V |
| Gate-Source Cutoff Voltage | $\mathrm{VGS}_{\text {(}}$ (off) | $V_{D S}=5 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A}$ | | -3 | -1.5 | | |
| Gate-Body Leakage | IGss | $\begin{gathered} \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{gathered}$ | | ± 0.1 | | ± 10 | nA | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | ± 5 | | ± 50 | | |
| Drain Cutoff Current | ${ }^{\text {d (OFF })}$ | $\begin{aligned} & V_{D S}=160 \mathrm{~V} \\ & V_{G S}=-8 \mathrm{~V} \end{aligned}$ | | 0.2 | | 1 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 5 | | 200 | | |
| Drain Saturation Current ${ }^{3}$ | IDSs | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ | | 400 | 30 | | mA | |
| Drain-Source On-Resistance ${ }^{3}$ | ros(on) | $\mathrm{V}_{\mathrm{GS}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}$ | | 7 | | | Ω | |
| | | $\begin{gathered} V_{G S}=0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA} \end{gathered}$ | | 8 | | 12 | | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 15 | | 30 | | |
| Forward
 Transconductance | gFS | $\mathrm{V}_{\mathrm{DS}}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}$ | | 55 | | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | | | 75 | | | HS | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {Iss }}$ | $\begin{gathered} V_{D S}=25 \mathrm{~V} \\ V_{G S}=-5 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$ | | 35 | | 100 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 10 | | 20 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 2 | | 5 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | ${ }^{\text {t }}$ (ON) | $\begin{aligned} & V_{D D}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1250 \Omega \\ & \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}, \mathrm{~V}_{G E N}=-5 \mathrm{~V} \end{aligned}$ | | 20 | | | ns | |
| | t_{r} | | | 20 | | | | |
| Turn-Off Time | ${ }^{t}$ d(OFF) | (Switching time is essentially independent of operating temperature) | | 10 | | | | |
| | $t_{\text {f }}$ | | | 10 | | | | |

NOTES: 1. $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ for ND2012E.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

N-Channel Depletion-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$\mathbf{V}_{(B R) \text { DSV }}(\mathrm{V})$	$\mathbf{r D S}_{\text {D }}(\mathrm{ON})$ (Ω)	I D (A)	PACKAGE
ND2020L	200	20	0.132	TO-92
ND2020E	200	20	0.18	TO-206AC

Performance Curves: VDDQ20 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	ND2020L	ND2020E ${ }^{2}$	UNITS
Drain-Source Voltage		$V_{D S}$	200	200	V
Gate-Source Voltage		$V_{G S}$	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	0.132	0.18	A
	$T_{A}=100^{\circ} \mathrm{C}$		0.083	0.11	
Pulsed Drain Current ${ }^{1}$		IDM	0.8	0.8	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.80	1.5	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.60	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16$ " from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	ND2020L	ND2020E	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	400	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^18]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | ND2020L | | ND2020E | | UNIT |
| | | | | MIN | MAX | MIN | MAX | |
| STATIC | | | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) } \text { DSV }}$ | $V_{G S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$ | | | 220 | 200 | | 200 | -2.5 | V |
| Gate-Source Cutoff Voltage | $\mathrm{V}_{\mathrm{GS} \text { (OFF) }}$ | $V_{D S}=5 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A}$ | | -1.8 | -0.5 | -2.5 | -0.5 | | |
| Gate-Body Leakage | IGss | $\begin{gathered} V_{D S}=0 \mathrm{~V} \\ V_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{gathered}$ | | ± 0.1 | | ± 10 | | ± 10 | nA | |
| | | | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | ± 5 | | ± 50 | | ± 50 | | |
| Drain Cutoff Current | $I_{\text {d (OFF }}$ | $\begin{aligned} & V_{D S}=160 \mathrm{~V} \\ & V_{G S}=-5 \mathrm{~V} \end{aligned}$ | | 0.2 | | 1 | | 1 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | 5 | | 200 | | 200 | | |
| Drain Saturation Current ${ }^{3}$ | Ioss | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ | | 110 | 30 | | 30 | | mA | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\mathrm{V}_{\mathrm{GS}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}$ | | 10 | | | | | | |
| | | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ | | 11 | | 20 | | 20 | Ω | |
| | | $\mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}$ | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 20 | | 50 | | 30 | | |
| Forward
 Transconductance ${ }^{3}$ | $\mathrm{gFS}^{\text {S }}$ | | | 55 | | | | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | s $=7.5$ | | 75 | | | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | | | 35 | | 100 | | 100 | | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | $\mathrm{V}_{\mathrm{GS}}=$ | | 10 | | 20 | | 20 | pF | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 2 | | 5 | | 5 | | |
| SWITCHING | | | | | | | | | | |
| | $\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$ | | | 20 | | | | | | |
| | t_{r} | $\begin{array}{r} \mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{G}}= \end{array}$ | $N=-5 \mathrm{~V}$ | 20 | | | | | | |
| | $t^{\text {d (OFF }}$) | (Switching tim | entially | 10 | | | | | | |
| | t_{f} | | | 10 | | | | | | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ for ND2020E.
2. For design ald only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

PART NUMBER	$V_{(B R) D S V}(V)$ (V)	$r_{\text {DS }}(O N)$ (Ω)	I_{D} (A)	PACKAGE
ND2406L	240	6	0.23	TO-92
ND2406B	240	6	0.57	TO-205AF

Performance Curves: VDDV24 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	ND2406L	ND2406B ${ }^{2}$	UNITS
Drain-Source Voltage		$V_{D S}$	240	240	V
Gate-Source Voltage		$V_{G S}$	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	0.23	0.57	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.14	0.36	
Pulsed Drain Current ${ }^{1}$		1 DM	0.90	1	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.80	5	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	2	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	ND2406L	ND2406B	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^19]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | LIMITS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | TYP ${ }^{2}$ | ND2406L | | ND2406B | | UNIT |
| | | | | MIN | MAX | MIN | MAX | |

STATIC

Drain-Source Breakdown Voltage	$V_{\text {(BR) }{ }^{\text {ds }} \text { V }}$	$\mathrm{V}_{\mathrm{GS}}=-9 \mathrm{~V}$	$10 \mu \mathrm{~A}$	260	240		240		V
Gate-Source Cutoff Voltage	$V_{\text {GS (OFF) }}$	$V_{D S}=5 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A}$		-2.8	-1.5	-4.5	-1.5	-4.5	
Gate-Body Leakage	IGss	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{gathered}$		± 1		± 10		± 10	nA
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	± 5		± 50		± 50	
Drain Cutoff Current	${ }^{\text {I }}$ (OFF)	$\begin{aligned} & V_{\mathrm{DS}}=180 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=-9 \mathrm{~V} \end{aligned}$		0.04		1		1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	15		200		200	
Drain Saturation Current ${ }^{3}$	Idss	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		640	40		40		mA
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{GS}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~mA}$		3					Ω
		$\begin{gathered} V_{G S}=0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=30 \mathrm{~mA} \end{gathered}$		3.5		6		6	
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	7		15		15	
Forward Transconductance ${ }^{3}$	$\mathrm{grs}^{\text {f }}$	$V_{D S}=10 \mathrm{~V}, I_{D}=30 \mathrm{~mA}$		110					ms
Common Source Output Conductance ${ }^{3}$	gos			70					$\mu \mathrm{S}$

DYNAMIC

Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=25 \mathrm{~V} \\ V_{\mathrm{GS}}=-5 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	70	120	120	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		20	30	30	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		10	15	15	

SWITCHING

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ for ND2406B.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

N-Channel Depletion-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$\mathbf{V}_{(B R) D S V}$ (V)	$r_{\text {DS }}(O N)$ (Ω)	I_{D} (A)	PACKAGE
ND2410L	240	10	0.18	TO-92
ND2410B	240	10	0.46	TO-205AF

Performance Curves: VDDV24 (See Section 7)

TO-205AF BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	ND2410L	ND2410B ${ }^{2}$	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	240	240	V
Gate-Source Voltage		$V_{G S}$	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	0.18	0.46	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.12	0.29	
Pulsed Drain Current ${ }^{1}$		IDM	0.90	1	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.80	5	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	2	
Operating Junction and Storage Temperature		$T_{j}, T_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	ND2410L	ND2410B	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^20]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | ND2410L | | ND2410B | | UNIT |
| | | | | MIN | MAX | MIN | MAX | |
| STATIC | | | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }{ }^{\text {DSV }}}$ | $V_{G S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$ | | | 260 | 240 | | 240 | | V |
| Gate-Source Cutoff Voltage | $\mathrm{V}_{\text {GS (OFF) }}$ | $V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$ | | -1.7 | -0.5 | -2.5 | -0.5 | -2.5 | | |
| Gate-Body Leakage | IGss | $\begin{gathered} V_{D S}=0 \mathrm{~V} \\ V_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{gathered}$ | | ± 0.1 | | ± 10 | | ± 10 | nA | |
| | | | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | ± 5 | | ± 50 | | ± 50 | | |
| Draln Cutoff Current | ${ }^{\text {I D (OFF) }}$ | $\begin{aligned} & V_{D S}=180 \mathrm{~V} \\ & V_{G S}=-5 \mathrm{~V} \end{aligned}$ | | 0.04 | | 1 | | 1 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 7.5 | | 200 | | 200 | | |
| Drain Saturation Current ${ }^{3}$ | I DSs | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$, | | 120 | 40 | | 40 | | mA | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\mathrm{V}_{\mathrm{GS}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~mA}$ | | 4.5 | | | | | Ω | |
| | | $\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=30 \mathrm{~mA} \end{gathered}$ | | 5 | | 10 | | 20 | | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 10 | | 25 | | 25 | | |
| Forward
 Transconductance ${ }^{3}$ | $\mathrm{grs}^{\text {f }}$ | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~mA}$ | | 110 | | | | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | | | 70 | | | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{gathered} V_{D S}=25 \mathrm{~V} \\ V_{\mathrm{GS}}=-5 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$ | | 70 | | 120 | | 120 | pF | |
| Output Capacitance | | | | 20 | | 30 | | 30 | | |
| Reverse Transfer Capacitance | $c_{\text {rss }}$ | | | 10 | | 15 | | 15 | | |
| SWITCHING | | | | | | | | | | |
| Turn-On Time | $\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$ | $\begin{aligned} & V_{D D}=25 \mathrm{~V}, R_{L}=830 \Omega \\ & I_{D}=30 \mathrm{~mA}, V_{G E N}=-5 \mathrm{~V} \end{aligned}$ | | 15 | | | | | ns | |
| | t_{r} | | | 75 | | | | | | |
| Turn-Off Time | $t_{\text {d (OFF) }}$ | (Switching time is essentially independent of operating temperature) | | 40 | | | | | | |
| | t_{f} | | | 100 | | | | | | |

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ for ND2410B.
2. For design ald only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	rDS(ON) (Ω)	ID (A)	PACKAGE
TP0610E	-60	10	-0.25	TO-206AC
TP0610L	-60	10	-0.18	TO-92
TP0610T	-60	10	-0.12	SOT-23

Performance Curves: VPDS06 (See Section 7)
top VIEW

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	TP0610E ${ }^{2}$	TP0610L	TP0610T	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	-60	-60	-60	V
Gate-Source Voltage		$V_{G S}$	± 20	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1 D	-0.25	-0.18	-0.12	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		-0.15	-0.11	-0.07	
Pulsed Drain Current ${ }^{1}$		$I_{\text {DM }}$	-1	-0.8	-0.4	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	1.5	0.80	0.36	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.60	0.32	0.14	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150			${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300			

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	TP0610E	TP0610L	TP0610T	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	400	156	350	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^21]incorporated

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS					
		TEST CONDITIONS	TYP ${ }^{2}$	TP0610E		TP0610L		UNIT
PARAMETER	SYMBOL			MIN	MAX	MIN	MAX	

STATIC

Drain-Source Breakdown Voltage	$V_{\text {(BR) }}$ DSS	$V_{G S}=0 \mathrm{~V}, I_{D}=-10 \mu \mathrm{~A}$	-70	-60		-60		V
Gate Threshold Voltage	$V_{G S(t h)}$	$V_{D S}=V_{G S}, I_{D}=-1 \mathrm{~mA}$	-1.7	-1	-2.4	-1	-2.4	
Gate-Body Leakage	IGSS	$\begin{gathered} V_{D S}=0 \mathrm{~V} \\ V_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{gathered}$	± 1		± 10		± 10	nA
			± 5		± 50		± 50	
Zero Gate Voltage Drain Current	IDSS	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-48 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	-0.02		-1		-1	$\mu \mathrm{A}$
			-0.2		-200		-200	
On-State Drain Current ${ }^{3}$	ID(ON)	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$	-80	-50		-50		mA
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-25 \mathrm{~mA}$	11		25		25	Ω
		$\begin{aligned} & \mathrm{V}_{G S}=-10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~A} \end{aligned}$	8		10		10	
			15		20		20	
Forward Transconductance ${ }^{3}$	g_{FS}	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~A}$	135	80		80		mS
Common Source Output Conductance ${ }^{3}$	gos	$V_{D S}=-10 \mathrm{~V}, I_{D}=-0.1 \mathrm{~A}$	400					$\mu \mathrm{S}$

DYNAMIC

Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=-25 \mathrm{~V} \\ V_{G S}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	15	60	60	pF
Output Capacitance	Coss		10	25	25	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		3	5	5	

SWITCHING

Turn-On Time	$t_{\text {d(ON) }}$	$\begin{gathered} V_{D D}=-25 \mathrm{~V}, R_{L}=133 \Omega \\ I_{D}=-0.18 \mathrm{~A}, V_{G E N}=-10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)	6	10	10	ns
	t_{r}		10	15	15	
Turn-Off Time	t_{d} (OFF)		7	15	15	
	t_{f}		8	20	20	

NOTES: 1. $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ for TP0610E.
2. For design aid only, not subject to production testing.
3. Pulse test; PW = $300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS				
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	TP0610T		UNIT	
				MIN	MAX			
STATIC								
Drain-Source Breakdown Voltage	$V_{\text {(BR) }{ }^{\text {dss }}}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$			-70	-60		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$V_{\text {DS }}=V_{G S}$	$=-1 \mathrm{~mA}$	-1.7	-1	-2.4		
Gate-Body Leakage	IGss	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{gathered}$		± 1		± 10	nA	
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	± 5		± 50		
Zero Gate Voltage Drain Current	IDSs	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=-48 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{gathered}$		-0.02		-1	$\mu \mathrm{A}$	
			$T_{J}=125^{\circ} \mathrm{C}$	-0.2		-200		
On-State Drain Current ${ }^{3}$	ID(ON)	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$		-80	-50		mA	
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS }}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-25 \mathrm{~mA}$		11		25	Ω	
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=-0.2 \mathrm{~A} \end{aligned}$		6		10		
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	12		20		
Forward Transconductance ${ }^{3}$	$\mathrm{grs}^{\text {f }}$	$V_{D S}=-10 \mathrm{~V}, I_{D}=-0.1 \mathrm{~A}$		90	60		mS	
Common Source Output Conductance ${ }^{3}$	gos			400			HS	
DYNAMIC								
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=-25 \mathrm{~V} \\ V_{\mathrm{GS}}=0 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		15		60	pF	
Output Capacitance	Coss			10		25		
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			3		5		
SWITCHING								
Turn-On Delay Time	${ }^{\text {d }}$ (ON)	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=-25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=133 \Omega \\ \mathrm{I}_{\mathrm{D}}=-0.18 \mathrm{~A}, \mathrm{~V}_{G E N}=-10 \mathrm{~V} \\ \mathrm{R}_{\mathrm{G}}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)		6		10	ns	
	t_{r}			10		15		
Turn-Off Delay Time	${ }^{t} \mathrm{~d}$ (OFF)			7		15		
	$t_{\text {f }}$			8		20		

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
40	5	1.14	TO-220SD

SD = Side Drain
Performance Curves: VNDQ06 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{Tc}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN40AFD	UNITS
Drain-Source Voltage		$V_{D S}$	40	V
Gate-Source Voltage		$V_{G S}$	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	${ }^{1}$	1.14	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.72	
Pulsed Drain Current ${ }^{1}$		${ }^{\text {I DM }}$	3	
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD	15	W
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		6	
Operating Junction and Storage Temperature		$T_{j}, T_{s t g}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN40AFD	UNITS
Junction-to-Case	$R_{\text {thJC }}$	8.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^22]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | VN40AFD | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }}$ DSs | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}$ | $\mu \mathrm{A}$ | | 70 | 40 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\text {GS (th) }}$ | $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ | 1 mA | 1.5 | 0.8 | 2.5 | | |
| Gate-Body Leakage | IGss | $\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}$ | $\pm 15 \mathrm{~V}$ | ± 1 | | ± 100 | nA | |
| Zero Gate Voltage Drain Current | I dss | $V_{\text {DS }}=40 \mathrm{~V}$, | 0 V | 0.05 | | 10 | $\mu \mathrm{A}$ | |
| | | $\mathrm{V}_{\mathrm{DS}}=32 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=$ | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 0.3 | | 500 | | |
| On-State Drain Current ${ }^{3}$ | $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ | $V_{D S}=15 \mathrm{~V}$, | 10 V | 1.8 | 1 | | A | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON }}$ | $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$, | . 3 A | 1.8 | | 5 | Ω | |
| | | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ | | 1.3 | | 5 | | |
| | | $\mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}$ | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 2.6 | | 10 | | |
| Forward
 Transconductance ${ }^{3}$ | grs | $V_{D S}=10 \mathrm{~V}$, | 0.5 A | 350 | 170 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=10 \mathrm{~V}$, | 0.1 A | 1100 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{gathered} V_{D S}=25 \mathrm{~V} \\ V_{G S}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$ | | 35 | | 50 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 25 | | 65 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 5 | | 10 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | ${ }^{\text {t }} \mathrm{ON}$ | $\mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=23 \Omega$$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V}$$\mathrm{R}_{\mathrm{G}}=25 \Omega$(Switching time is essentlally independentof operating temperature) | | 8 | | 15 | ns | |
| Turn-Off Time | ${ }^{\text {t OFF }}$ | | | 9.5 | | 15 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

VN46AFD

N-Channel Enhancement-Mode MOS Transistor

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
40	3	1.46	TO-220SD

Performance Curves: VNDQ06 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{TC}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN46AFD	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	40	V
Gate-Source Voltage		$V_{G S}$	± 30	
Continuous Drain Current	$\mathrm{T}^{\text {c }}=25^{\circ} \mathrm{C}$	ID	1.46	A
	$\mathrm{T}^{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.92	
Pulsed Drain Current ${ }^{1}$		IDM	3	
Power Dissipation	$\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$	PD	15	W
	$\mathrm{T}^{\mathrm{C}}=100^{\circ} \mathrm{C}$		6	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Lead Temperature } \\ & (1 / 16 \text { " from case for } 10 \text { seconds) } \end{aligned}$		T_{L}	300	

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN46AFD	UNITS
Junction-to-Case	$R_{\text {thJC }}$	8.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^23]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | VN46AFD | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{(B R) D S S}$ | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, | $\mu \mathrm{A}$ | | 70 | 40 | | V |
| Gate Threshold Voltage | $V_{G S(t h)}$ | $V_{D S}=V_{G S}$, | 1 mA | 1.5 | 0.8 | 2.5 | | |
| Gate-Body Leakage | IGss | $V_{D S}=0 \mathrm{~V}, \mathrm{~V}$ | $\pm 15 \mathrm{~V}$ | ± 1 | | ± 100 | nA | |
| Zero Gate Voltage Drain Current | Ioss | $V_{D S}=40 \mathrm{~V}$, | 0 V | 0.05 | | 10 | $\mu \mathrm{A}$ | |
| | | $\mathrm{V}_{\mathrm{DS}}=32 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=$ | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 0.3 | | 500 | | |
| On-State Drain Current ${ }^{3}$ | $I_{\text {d(ON })}$ | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$, | 10 V | 1.8 | 1 | | A | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$, | . 3 A | 1.8 | | 5 | Ω | |
| | | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ | | 1.3 | | 3 | | |
| | | $I_{D}=1 \mathrm{~A}$ | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 2.6 | | 6 | | |
| Forward Transconductance ${ }^{3}$ | g_{FS} | $V_{D S}=10 \mathrm{~V}$, | . 5 A | 350 | 170 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | Gos | $V_{D S}=10 \mathrm{~V}$, | . 1 A | 1100 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $C_{\text {iss }}$ | $\begin{gathered} V_{D S}=25 \mathrm{~V} \\ V_{G S}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$ | | 35 | | 50 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 25 | | 65 | | |
| Reverse Transfer Capacitance | $C_{\text {rss }}$ | | | 5 | | 10 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | ${ }^{\text {t }} \mathrm{ON}$ | $\begin{gathered} V_{D D}=25 \mathrm{~V}, R_{L}=23 \Omega \\ I_{D}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$
 (Switching time is essentially independent of operating temperature) | | 8 | | 15 | ns | |
| Turn-Off Time | ${ }^{\text {t OFF }}$ | | | 9.5 | | 15 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300$ дs, duty cycle $\leq 2 \%$.

VN66 SERIES

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}(V)$	rDS (ON) (Ω)	I_{D} (A)	PACKAGE
VN66AD	60	3	1.7	TO-220
VN66AFD	60	3	1.46	TO-220SD

Performance Curves: VNDQ06 (See Section 7)

TO-220SD
1 SOURCE
2 GATE
3 \& TAB - DRAIN

ABSOLUTE MAXIMIUM RATINGS ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted) ${ }^{2}$

PARAMETERS/TEST CONDITIONS		SYMBOL	VN66AD	VN66AFD	UNITS
Drain-Source Voltage		$V_{D S}$	60	60	V
Gate-Source Voltage		$V_{G S}$	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$1{ }^{\text {D }}$	1.7	1.46	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		1	0.92	
Pulsed Drain Current ${ }^{1}$		IDM	3	3	
Power Dissipation	$\mathrm{T}^{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD	20	15	W
	$T_{C}=100^{\circ} \mathrm{C}$		8	6	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		TL	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN66AD	VN66AFD	UNITS
Junction-to-Case	$R_{\text {thJC }}$	6.25	8.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^24]

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW = $300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. Data sheet limits and/or test conditions have been revised.

VN67 SERIES

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMIMARY

PART NUMBER	$V_{(B R) D S S}(V)$	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
VN67AB	60	3.5	0.79	TO-205AD
VN67AD	60	3.5	1.58	TO-220
VN67AFD	60	3.5	1.37	TO-220SD

TO-205AD (TO-39) BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN \& CASE

TOP VIEW

ABSOLUTE MAXIMUIVI RATINGS ($T C=25^{\circ} \mathrm{C}$ unless otherwise noted) ${ }^{2}$

PARAMETERS/TEST CONDITIONS		SYMBOL	VN67AB	VN67AD	VN67AFD	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	60	60	60	V
Gate-Source Voltage		$V_{G S}$	± 20	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	0.79	1.58	1.37	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.5	1	0.87	
Pulsed Drain Current ${ }^{1}$		IDM	3	3	3	
Power Dissipation	$\mathrm{T}^{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	5	20	15	W
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		2	8	6	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150			${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300			

THERIMIAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN67AB	VN67AD	VN67AFD	UNITS
Junction-to-Case	$R_{\text {thJC }}$	25	6.25	8.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^25]

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. Data sheet limits and/or test conditions have been revised.

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{\text {DS }}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VN88AD	80	4	1.49	TO-220
VN88AFD	80	4	1.29	TO-220SD

Performance Curves: VNDQ09 (See Section 7)

ABSOLUTE MAXIMUM RATINGS (TC $=25^{\circ} \mathrm{C}$ unless otherwise noted) ${ }^{2}$

PARAMETERS/TEST CONDITIONS		SYMBOL	VN88AD	VN88AFD	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	80	80	V
Gate-Source Voltage		$V_{\text {GS }}$	± 30	± 30	
Continuous Drain Current	$\mathrm{T}^{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	1.49	1.29	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.94	0.81	
Pulsed Drain Current ${ }^{1}$		IDM	3	3	
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD	20	15	W
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		8	6	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN88AD	VN88AFD	UNITS
Junction-to-Case	$R_{\text {thJC }}$	6.25	8.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^26]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | | TYP ${ }^{2}$ | VN88 ${ }^{4}$ | | UNIT |
| | | | | | MIN | MAX | |
| STATIC | | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }{ }^{\text {DSs }}}$ | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$ | | | | 120 | 80 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | $V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$ | | | 1.6 | 0.8 | 2.5 | | |
| Gate-Body Leakage | Igss | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$ | | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | $\begin{aligned} & \pm 1 \\ & \pm 5 \end{aligned}$ | | ± 100 ± 500 | nA | |
| Zero Gate Voltage Drain Current | IDSS | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}$ | | 0.03 | | 10 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{V}_{\mathrm{DS}}=64 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | | 0.3 | | 500 | | |
| On-State Drain Current ${ }^{3}$ | $I_{\text {D(ON })}$ | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ | | | 1.8 | 1.5 | | A | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\mathrm{V}_{G S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$ | | | 4.2 | | 5.6 | Ω | |
| | | $\begin{aligned} \mathrm{V}_{\mathrm{GS}} & =10 \mathrm{~V} \\ I_{D} & =1 \mathrm{~A} \end{aligned}$ | | | 3.6 | | 4 | | |
| | | | | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 6.8 | | 8 | | |
| Forward Transconductance ${ }^{3}$ | g_{FS} | $V_{D S}=10 \mathrm{~V}, I_{D}=0.5 \mathrm{~A}$ | | | 350 | 170 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$ | | | 225 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$ | | | 35 | | 50 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | | 15 | | 40 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | | 2 | | 10 | | |
| SWITCHING | | | | | | | | | |
| Turn-On Time | ${ }^{\text {t ON }}$ | $\mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=23 \Omega$$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V}$$\mathrm{R}_{\mathrm{G}}=25 \Omega$(Switching time is essentially independent ofoperating temperature) | | | 6 | | 15 | ns | |
| Turn-Off Time | ${ }^{\text {t OfF }}$ | | | | 8 | | 15 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. Data sheet limits have been revised.

VN90AB

N-Channel Enhancement-Mode MOS Transistor

TO-205AD (TO-39)
BOTTOM VIEW

PRODUCT SUMMMARY

$V_{(B R) D S S}$ (V)	$r_{D S}(O N)$ (Ω)	I_{D} (A)	PACKAGE
90	5	0.67	TO-205AD

Performance Curves: VNDQ09 (See Section 7)

1 SOURCE
2 GATE
3 DRAIN

ABSOLUTE MAXIMUIV RATINGS (TC $=25^{\circ} \mathrm{C}$ unless otherwise noted) ${ }^{2}$

PARAMETERS/TEST CONDITIONS		SYMBOL	Vn90ab	UNITS
Drain-Source Voltage		$V_{D S}$	90	
Gate-Source Voltage		V_{GS}	± 20	
Continuous Drain Current	$\mathrm{T}^{\text {C }}=25^{\circ} \mathrm{C}$	ID	0.67	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.42	
Pulsed Drain Current ${ }^{1}$		IDM	2	
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD	5	W
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		2	
Operating Junction Temperature		Tj	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$T_{\text {stg }}$	-55 to 150	
Lead Temperature (1/16" from case for 10 seconds)		TL	300	

THERMAL RESISTANCE ${ }^{2}$

THERMAL RESISTANCE	SYMBOL	VN90AB	UNITS
Junction-to-Ambient	$R_{\text {thJC }}$	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^27]incorporated

ELECTRICAL CHARACTERISTICS ${ }^{1}$					LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS				VN90AB		UNIT
					TYP ${ }^{2}$	MIN	MAX	
STATIC								
Drain-Source Breakdown Voltage	$V_{\text {(BR) }}$ Dss	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$			120	90		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$			1.6	0.8	2	
Gate-Body Leakage	$I_{\text {gss }}$	$\begin{aligned} & V_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \end{aligned}$		$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	± 1		$\pm \begin{aligned} & \pm 100 \\ & +500\end{aligned}$	nA
Zero Gate Voltage Drain Current	IDSs	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DS}}=90 \mathrm{~V}$		0.03		10	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DS}}=72 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.30		500	
On-State Drain Current ${ }^{3}$	${ }^{\text {D (ON }}$)	$V_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$			1.8	1.5		A
Drain-Source On-Resistance ${ }^{3}$	$\left.\mathrm{r}_{\text {DS }} \mathrm{ON}\right)$	$\mathrm{V}_{G S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$			4.2		5.3	Ω
		$\begin{aligned} V_{G S} & =10 \mathrm{~V} \\ I_{D} & =1 \mathrm{~A} \end{aligned}$			3.6		5	
				${ }^{4} T_{C}=125^{\circ} \mathrm{C}$	6.8		10	
Forward Transconductance ${ }^{3}$	$\mathrm{gas}^{\text {f }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$			350	170		mS
Common Source Output Conductance ${ }^{3}$	gos				300			μs
DYNAMIC								
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$			35		50	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$				15		40	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$				2		10	
SWITCHING								
Turn-On Delay Time	${ }^{\text {t ON }}$	$\begin{aligned} & \qquad \begin{array}{l} V_{D D}=25 \mathrm{~V}, R_{\mathrm{L}}=23 \Omega \\ \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=0 \text { to } 10 \mathrm{~V} \\ \mathrm{R}_{\mathrm{G}}=25 \Omega \\ \text { (Switching time is essentially independent of } \\ \text { operating temperature) } \end{array} \end{aligned}$			6		10	ns
Turn-Off Delay Time	${ }^{t}$ OFF				8		10	

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. This parameter has been revised from previous datasheet.

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$ (V)	rDs(ON) (Ω)	$\begin{aligned} & I_{D} \\ & (A) \end{aligned}$	PACKAGE
VN0300b	30	1.2	1.51	TO-205AD
VN0300L	30	1.2	0.64	TO-92
VN0300m	30	1.2	0.67	TO-237

Performance Curves: VNDQ03 (See Section 7)
TO-237 BOTTOM VIEW

TO-205AD (TO-39)
BOTTOM VIEW

TO-92

2 GATE 3 DRAIN

BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted) ${ }^{3}$

PARAMETERS/TEST CONDITIONS		SYMBOL	VN03008 ${ }^{2}$	VN0300L	VN0300m	UNITS
Drain-Source Voltage		$V_{D S}$	30	30	30	
Gate-Source Voltage		V_{GS}	± 20	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	1.51	0.64	0.67	
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.95	0.38	0.43	A
Pulsed Drain Current ${ }^{1}$		IdM	3	3	3	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	5	0.8	1	
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		2	0.32	0.4	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j},}, \mathrm{T}_{\text {stg }}$	-55 to 150			${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		TL	300			

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN0300B	VN0300L	VN0300M	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	170	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^28]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | TYP ${ }^{2}$ | VN0300 ${ }^{4}$ | | UNIT |
| | | | | MIN | MAX | |

STATIC

Drain-Source Breakdown Voltage	$V_{\text {(BR) }{ }^{\text {dss }}}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}$	上A	65	30		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$		1.5	0.8	2.5	
Gate-Body Leakage	IGss	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}$		± 1		± 100	nA
Zero Gate Voltage Drain Current	I DSs	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.0001		10	$\mu \mathrm{A}$
On-State Drain Current ${ }^{3}$	$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		3	1		A
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$		1.4		3.3	Ω
		$V_{G S}=10 \mathrm{~V}$		0.85		1.2	
		$I_{D}=1 \mathrm{~A}$	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	1.8		1.65	
Forward Transconductance ${ }^{3}$	gfs	$V_{D S}=10 \mathrm{~V}, I_{D}=0.5 \mathrm{~A}$		500	200		mS
Common Source Output Conductance ${ }^{3}$	gos	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$		1500			US

DYNAMIC

Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{\mathrm{DS}}=15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$	38	100	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		28	95	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		8	25	
SWITCHING					
Turn-On Time	${ }^{\text {ton }}$	$\begin{gathered} V_{D D}=25 \mathrm{~V}, R_{L}=24 \Omega \\ I_{D}=1 \mathrm{~A}, V_{G E N}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)	9	30	ns
Turn-Off Time	${ }^{\text {O OFF }}$		13	30	

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$
4. Reference case temperature for VN 0300 B .

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{D S}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VN0603L	60	3.5	0.30	TO-92
VN0603T	60	3.5	0.22	SOT-23

[^29]
ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN0603L	VN0603T	UNITS
Drain-Source Voltage		$V_{D S}$	60	60	V
Gate-Source Voltage		V_{GS}	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	0.30	0.22	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.21	0.14	
Pulsed Drain Current ${ }^{1}$		IDM	1	0.8	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.8	0.36	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.14	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN0603L	VN0603T	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	350	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Pulse width limited by maximum junction temperature

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

VN0605T

N-Channel Enhancement-Mode MOS Transistor

PRODUCT SUMMARY

$V_{(B R) D S S}$ (V)	$r_{D S(O N)}(\Omega)$ (Ω)	I_{D} (A)	PACKAGE
60	5	0.18	SOT-23

Performance Curves: VNDS06 (See Section 7)

SOT-23

TOP VIEW

$$
\begin{aligned}
& 1 \text { DRAIN } \\
& 2 \text { SOURCE } \\
& 3 \text { GATE }
\end{aligned}
$$

PRODUCT MARKING	
VN0605T	V02

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN0605T	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	350	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS				
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	VN0605T		UNIT	
				MIN	MAX			
STATIC								
Drain-Source Breakdown Voltage	$V_{\text {(BR) Dss }}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$			70	60		V
Gate Threshold Voltage	$\mathrm{V}_{\text {GS (th) }}$	$V_{D S}=V_{G S}, l_{D}=1 \mathrm{~mA}$		2.3	0.8	3.0		
Gate-Body Leakage	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{aligned}$		± 1		± 100	nA	
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	± 5		± 500		
Zero Gate Voltage Drain Current	I Dss	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$		0.02		1	$\mu \mathrm{A}$	
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	1		500		
On-State Drain Current ${ }^{3}$	$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	$V_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		700	500		mA	
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON }}$	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$		4.5		7.5	Ω	
		$\begin{aligned} & \mathrm{V}_{G S}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A} \end{aligned}$		3		5		
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	5.5		10		
Forward Transconductance ${ }^{3}$	$\mathrm{gFS}^{\text {f }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}$		180	80		mS	
Common Source Output Conductance ${ }^{3}$	gos	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$		500			$\mu \mathrm{S}$	
DYNAMIC								
Input Capacitance	$\mathrm{C}_{\text {Iss }}$	$\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		16		60	pF	
Output Capacitance	$\mathrm{C}_{\text {oss }}$			11		25		
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			2		5		
SWITCHING								
Turn-On Time	${ }^{\text {t }} \mathrm{ON}$	$\begin{gathered} V_{D D}=30 \mathrm{~V}, R_{L}=150 \Omega \\ \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \\ R_{\mathrm{G}}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)		7		20	ns	
Turn-Off Time	t off			11		20		

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=80 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.

VN0610L, VN10KE, VN10KM

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}(V)$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
VN0610L	60	5	0.27	TO-92
VN10KE	60	5	0.17	TO-206AC
VN10KM	60	5	0.31	TO-237

Performance Curves: VNDP06 (See Section 7)
TO-237

BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN \& TAB

$\begin{array}{ll}1 & \text { SOURCE } \\ 2 & \text { GATE } \\ 3 \text { DRAIN }\end{array}$

TO-92
BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN0610L	VN10KE	VN10KM	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	60	60	60	V
Gate-Source Voltage ${ }^{2}$		$V_{G S}$	15/-0.3	15/-0.3	15/-0.3	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$I_{\text {D }}$	0.27	0.17	0.31	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.17	0.11	0.20	
Pulsed Drain Current ${ }^{1}$		I DM	1	1	1	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.8	0.3	1	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.12	0.4	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150			${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300			

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN0610L	VN10KE	VN10KM	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	400	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^30]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | All | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $\mathrm{V}_{\text {(BR) }{ }^{\text {dSS }}}$ | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}$ | $00 \mu \mathrm{~A}$ | | 120 | 60 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | $V_{D S}=V_{G S}$, | 1 mA | 1.4 | 0.8 | 2.5 | | |
| Gate-Body Leakage | IGss | $\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}$ | 15 V | 1 | | 100 | nA | |
| Zero Gate Voltage Drain Current | I Dss | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=48 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ | | 0.7 | | 10 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | 3 | | 500 | | |
| On-State Draln Current | $I_{\text {d }}(\mathrm{ON})$ | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ | | 1000 | 750 | | mA | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}$ | | 4 | | 7.5 | Ω | |
| | | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=0.5 \mathrm{~A} \end{aligned}$ | | 3 | | 5 | | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 5.6 | | 9 | | |
| Forward
 Transconductance ${ }^{3}$ | $\mathrm{grs}^{\text {f }}$ | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | | 300 | 100 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $\mathrm{V}_{\mathrm{DS}}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$ | | 200 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{gathered} V_{D S}=25 \mathrm{~V} \\ V_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$ | | 38 | | 60 | pF | |
| Output Capacltance | $C_{\text {oss }}$ | | | 16 | | 25 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 2 | | 5 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | ${ }^{\text {ton }}$ | $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=23 \Omega$$\mathrm{I}_{\mathrm{D}}=0.6 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V}$$R_{\mathrm{G}}=25 \Omega$(Switching time is essentially independentof operating temperature) | | 7 | | 10 | ns | |
| Turn-Off Time | ${ }^{\text {toff }}$ | | | 9 | | 10 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; $P W=300 \mu s$, duty cycle $\leq 2 \%$.

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
VNO610LL	60	5	0.28	TO-92
VN10LE	60	5	0.38	TO-206AC
VN10LM	60	5	0.32	TO-237

Performance Curves: VNDS06 (See Section 7)

TO-206AC (TO-52) BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN \& CASE

BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN
ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN0610LL	VN10LE ${ }^{2}$	VN10LM	UNITS
Drain-Source Voltage		$V_{D S}$	60	60	60	V
Gate-Source Voltage		$V_{G S}$	± 30	± 20	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	0.28	0.38	0.32	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.17	0.24	0.2	
Pulsed Drain Current ${ }^{1}$		IDM	1.3	1	1.4	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.8	1.5	1.0	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.6	0.4	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150			${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300			

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN0610LL	VN10LE	VN10LM	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	400	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^31]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | ALL | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }{ }^{\text {Dss }}}$ | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}$ | \% $\mu \mathrm{A}$ | | 70 | 60 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | $V_{D S}=V_{G S}$, | 1 mA | 2.3 | 0.8 | 2.5 | | |
| Gate-Body Leakage | IGss | $\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}$ | $\pm 30 \mathrm{~V}^{5}$ | ± 1 | | ± 100 | nA | |
| Zero Gate Voltage Drain Current | IDSS | $\mathrm{V}_{\text {DS }}=50 \mathrm{~V}$, | 0 V | 0.02 | | 10 | $\mu \mathrm{A}$ | |
| | | $\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=$ | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 1 | | 500 | | |
| On-State Drain Current ${ }^{4}$ | ID(ON) | $V_{D S}=10 \mathrm{~V}$, | 10 V | 1000 | 750 | | mA | |
| Drain-Source On-Resistance ${ }^{3}$ | ros(on) | $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, 1$ | . 2 A | 5 | | 7.5 | Ω | |
| | | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ | | 2.5 | | 5 | | |
| | | $\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | 4.4 | | 9 | | |
| Forward Transconductance ${ }^{3}$ | g_{FS} | $V_{D S}=10 \mathrm{~V}$, | 0.5 A | 230 | 100 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, 1$ | 0 mA | 500 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {Iss }}$ | $\begin{gathered} V_{D S}=25 \mathrm{~V} \\ V_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$ | | 16 | | 60 | pF | |
| Output Capacitance | $C_{\text {oss }}$ | | | 11 | | 25 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 2 | | 5 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | ${ }^{\text {O }} \mathrm{ON}$ | $\begin{gathered} V_{D D}=15 \mathrm{~V}, R_{\mathrm{L}}=23 \Omega \\ \mathrm{I}_{\mathrm{D}}=0.6 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$
 (Switching time is essentially independent of operating temperature) | | 7 | | 10 | ns | |
| Turn-Off Time | ${ }^{\text {O OFF }}$ | | | 7 | | 10 | | |

NOTES: 1. $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted, $T_{C}=25^{\circ} \mathrm{C}$ for VN1OLE.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. Pulse width limited by maximum junction temperature.
5. $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$ for VN 10 LE .

VN0808 SERIES

PRODUCT SUMMIARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{\text {DS }(O N)}(\Omega)$ (Ω)	I_{D} (A)	PACKAGE
VN0808L	80	4	0.30	TO-92
VN0808M	80	4	0.33	TO-237

Performance Curves: VNDQ09 (See Section 7)
TO-92
BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN

TO-237
BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN

ABSOLUTE MAAXIVIUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN0808L	VN0808M	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	80	80	V
Gate-Source Voltage		V_{GS}	± 30	± 30	
Continuous Drain Current ${ }^{2}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	${ }^{1}$	0.30	0.33	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.19	0.21	
Pulsed Drain Current ${ }^{1,2}$		IDM	1.9	1.9	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.8	1	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.4	
Operating Junction and Storage Temperature		$\mathrm{T}_{j}, \mathrm{~T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16$ " from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN0808L	VN0808M	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^32]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | VN0808 | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{(B R) D S S}$ | $V_{G S}=0 \mathrm{~V}, \mathrm{I}$ | $0 \mu \mathrm{~A}$ | | 120 | 80 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$ | 1 mA | 1.6 | 0.8 | 2 | | |
| Gate-Body Leakage | $\mathrm{I}_{\text {Gss }}$ | $V_{D S}=0 \mathrm{~V}, \mathrm{~V}^{\prime}$ | $\pm 15 \mathrm{~V}$ | ± 1 | | ± 100 | nA | |
| Zero Gate Voltage Drain Current | IDSs | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ | | 0.03 | | 10 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 0.3 | | 500 | | |
| On-State Drain Current ${ }^{3}$ | ${ }^{\text {D }}$ (ON $)$ | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ | | 1.8 | 1.5 | | A | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$ | | 4.2 | | | Ω | |
| | | $V_{G S}=10 \mathrm{~V}$ | | 3.6 | | 4 | | |
| | | $I_{D}=1 \mathrm{~A}$ | ${ }^{4} \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$ | 6.8 | | 8 | | |
| Forward
 Transconductance ${ }^{3}$ | $\mathrm{gFS}^{\text {S }}$ | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | | 350 | 170 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$ | | 225 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{gathered} V_{D S}=25 \mathrm{~V} \\ V_{G S}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$ | | 35 | | 50 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 15 | | 40 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 2 | | 10 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | ${ }^{\text {a }} \mathrm{ON}$ | $\mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=23 \Omega$$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V}$$\mathrm{R}_{\mathrm{G}}=25 \Omega$(Switching time is essentially independentof operating temperature) | | 6 | | 10 | ns | |
| Turn-Off Time | ${ }^{\text {topF }}$ | | | 8 | | 10 | | |

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. This parameter has been revised from previous datasheet.

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{\text {DS }(O N)}$ (Ω)	I_{D} (A)	PACKAGE
VN1206B	120	6	0.59	TO-205AD
VN1206D	120	6	1.19	TO-220

Performance Curves: VNDQ12 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted) ${ }^{2}$

PARAMETERS/TEST CONDITIONS		SYMBOL	VN1206B	VN1206D	UNITS
Drain-Source Voltage		$V_{D S}$	120	120	V
Gate-Source Voltage		$V_{G S}$	± 20	± 30	
Continuous Drain Current	$\mathrm{T}^{\mathrm{C}}=25^{\circ} \mathrm{C}$	$1{ }^{\text {d }}$	0.59	1.19	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.37	0.75	
Pulsed Drain Current ${ }^{1}$		IDM	2.5	2.5	
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD	5	20	W
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		2	8	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		TL	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN1206B	VN1206D	UNITS
Junction-to-Case	$R_{\text {thJC }}$	25	6.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^33]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | VN1206 | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$ | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$ | | | 145 | 120 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\text {GS(th) }}$ | $V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$ | | 1.4 | 0.8 | 2 | | |
| Gate-Body Leakage | IGss | $\begin{aligned} & V_{D S}=0 \mathrm{~V} \\ & V_{G S}= \pm 15 \mathrm{~V} \end{aligned}$ | | ± 1 | | ± 100 | nA | |
| | | | $T_{C}=125^{\circ} \mathrm{C}$ | ± 5 | | ± 500 | | |
| Zero Gate Voltage Drain Current | Idss | $\begin{aligned} & V_{D S}=120 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$ | | 0.001 | | 10 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 0.5 | | 500 | | |
| On-State Drain Current ${ }^{3}$ | $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ | | 1.6 | 1 | | A | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON }}$ | $\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$ | | 6 | | 10 | Ω | |
| | | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~V} \end{aligned}$ | | 3.4 | | 6 | | |
| | | | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 7 | | 14.8 | | |
| Forward
 Transconductance ${ }^{3}$ | grs | $V_{D S}=10$ | 0.5 A | 425 | 300 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=7.5$ | $=0.1 \mathrm{~A}$ | 400 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | | | 35 | | 125 | | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 15 | | 50 | pF | |
| Reverse Transfer Capacitance | $C_{\text {rss }}$ | | | 2 | | 20 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | $\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$ | $V_{D D}=60$ | 50Ω | 3 | | 8 | | |
| | t_{r} | | | 2.5 | | 8 | | |
| Turn-Off Time | ${ }^{\text {d }}$ (OFF) | (Switching | ssentially | 7 | | 18 | | |
| | t_{f} | | | 2.5 | | 12 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

VN1206L, VN1206M

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}(V)$	$r_{D S}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VN1206L	120	6	0.23	TO-92
VN1206M	120	6	0.26	TO-237

TO-92
BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN

Performance Curves: VNDQ12 (See Section 7)
TO-237
BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN1206L	VN1206M	UNITS
Drain-Source Voltage		$V_{D S}$	120	120	V
Gate-Source Voltage		$V_{G S}$	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$I^{\text {D }}$	0.23	0.26	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.15	0.16	
Pulsed Drain Current ${ }^{1}$		I DM	2	2	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.8	1	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.40	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN1206L	VN1206M	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^34]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | VN1206 | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$ | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$ | | | 145 | 120 | 2 | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | $V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$ | | 1.4 | 0.8 | | |
| Gate-Body Leakage | IGss | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$ | | | | ± 100 | nA | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | ± 5 | | ± 500 | | |
| Zero Gate Voltage Drain Current | IDSS | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=120 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ | | 0.001 | | 10 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 0.5 | | 500 | | |
| On-State Drain Current ${ }^{3}$ | ID(ON) | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}$ | | 1.6 | 1 | | A | |
| Drain-Source On-Resistance ${ }^{3}$ | r ${ }_{\text {DS (ON) }}$ | $\mathrm{V}_{G S}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$ | | 6 | | 10 | Ω | |
| | | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=0.5 \mathrm{~A} \end{aligned}$ | | 3.4 | | 6 | | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 7 | | 14.8 | | |
| Forward
 Transconductance ${ }^{3}$ | g_{FS} | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | | 425 | 300 | | ms | |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$ | | 400 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$ | | 35 | | 125 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 15 | | 50 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 2 | | 20 | | |
| Turn-On Time | $\mathrm{t}_{\mathrm{d}}(\mathrm{ON})$ | $\begin{aligned} & V_{D D}=60 \mathrm{~V}, R_{L}=150 \Omega \\ & I_{D}=0.4 \mathrm{~A}, V_{G E N}=10 \mathrm{~V} \end{aligned}$ | | 3 | | 8 | ns | |
| | t_{r} | | | 2.5 | | 8 | | |
| Turn-Off Time | ${ }^{t}{ }_{\text {d (OFF }}$ | (Switching time is essentially independent of operating temperature) | | 7 | | 18 | | |
| | t_{f} | | | 2.5 | | 12 | | |

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

VN1210 SERIES

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}(V)$ (V)	$r_{D S}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VN1210L	120	10	0.18	TO-92
VN1210M	120	10	0.20	TO-237

TO-92

BOTTOM VIEW

Performance Curves: VNDQ12 (See Section 7)

1 SOURCE
2 GATE
3 DRAIN \& TAB

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN1210L	VN1210M	UNITS
Drain-Source Voltage		$V_{D S}$	120	120	V
Gate-Source Voltage		$V_{G S}$	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$1{ }^{\text {d }}$	0.18	0.20	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.11	0.13	
Pulsed Drain Current ${ }^{1}$		IDM	2	2	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	0.8	1	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.40	
Operating Junction and Storage Temperature		$T_{j}, T_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERIMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN1210L	VN1210M	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^35]incorparated

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS				
	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	VN1210		UNIT	
PARAMETER				MIN	MAX			
STATIC								
Drain-Source Breakdown Voltage	$V_{\text {(BR) }}$ Dss	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$			145	120		V
Gate Threshold Voltage	$\mathrm{V}_{\text {GS(th) }}$	$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$		1.4	0.8	2.0		
Gate-Body Leakage	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	$\frac{ \pm 1}{ \pm 5}$		± 100 ± 500	nA	
Zero Gate Voltage Drain Current	$l_{\text {dss }}$	$\begin{aligned} & V_{\mathrm{DS}}=120 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	0.001		10	$\mu \mathrm{A}$	
On-State Drain Current ${ }^{3}$	$I_{\text {D(ON }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		1.6	1		A	
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$		6		10	Ω	
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A} \end{aligned}$		3.4		10		
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	7		24.7		
Forward Transconductance ${ }^{3}$	g_{FS}	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$		425	300		mS	
Common Source Output Conductance ${ }^{3}$	gos	$\mathrm{V}_{\mathrm{DS}}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$		400			$\mu \mathrm{S}$	
DYNAMIC								
Input Capacitance	$\mathrm{C}_{\text {Iss }}$	$\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		35		125	pF	
Output Capacitance	$\mathrm{C}_{\text {oss }}$			15		50		
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			2		20		
SWITCHING								
Turn-On Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{gathered} V_{D D}=60 \mathrm{~V}, R_{L}=150 \Omega \\ I_{D}=0.4 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)		3		8	ns	
	t_{r}			2.5		8		
Turn-Off Time	$t_{\text {d (OFF) }}$			7		18		
	t_{f}			2.5		12		

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

VN1706B, VN1706D

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}(V)$ (V)	PDS $^{(O N)}$ (Ω)	I_{D} (A)	PACKAGE
VN1706B	170	6	0.63	TO-205AD
VN1706D	170	6	1.12	TO-220

Performance Curves: VNDB24 (See Section 7)

TO-205AD (TO-39)

BOTTOM VIEW

GATE
2 GATE
3 DRAIN \& CASE

TO-220

TOP VIEW

123

1 GATE
$\begin{array}{ll}2 & \text { \& TAB- DRAIN } \\ 3 & \text { SOURCE }\end{array}$

ABSOLUTE MAXIMUM RATINGS ($\mathrm{TC}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN1706B	VN1706D	UNITS
Drain-Source Voltage		$V_{D S}$	170	170	V
Gate-Source Voltage		$V_{G S}$	± 20	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$I_{\text {D }}$	0.63	1.12	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		0.4	0.7	
Pulsed Drain Current ${ }^{1}$		1 DM	3	3	
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD	6.25	20	W
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		2.5	8	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN1706B	VN1706D	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	170	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^36]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | | VN1706 | | UNIT |
| | | | | TYP ${ }^{2}$ | MIN | MAX | |
| STATIC | | | | | | | |
| Draln-Source Breakdown Voltage | $V_{\text {(BR) }{ }^{\text {DSS }}}$ | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ | $00 \mu \mathrm{~A}$ | 230 | 170 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\text {GS (th) }}$ | $V_{D S}=V_{G}$ | 1 mA | 1.4 | 0.8 | 2.0 | |
| Gate-Body Leakage | IGss | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$ | | ± 1 | | ± 100 | nA |
| | | | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | ± 5 | | ± 500 | |
| Zero Gate Voltage Drain Current | Idss | $\begin{aligned} & V_{D S}=120 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ | | 0.01 | | 10 | $\mu \mathrm{A}$ |
| | | | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 1 | | 500 | |
| On-State Drain Current ${ }^{3}$ | ID(ON) | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}$ | | 1.5 | 1 | | A |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$ | | 7.5 | | 10 | Ω |
| | | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=0.5 \mathrm{~V} \end{aligned}$ | | 5 | | 6 | |
| | | | $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ | 10.8 | | 14.8 | |
| Forward
 Transconductance ${ }^{3}$ | $\mathrm{gFS}^{\text {S }}$ | $V_{D S}=10 \mathrm{~V}, I_{D}=0.5 \mathrm{~A}$ | | 530 | 300 | | mS |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | | 475 | | | $\mu \mathrm{S}$ |
| DYNAMIC | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ | | 105 | | 125 | pF |
| Output Capacitance | $C_{\text {oss }}$ | | | 25 | | 50 | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 5 | | 20 | |
| SWITCHING | | | | | | | |
| Turn-On Time | $\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$ | $\begin{aligned} & V_{D D}=60 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{I}_{\mathrm{D}}=0.4 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \end{aligned}$ | | 3 | | 8 | ns |
| | t_{r} | | | 2 | | 8 | |
| Turn-Off Time | $t_{\text {d (OFF) }}$ | (Switching time is essentially independent of operating temperature) | | 13 | | 18 | |
| | t_{f} | | | 9 | | 12 | |

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}(V)$	$r_{\text {DS }(O N)}$ (Ω)	I_{D} (A)	PACKAGE
VN1706L	170	6	0.22	TO-92
VN1706M	170	6	0.25	TO-237

Performance Curves: VNDB24 (See Section 7)

1 SOURCE
2 GATE
3 DRAIN

BOTTOM VIEW

TO-237
BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN1706L	VN1706M	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	170	170	V
Gate-Source Voltage		$V_{G S}$	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$1{ }^{1}$	0.22	0.25	A
	$T_{A}=100^{\circ} \mathrm{C}$		0.14	0.16	
Pulsed Drain Current ${ }^{1}$		IDM	2.3	2.5	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.8	1.0	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.4	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN1706L	VN1706M	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^37]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | SYMBOL | TEST CONDITIONS | | | VN1706 | | UNIT |
| PARAMETER | | | | TYP ${ }^{2}$ | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }{ }^{\text {dss }}}$ | $V_{G S}=0 \mathrm{~V}, I_{D}=100 \mu \mathrm{~A}$ | | 230 | 170 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | $V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$ | | 1.4 | 0.8 | 2.0 | |
| Gate-Body Leakage | IGss | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | $\frac{ \pm 1}{ \pm 5}$ | | $\pm \begin{aligned} & \pm 100 \\ & +500\end{aligned}$ | nA |
| Zero Gate Voltage Drain Current | Idss | $\begin{aligned} & V_{\mathrm{DS}}=120 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | 0.01 1 | | 10 | $\mu \mathrm{A}$ |
| On-State Drain Current ${ }^{3}$ | $\mathrm{I}_{\text {D(ON })}$ | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ | | 1.2 | 1 | | A |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$ | | 7.5 | | 10 | Ω |
| | | $\begin{aligned} & \mathrm{V}_{\mathrm{Gs}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~V} \end{aligned}$ | $T_{J}=125^{\circ} \mathrm{C}$ | 5 10.8 | | $\frac{6}{14.8}$ | |
| Forward
 Transconductance ${ }^{3}$ | g_{FS} | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | | 530 | 300 | | mS |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | | 475 | | | $\mu \mathrm{S}$ |
| DYNAMIC | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ | | 105 | | 125 | pF |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 25 | | 50 | |
| Reverse Transfer Capacitance | $C_{\text {rss }}$ | | | 5 | | 20 | |
| SWITCHING | | | | | | | |
| Turn-On Time | $\mathrm{t}_{\mathrm{d}}(\mathrm{ON})$ | $\begin{gathered} V_{D D}=60 \mathrm{~V}, R_{L}=150 \Omega \\ I_{D}=0.1 \mathrm{~A}, \mathrm{~V}_{G E N}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$
 (Switching time is essentially independent of operating temperature) | | 3 | | 8 | ns |
| | t_{r} | | | 2 | | 8 | |
| Turn-Off Time | ${ }^{\text {d }}$ (OFF) | | | 13 | | 18 | |
| | t_{f} | | | 9 | | 12 | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

VN1710 SERIES

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{\text {DS }}(O N)$ (Ω)	ID (A)	PACKAGE
VN1710L	170	10	0.17	TO-92
VN1710M	170	10	0.19	TO-237

Performance Curves: VNDB24 (See Section 7)

BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN1710L	VN1710M	UNITS
Drain-Source Voltage		$V_{D S}$	170	170	V
Gate-Source Voltage		$V_{\text {GS }}$	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$1{ }^{1}$	0.17	0.19	A
	$T_{A}=100^{\circ} \mathrm{C}$		0.11	0.12	
Pulsed Drain Current ${ }^{1}$		IDM	0.47	0.54	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.8	1.0	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.4	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN1710L	VN1710M	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^38]incorparated

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS				
	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	VN1710		UNIT	
PARAMETER				MIN	MAX			
STATIC								
Drain-Source Breakdown Voltage	$V_{\text {(BR) }}$ DSs	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$			230	170		V
Gate Threshold Voltage	$\mathrm{V}_{\text {GS (th) }}$	$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$		1.4	0.8	2.0		
Gate-Body Leakage	IGss	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	± 1		± 100	nA	
Zero Gate Voltage Drain Current	Idss	$\begin{aligned} & V_{\mathrm{DS}}=120 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	0.01 1		10	$\mu \mathrm{A}$	
On-State Drain Current ${ }^{3}$	${ }^{\text {D (ON })}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		1.2	1		A	
Drain-Source On-Resistance ${ }^{3}$	$r_{\text {DS }}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$		8.5		10	Ω	
		$\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=0.5 \mathrm{~A} \end{aligned}$		6.5		10		
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	14		24.7		
Forward Transconductance ${ }^{3}$	$\mathrm{gms}^{\text {f }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$		530	300		mS	
Common Source Output Conductance ${ }^{3}$	gos	$V_{D S}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$		475			$\mu \mathrm{S}$	
DYNAMIC								
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$		110		125	pF	
Output Capacitance	$\mathrm{C}_{\text {oss }}$			30		50		
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			5		20		
SWITCHING								
Turn-On Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{aligned} & V_{D D}=60 \mathrm{~V}, R_{L}=150 \Omega \\ & I_{D}=0.4 \mathrm{~A}, V_{G E N}=10 \mathrm{~V} \end{aligned}$		3		8	ns	
	t_{r}			2		8		
Turn-Off Time	${ }^{\text {d }}$ (OFF)	(Switching time is essentially independent of operating temperature)		13		23		
	t_{f}			9		34		

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

VN2010 SERIES

PRODUCT SUMMARY

PART NUMBER	$V_{\text {(BR)DSS }}(V)$ (V)	PSS(ON) (Ω)	I_{D} (A)	PACKAGE
VN2010L	200	10	0.19	TO-92
VN2020L	200	20	0.08	TO-92

TO-92
BOTTOM VIEW

Performance Curves: VNDQ20 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN2010L	VN2020L	UNITS
Drain-Source Voltage		$V_{D S}$	200	200	V
Gate-Source Voltage		$V_{G S}$	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$I^{\text {D }}$	0.19	0.08	A
	$T_{A}=100^{\circ} \mathrm{C}$		0.12	0.055	
Pulsed Drain Current ${ }^{1}$		IDM	0.8	0.5	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.8	0.8	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.32	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN2010L	VN2020L	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	156	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS					
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ${ }^{2}$	VN2010L		VN2020L		UNIT
				MIN	MAX	MIN	MAX	
STATIC								
Drain-Source Breakdown Voltage	$V_{(B R) D S S}$	$V_{G S}=0 \mathrm{~V}, I_{D}=100 \mu \mathrm{~A}$	220	200		200		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$	1.3	0.8	1.8	0.8	2	
Gate-Body Leakage	IGss	$\begin{gathered} V_{D S}=0 \mathrm{~V} \\ V_{G S}= \pm 20 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \pm 1 \\ & \pm 5 \end{aligned}$		± 10		± 10	nA
Zero Gate Voltage Drain Current	I DSs	$\begin{aligned} & V_{D S}=160 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	0.001		1		1	$\mu \mathrm{A}$
		$V_{G S}=0 \mathrm{~V} \quad T_{J}=125^{\circ} \mathrm{C}$	1		100		100	
On-State Drain Current ${ }^{3}$	$I_{\text {d }}$ (ON)	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	700	100		100		mA
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON) }}$	$V_{G S}=4.5 \mathrm{~V}$	7		10		20	Ω
		$I_{D}=50 \mathrm{~mA} \quad T_{J}=125^{\circ} \mathrm{C}$	12.5		20		40	
Forward Transconductance ${ }^{3}$	$\mathrm{grs}^{\text {f }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}$	180	125		125		mS
Common Source Output Conductance ${ }^{3}$	gos	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$	150					$\mu \mathrm{S}$
DYNAMIC								
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	35		60		60	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		9		30		30	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		1		15		15	
SWITCHING ${ }^{4}$								
Turn-On Time	${ }^{\text {t }} \mathrm{ON}$	$\begin{gathered} V_{D D}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=250 \Omega \\ \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \\ \mathrm{R}_{\mathrm{G}}=25 \Omega \end{gathered}$	5		20		20	ns
Turn-Off Time	${ }^{\text {t OfF }}$		21		30		30	

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$
4. Switching time is essentially independent of operating temperature.

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}(V)$ (V)	$r_{D S}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VN2222KM	60	7.5	0.25	TO-237
VN2222L	60	7.5	0.23	TO-92

Performance Curves: VNDP06 (See Section 7)

TO-92

BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN

TO-237
BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN2222KM	VN2222L	UNITS
Drain-Source Voltage		$V_{D S}$	60	60	V
Gate-Source Voltage ${ }^{2}$		$V_{\text {GS }}$	+15, -0.3	+15, -0.3	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$1{ }^{1}$	0.25	0.23	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.16	0.14	
Pulsed Drain Current ${ }^{1}$		IDM	1	1	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	1	0.8	W
	$T_{A}=100^{\circ} \mathrm{C}$		0.4	0.32	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN2222KM	VN2222L	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	125	156	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^39]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | VN2222 | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{(B R) D S s}$ | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}$ | O $\mu \mathrm{A}$ | | 120 | 60 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | $V_{D S}=V_{G S}$, | 1 mA | 1.3 | 0.6 | 2.5 | | |
| Gate-Body Leakage | IGss | $\mathrm{V}_{\text {DS }}=0 \mathrm{~V}, \mathrm{~V}$ | 15 V | 1 | | 100 | nA | |
| Zero Gate Voltage Drain Current | Ioss | $\begin{aligned} & V_{\mathrm{DS}}=48 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ | | 0.7 | | 10 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 3 | | 500 | | |
| On-State Drain Current ${ }^{3}$ | $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ | | 1000 | 750 | | mA | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}$ | | 4 | | 7.5 | Ω | |
| | | $V_{G S}=10 \mathrm{~V}$ | | 3 | | 7.5 | | |
| | | $I_{D}=0.5 \mathrm{~A}$ | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 5.6 | | 13.5 | | |
| Forward
 Transconductance ${ }^{3}$ | $\mathrm{grs}^{\text {f }}$ | $V_{D S}=10 \mathrm{~V}, I_{D}=0.5 \mathrm{~A}$ | | 300 | 100 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$ | | 200 | | | HS | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $c_{\text {iss }}$ | $\begin{gathered} V_{D S}=25 \mathrm{~V} \\ V_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$ | | 38 | | 60 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 16 | | 25 | | |
| Reverse Transfer Capacitance | $C_{\text {rss }}$ | | | 2 | | 5 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | ${ }^{\text {t }} \mathrm{ON}$ | $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=23 \Omega$$\mathrm{I}_{\mathrm{D}}=0.6 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V}$$R_{\mathrm{G}}=25 \Omega$(Switching time is essentially independentof operating temperature) | | 7 | | 10 | ns | |
| Turn-Off Time | ${ }^{\text {t OFF }}$ | | | 9 | | 10 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ uniess otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu s$, duty cycle $\leq 2 \%$

VN2222LL, VN2222LM

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{D S}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VN2222LL	60	7.5	0.23	TO-92
VN2222LM	60	7.5	0.26	TO-237

Performance Curves: VNDS06 (See Section 7)

TO-92

BOTTOM VIEW

TO-237
BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN2222LL	VN2222LM	UNITS
Drain-Source Voltage		$V_{D S}$	60	60	
Gate-Source Voltage		$V_{G S}$	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	${ }^{\text {d }}$	0.23	0.26	
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.14	0.16	A
Pulsed Drain Current ${ }^{1}$		IDM	1	1	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.8	1	
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.4	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Lead Temperature } \\ & (1 / 16 \text { " from case for } 10 \text { seconds) } \end{aligned}$		TL	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN2222LL	VN2222LM	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^40]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | VN2222 | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{(B R) D S s}$ | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}$ | $00 \mu \mathrm{~A}$ | | 70 | 60 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$, | 1 mA | 2.3 | 0.6 | 2.5 | | |
| Gate-Body Leakage | 1 gss | $\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}$ | $\pm 20 \mathrm{~V}$ | ± 1 | | ± 100 | nA | |
| Zero Gate Voltage Drain Current | $\mathrm{I}_{\text {DSS }}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=48 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ | | 0.02 | | 10 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 1 | | 500 | | |
| On-State Drain Current ${ }^{3}$ | $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}$ | | 1000 | 750 | | mA | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}$ | | 5 | | 7.5 | Ω | |
| | | $V_{G S}=10 \mathrm{~V}$ | | 2.5 | | 7.5 | | |
| | | $I_{D}=0.5 \mathrm{~A}$ | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | 4.4 | | 13.5 | | |
| Forward
 Transconductance ${ }^{3}$ | $\mathrm{g}_{\text {FS }}$ | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | | 230 | 100 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}$ | | 1200 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{gathered} V_{D S}=25 \mathrm{~V} \\ V_{G S}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$ | | 16 | | 60 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 11 | | 25 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 2 | | 5 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | ${ }^{\text {t }} \mathrm{ON}$ | $V_{D D}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=23 \Omega$$\mathrm{I}_{\mathrm{D}}=0.6 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V}$$R_{G}=25 \Omega$(Switching time is essentially independentof operating temperature) | | 7 | | 10 | ns | |
| Turn-Off Time | ${ }^{\text {tofF }}$ | | | 7 | | 10 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{D S}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VN2406B	240	6	0.63	TO-205AD
VN2406D	240	6	1.12	TO-220

Performance Curves: VNDB24 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{Tc}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN2406B	VN2406D	UNITS
Drain-Source Voltage		$V_{D S}$	240	240	V
Gate-Source Voltage		$V_{G S}$	± 20	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	I_{D}	0.63	1.12	A
	$\mathrm{T}_{\mathrm{C}} \mathrm{C}=100^{\circ} \mathrm{C}$		0.4	0.7	
Pulsed Drain Current ${ }^{1}$		$I_{\text {DM }}$	3	3	
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD	6.25	20	W
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		2.5	8	
Operating Junction and Storage Temperature		$T_{j}, T_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16$ " from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN2406B	VN2406D	UNITS
Junction-to-Case	$R_{\text {thJC }}$	20	6.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS			VN2406		UNIT
				TYP ${ }^{2}$	MIN	MAX	
STATIC							
Drain-Source Breakdown Voltage	$V_{\text {(BR) }{ }^{\text {dss }}}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$		270	240		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$		1.4	0.8	2.0	
Gate-Body Leakage	Igss	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$		± 1		± 100	nA
			$T_{C}=125^{\circ} \mathrm{C}$	± 5		± 500	
Zero Gate Voltage Drain Current	IDss	$\begin{aligned} & V_{D S}=120 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$		0.01		10	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	1		500	
On-State Drain Current ${ }^{3}$	$I_{\text {d(ON })}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		1.5	1		A
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$		7.5		10	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~V} \end{aligned}$		5		6	
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	10.8		14.8	
Forward Transconductance ${ }^{3}$	$\mathrm{gFS}^{\text {f }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$		530	300		mS
Common Source Output Conductance ${ }^{3}$	gos	$\mathrm{V}_{D S}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$		475			Ms
DYNAMIC							
Input Capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$		110		125	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$			30		50	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			5		20	
SWITCHING							
Turn-On Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{aligned} & V_{D D}=60 \mathrm{~V}, R_{L}=150 \Omega \\ & I_{D}=0.4 \mathrm{~A}, V_{G E N}=10 \mathrm{~V} \end{aligned}$		3		8	ns
	t_{r}			2		8	
Turn-Off Time	$t_{d \text { (OFF) }}$	(Switching time is essentially independent of operating temperature)		13		17	
	t_{f}			9		12	

NOTES: 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
VN2406L	240	6	0.22	TO-92
VN2406M	240	6	0.25	TO-237

TO-237
BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN2406L	VN2406M	UNITS
Drain-Source Voltage		$V_{D S}$	240	240	V
Gate-Source Voltage		$V_{G S}$	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1 D	0.17	0.19	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.11	0.12	
Pulsed Drain Current ${ }^{1}$		IDM	1.7	2	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.8	1	W
	$T_{A}=100^{\circ} \mathrm{C}$		0.32	0.4	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN2406L	VN2406M	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^41]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | SYMBOL | TEST CONDITIONS | | | VN2406 | | UNIT |
| PARAMETER | | | | TYP ${ }^{2}$ | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }{ }^{\text {dss }} \text { S }}$ | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$ | | 270 | 240 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | $V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$ | | 1.4 | 0.8 | 2 | |
| Gate-Body Leakage | 'gss | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | ± 1 | | $\begin{aligned} & \pm 100 \\ & \pm 500 \end{aligned}$ | nA |
| Zero Gate Voltage Drain Current | Idss | $\begin{aligned} & V_{D S}=120 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | 0.01 1 | | 10 | $\mu \mathrm{A}$ |
| On-State Drain Current ${ }^{3}$ | ${ }^{\text {D }}$ (ON) | $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}$ | | 1.5 | 1 | | A |
| Drain-Source On-Resistance ${ }^{3}$ | $r_{\text {DS(ON) }}$ | $\mathrm{V}_{G S}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$ | | 7.5 | | 10 | Ω |
| | | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A} \end{aligned}$ | $T_{1}=125^{\circ} \mathrm{C}$ | 5 10.8 | | 10 | |
| Forward
 Transconductance ${ }^{3}$ | $\mathrm{gFS}^{\text {f }}$ | $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | | 530 | 300 | | mS |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | | 475 | | | $\mu \mathrm{S}$ |
| DYNAMIC | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$ | | 110 | | 125 | pF |
| Output Capacitance | $C_{\text {oss }}$ | | | 30 | | 50 | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 5 | | 20 | |
| SWITCHING | | | | | | | |
| Turn-On Time | $\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$ | $\begin{gathered} V_{D D}=60 \mathrm{~V}, R_{L}=150 \Omega \\ I_{D}=0.4 \mathrm{~A}, V_{G E N}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$
 (Switching time is essentially independent of operating temperature) | | 3 | | 8 | ns |
| | t_{r} | | | 2 | | 8 | |
| Turn-Off Time | $t^{\text {d (OFF }}$) | | | 13 | | 23 | |
| | t_{f} | | | 9 | | 34 | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

VN2410 SERIES

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	rDS $(O N)$ (Ω)	I_{D} (A)	PACKAGE
VN2410L	240	10	0.17	TO-92
VN2410M	240	10	0.19	TO-237

Performance Curves: VNDB24 (See Section 7)

TO-237
BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN2410L	VN2410M	UNITS
Drain-Source Voltage		$V_{D S}$	240	240	V
Gate-Source Voltage		V_{GS}	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	0.17	0.19	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.11	0.12	
Pulsed Drain Current ${ }^{1}$		IDM	1.7	2	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.8	1	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.4	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN2410L	VN2410M	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^42]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | VN2410 | | UNIT |
| PARAMETER | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }}$ DSs | $V_{G S}=0$ | $00 \mu \mathrm{~A}$ | | 270 | 240 | | V |
| Gate Threshold Voltage | $V_{G S(t h)}$ | $V_{D S}=V_{G}$ | 1 mA | 1.4 | 0.8 | 2 | | |
| Gate-Body Leakage | IGss | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | ± 1 | | ± 100 | nA | |
| Zero Gate Voltage Drain Current | I DSs | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=120 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 0.01 1 | | 10 | $\mu \mathrm{A}$ | |
| On-State Drain Current ${ }^{3}$ | ${ }^{\text {d }}$ (ON) | $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ | | 1.2 | 1 | | A | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$ | | 8.5 | | 10 | Ω | |
| | | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=0.5 \mathrm{~A} \end{aligned}$ | $T_{1}=125^{\circ} \mathrm{C}$ | 6.5 | | $\frac{10}{24.7}$ | | |
| Forward
 Transconductance ${ }^{3}$ | $\mathrm{gFS}^{\text {f }}$ | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | | 530 | 300 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$ | | 475 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {Iss }}$ | $\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ | | 110 | | 125 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 30 | | 50 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 5 | | 20 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | ${ }^{\text {d }}$ (ON) | $\begin{gathered} V_{D D}=60 \mathrm{~V}, R_{L}=150 \Omega \\ I_{D}=0.4 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$
 (Switching time is essentially Independent of operating temperature) | | 3 | | 8 | ns | |
| | t_{r} | | | 2 | | 8 | | |
| Turn-Off Time | ${ }^{t} \mathrm{~d}$ (OFF) | | | 13 | | 23 | | |
| | $t_{\text {f }}$ | | | 9 | | 34 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

VN4012 SERIES

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{D S(O N)}(\Omega)$ (Ω)	I_{D} (A)	PACKAGE
VN4012L	400	12	0.16	TO-92
VN4012B	400	12	0.42	TO-205AF
VN3515L	350	15	0.15	TO-92

Performance Curves: VNDV40 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN4012L	VN4012B ${ }^{2}$	VN3515L	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	400	400	350	V
Gate-Source Voltage		$V_{G S}$	± 30	± 20	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$I^{\text {D }}$	0.16	0.42	0.15	A
	$T_{A}=100^{\circ} \mathrm{C}$		0.10	0.27	0.09	
Pulsed Drain Current ${ }^{1}$		1 DM	0.65	1.3	0.60	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.80	5	0.80	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	2	0.32	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150			${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300			

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN4012L	VN4012B	VN3515L	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	125	156	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^43]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | LIMITS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | TYP ${ }^{2}$ | VN4012 | | VN3515 | | UNIT |
| | | | | MIN | MAX | MIN | MAX | |
| STATIC | | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }{ }^{\text {DSs }}}$ | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$ | 420 | 400 | | 350 | | |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | $V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$ | 1.3 | 0.6 | 1.8 | 0.6 | 1.8 | |
| Gate-Body Leakage | IGss | $\begin{array}{ll} V_{D S}=0 \mathrm{~V} \\ V_{G S}= \pm 20 \mathrm{~V} & T_{J}=125^{\circ} \mathrm{C} \end{array}$ | ± 1 ± 5 | | ± 10 | | ± 10 | nA |
| Zero Gate Voltage Drain Current | I DSs | $V_{D S}=0.8 \times V_{(B R) D S S}$ | 0.002 | | 100 | | 100 | $\mu \mathrm{A}$ |
| On-State Drain Current ${ }^{3}$ | $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ | $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}$ | 300 | 150 | | 150 | | mA |
| Drain-Source On-Resistance ${ }^{3}$ | ros ${ }^{\text {(ON) }}$ | $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}$ | 9 | | | | | Ω |
| | | $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$ | 9.5 | | 12 | | 15 | |
| | | $I_{D}=100 \mathrm{~mA} \quad T_{J}=125^{\circ} \mathrm{C}$ | 17 | | 30 | | 35 | |
| Forward
 Transconductance ${ }^{3}$ | g_{FS} | $V_{D S}=15 \mathrm{~V}, I_{D}=100 \mathrm{~mA}$ | 350 | 125 | | 125 | | mS |
| Common Source Output Conductance ${ }^{3}$ | gos | | 17 | | | | | $\mu \mathrm{S}$ |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$ | 80 | | 90 | | 90 | pF |
| Output Capacitance | Coss | | 10 | | 20 | | 20 | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | 2 | | 5 | | 5 | |
| SWITCHING | | | | | | | | |
| Turn-On Time | $\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$ | $\begin{gathered} V_{D D}=25 \mathrm{~V}, R_{L}=250 \Omega \\ I_{D}=0.1 \mathrm{~A}, V_{G E N}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$
 (Switching time is essentially independent of operating temperature) | 3.5 | | 20 | | 20 | ns |
| | t_{r} | | 2 | | 20 | | 20 | |
| Turn-Off Time | $t_{\text {d (OFF) }}$ | | 25 | | 65 | | 65 | |
| | t_{f} | | 15 | | 65 | | 65 | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ for VN4012B.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

VN45350 SERIES

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{\text {DS }}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VN45350L	450	350	0.030	TO-92
VN45350T	450	350	0.020	SOT-23

Performance Curves: VNDO50 (See Section 7)

PRODUCT MARKING	
VN45350T	V04

SOT-23

2 SOURCE
3 GATE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN45350L	VN45350T	UNITS
Drain-Source Voltage		$V_{D S}$	450	450	V
Gate-Source Voltage		$V_{G S}$	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1 D	0.030	0.020	A
	$T_{A}=100^{\circ} \mathrm{C}$		0.019	0.013	
Pulsed Drain Current ${ }^{1}$		IDM	0.12	0.08	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.80	0.35	W
	$T_{A}=100^{\circ} \mathrm{C}$		0.32	0.14	
Operating Junction and Storage Temperature		$\mathrm{T}_{j}, \mathrm{~T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN45350L	VN45350T	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	350	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^44]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | VN45350 | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }{ }^{\text {DSs }}}$ | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, | $10 \mu \mathrm{~A}$ | | 490 | 450 | | V |
| Gate-Source Threshold Voltage | $\mathrm{V}_{\text {GS (th) }}$ | $V_{D S}=V_{G S}$ | $=10 \mu \mathrm{~A}$ | 3.5 | 1.0 | 4.5 | | |
| Gate-Body Leakage | IGss | $\begin{gathered} V_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{gathered}$ | | ± 1 | | ± 100 | nA | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | ± 5 | | ± 500 | | |
| Zero Gate Voltage Drain Current | Ioss | $\begin{aligned} & V_{D S}=250 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$ | | 0.003 | | 0.050 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 2 | | 5 | | |
| On-State Draln Current ${ }^{3}$ | $I_{\text {D(ON })}$ | $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}$ | | 30 | 15 | | mA | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS }}(\mathrm{ON})$ | $\mathrm{V}_{\mathrm{Gs}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$ | | 320 | | 350 | Ω | |
| | | $\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=5 \mathrm{~mA} \end{aligned}$ | | 300 | | | | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 650 | | 820 | | |
| Forward
 Transconductance ${ }^{3}$ | gFs | $V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$ | | 14 | 5 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$ | | 4.5 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{15 \mathrm{~s}}$ | $\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$ | | 5 | | 20 | pF | |
| Output Capacitance | $C_{\text {oss }}$ | | | 1.8 | | 10 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 0.5 | | 5 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | $t_{\text {d }}(\mathrm{ON})$ | $\begin{aligned} & V_{D D}=25 \mathrm{~V}, R_{L}=2500 \Omega \\ & I_{D}=10 \mathrm{~mA}, V_{G E N}=10 \mathrm{~V} \end{aligned}$ | | 4.5 | | 10 | ns | |
| | t_{r} | | | 8 | | 15 | | |
| Turn-Off Time | ${ }^{\text {d }}$ (OFF) | (Switching time is essentially independent of operating temperature) | | 15 | | 30 | | |
| | t_{f} | | | 60 | | 100 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

VN50300 SERIES

N-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMMARY

PART NUMBER	$V_{(B R) D S S}(V)$	$r_{D S(O N)}$ (Ω)	I_{D} (A)	PACKAGE
VN50300L	500	300	0.033	TO-92
VN50300T	500	300	0.022	SOT-23

Performance Curves: VNDO50 (See Section 7)

PRODUCT MARKING	
VN50300T	V01

ABSOLUTE MAXIMUMM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VN50300L	VN50300T	UNITS
Drain-Source Voltage		$V_{D S}$	500	500	V
Gate-Source Voltage		$V_{G S}$	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	${ }^{1}$	0.033	0.022	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.021	0.013	
Pulsed Drain Current ${ }^{1}$		1 DM	0.130	0.080	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.80	0.35	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.14	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERIVAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VN50300L	VN50300T	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	350	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Pulse width limited by maximum junction temperature

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300$ дs, duty cycle $\leq 2 \%$.

VP0300 SERIES

P-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

$⺌ \quad$| PART
 NUMBER | $V_{(B R) D S S}$
 (V) | $r_{\text {DS }}(O N)$
 (Ω) | I_{D}
 (A) | PACKAGE |
| :---: | :---: | :---: | :---: | :---: |
| VP0300B | -30 | 2.5 | -1.25 | TO-205AD |
| VP0300L | -30 | 2.5 | -0.32 | TO-92 |
| VP0300M | -30 | 2.5 | -0.5 | TO-237 |

Performance Curves: VPMH03 (See Section 7) TO-237 BOTTOM VIEW

TO-205AD (TO-39)
BOTTOM VIEW

TO-92

BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VP0300B ${ }^{2}$	VP0300L	VP0300M	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	-30	-30	-30	V
Gate-Source Voltage		$V_{G S}$	± 20	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$1{ }^{\text {d }}$	-1.25	-0.32	-0.5	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		-0.79	-0.2	-0.32	
Pulsed Drain Current ${ }^{1}$		1 DM	-3	-2.4	-3	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	6.25	0.8	1	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		2.5	0.32	0.4	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150			${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300			

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VP0300B	VP0300L	VP0300M	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	170	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^45]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | VP0300 4 | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{(B R) D S s}$ | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}$ | $10 \mu \mathrm{~A}$ | | -55 | -30 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | $V_{D S}=V_{G S}, 1$ | $-1 \mathrm{~mA}$ | -3.6 | -2 | -4.5 | | |
| Gate-Body Leakage | $\mathrm{I}_{\text {gss }}$ | $\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}}$ | $\pm 30 \mathrm{~V}$ | ± 1 | | ± 100 | nA | |
| Zero Gate Voltage Drain Current | Idss | $\mathrm{V}_{\mathrm{DS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ | | -0.0001 | | -10 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | -0.3 | | -500 | | |
| On-State Draln Current | $I_{\text {I (ON })}$ | $\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}$ | | -1.6 | -1.5 | | A | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A} \end{aligned}$ | | 1.8 | | 2.5 | Ω | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 3.1 | | 3.63 | | |
| Forward
 Transconductance ${ }^{3}$ | gfs | $\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~A}$ | | 290 | 200 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=-7.5 \mathrm{~V}, I_{D}=-0.05 \mathrm{~A}$ | | 800 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{gathered} V_{D S}=-15 \mathrm{~V} \\ V_{G S}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$ | | 130 | | 150 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 75 | | 100 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 20 | | 60 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | ${ }^{\text {t }} \mathrm{ON}$ | $\mathrm{V}_{\mathrm{DD}}=-25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=23 \Omega$$\mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=-10 \mathrm{~V}$$R_{G}=25 \Omega$(Switching time is essentially independentof operating temperature) | | 16 | | 30 | ns | |
| Turn-Off Time | ${ }^{\text {t OFF }}$ | | | 13 | | 30 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design ald only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. Reference case temperature for VP0300B.

VP0610 SERIES

P-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{\text {DS }}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VP0610E	-60	10	-0.25	TO-206AC
VP0610L	-60	10	-0.18	TO-92
VP0610T	-60	10	-0.12	SOT-23

Performance Curves: VPDS06 (See Section 7)

SOT-23

TOP VIEW

PRODUCT MARKING	
VP0610T	V50

TO-206AC (TO-52) BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN \& CASE

ABSOLUTE MAXIMIUIV RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VP0610E ${ }^{2}$	VP0610L	VP0610T	UNITS
Drain-Source Voltage		$V_{D S}$	-60	-60	-60	V
Gate-Source Voltage		$V_{\text {GS }}$	± 20	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$1{ }^{\text {D }}$	-0.25	-0.18	-0.12	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		-0.15	-0.11	-0.07	
Pulsed Drain Current ${ }^{1}$		IDM	-1	-0.8	-0.4	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	1.5	0.80	0.36	W
	$T_{A}=100^{\circ} \mathrm{C}$		0.6	0.32	0.14	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150			${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300			

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VP0610E	VPO610L	VP0610T	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	400	156	350	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^46]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | | TYP ${ }^{2}$ | VP0610E | | VP0610L | | UNIT |
| | | | | MIN | MAX | MIN | MAX | |
| STATIC | | | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }{ }^{\text {DSs }}}$ | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$ | | | -70 | -60 | | -60 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | $V_{D S}=V_{G S}, I_{D}=-1 \mathrm{~mA}$ | | -2 | -1 | -3.5 | -1 | -3.5 | | |
| Gate-Body Leakage | $\mathrm{I}_{\text {Gss }}$ | $\begin{gathered} V_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{gathered}$ | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | ± 1 ± 5 | | ± 10 | | ± 10 | nA | |
| Zero Gate Voltage Drain Current | Idss | $\begin{gathered} \mathrm{V}_{\mathrm{DS}}=-48 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{gathered}$ | | -0.02 | | -1 | | -1 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | -0.2 | | -200 | | -200 | | |
| On-State Drain Current ${ }^{3}$ | ID(ON) | $\mathrm{V}_{\text {DS }}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$ | | -700 | -600 | | -600 | | mA | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON }}$) | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~A} \end{aligned}$ | | 8 | | 10 | | 10 | Ω | |
| | | | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | 15 | | 20 | | 20 | | |
| Forward
 Transconductance ${ }^{3}$ | g_{FS} | $V_{D S}=-10 \mathrm{~V}, I_{D}=-0.5 \mathrm{~A}$ | | 135 | 80 | | 80 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=-10 \mathrm{~V}, I_{D}=-0.2 \mathrm{~A}$ | | 400 | | | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{aligned} & V_{D S}=-25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$ | | 15 | | 60 | | 60 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 10 | | 25 | | 25 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 3 | | 5 | | 5 | | |
| SWITCHING | | | | | | | | | | |
| Turn-On Time | $t_{\text {d(ON) }}$ | $\begin{gathered} \mathrm{V}_{\mathrm{DD}}=-25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=133 \Omega \\ \mathrm{I}_{\mathrm{D}}=-0.18 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=-10 \mathrm{~V} \\ \mathrm{R}_{\mathrm{G}}=25 \Omega \end{gathered}$
 (Switching time is essentially independent of operating temperature) | | 6 | | 10 | | 10 | ns | |
| | t_{r} | | | 10 | | 15 | | 15 | | |
| Turn-Off Time | $t_{\text {d (OFF) }}$ | | | 7 | | 15 | | 15 | | |
| | t_{f} | | | 8 | | 20 | | 20 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ for VP0610E.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

VP0610 SERIES

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300$ ل s , duty cycle $\leq 2 \%$.

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{\text {DS }}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VP0808B	-80	5	-0.88	TO-205AD
VP0808L	-80	5	-0.28	TO-92
VP0808M	-80	5	-0.31	TO-237

Performance Curves: VPDV10 (See Section 7)

TO-92

BOTTOM VIEW

TO-205AD

1 SOURCE
2 GATE
3 DRAIN \& CASE

BOTTOM VIEW

BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN \& TAB

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted) ${ }^{3}$

PARAMETERS/TEST CONDITIONS		SYMBOL	VP0808B ${ }^{2}$	VP0808L	VP0808M	UNITS
Drain-Source Voltage		$V_{D S}$	-80	-80	-80	V
Gate-Source Voltage		V_{GS}	± 20	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1 D	-0.88	-0.28	-0.31	A
	$T_{A}=100^{\circ} \mathrm{C}$		-0.53	-0.17	-0.20	
Pulsed Drain Current ${ }^{1}$		IDM	-3	-3	-3	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	6.25	0.8	1	W
	$T_{A}=100^{\circ} \mathrm{C}$		2.5	0.32	0.4	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150			${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300			

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VP0808B	VP0808L	VP0808M	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	170	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^47]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS ${ }^{4}$ | | TYP ${ }^{2}$ | VP0808 ${ }^{4}$ | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $\mathrm{V}_{\text {(BR) }}$ DSs | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ | $=-10 \mu \mathrm{~A}$ | | -110 | -80 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | $V_{D S}=V_{G S}$ | $=-1 \mathrm{~mA}$ | -3.4 | -2 | -4.5 | | |
| Gate-Body Leakage | IGss | $\begin{gathered} \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{gathered}$ | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | $\begin{aligned} & \pm 1 \\ & \pm 5 \end{aligned}$ | | $\begin{aligned} & \pm 100 \\ & \pm 500 \end{aligned}$ | nA | |
| Zero Gate Voltage Drain Current | Idss | $\begin{gathered} V_{D S}=-80 \mathrm{~V} \\ V_{G S}=0 \mathrm{~V} \end{gathered}$ | | -0.0005 | | -10 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | -0.1 | | -500 | | |
| On-State Drain Current ${ }^{3}$ | ${ }^{\text {D }}$ (ON) | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$ | | -2 | -1.1 | | A | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS (ON) }}$ | $\begin{gathered} V_{G S}=-10 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A} \end{gathered}$ | | 2.5 | | 5 | Ω | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 4.3 | | 8 | | |
| Forward
 Transconductance ${ }^{3}$ | $\mathrm{gFS}^{\text {S }}$ | $V_{D S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~A}$ | | 325 | 200 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=-7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.1 \mathrm{~A}$ | | 450 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{gathered} V_{D S}=-25 \mathrm{~V} \\ V_{G S}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{mHz} \end{gathered}$ | | 75 | | 150 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 40 | | 60 | | |
| Reverse Transfer Capacitance | $\mathrm{Crss}^{\text {r }}$ | | | 18 | | 25 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | $t_{d(O N)}$ | $\begin{gathered} V_{D D}=-25 \mathrm{~V}, R_{L}=47 \Omega \\ \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=-10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$
 (Switching time is essentially independent of operating temperature) | | 11 | | 15 | ns | |
| | t_{r} | | | 30 | | 40 | | |
| Turn-Off Time | ${ }^{\text {t }}$ (OFF) | | | 20 | | 30 | | |
| | t_{f} | | | 20 | | 30 | | |

NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted, $T_{C}=25^{\circ} \mathrm{C}$ for VP0808B.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. Data sheet limits and/or test conditions have been revised.

P-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R)}$ (V)	DSS (Ω)	I_{D} (A)	PACKAGE
VP1008B	-100	5	-0.79	TO-205AD
VP1008L	-100	5	-0.28	TO-92
VP1008M	-100	5	-0.31	TO-237

Performance Curves: VPDV10 (See Section 7)

TO-205AD

1 SOURCE
2 GATE
3 DRAIN \& CASE

TO-237

BOTTOM VIEW

1 SOURCE
2 GATE
3 DRAIN \& TAB

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted) ${ }^{3}$

PARAMETERS/TEST CONDITIONS		SYMBOL	VP1008B ${ }^{2}$	VP1008L	VP1008M	UNITS
Drain-Source Voltage		$V_{D S}$	-100	-100	-100	V
Gate-Source Voltage		V_{GS}	± 20	± 30	± 30	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	-0.79	-0.28	-0.31	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		-0.53	-0.17	-0.20	
Pulsed Drain Current ${ }^{1}$		IDM	-3	-3	-3	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	6.25	0.8	1	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		2.5	0.32	0.4	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150			${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300			

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VP1008B	VP1008L	VP1008M	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	170	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^48]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS ${ }^{4}$ | | TYP ${ }^{2}$ | VP1008 ${ }^{4}$ | | UNIT |
| | | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }{ }^{\text {dss }}}$ | $V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$ | | | -110 | -100 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | $V_{D S}=V_{G S}, I_{D}=-1 \mathrm{~mA}$ | | -3.4 | -2 | -4.5 | | |
| Gate-Body Leakage | IGss | $\begin{gathered} \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{gathered}$ | $T_{J}=125^{\circ} \mathrm{C}$ | $\begin{aligned} & \pm 1 \\ & \pm 5 \end{aligned}$ | | ± 100 ± 500 | nA | |
| Zero Gate Voltage Drain Current | IDSS | $\begin{gathered} \mathrm{V}_{\mathrm{DS}}=-100 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{gathered}$ | | -0.0005 | | -10 | $\mu \mathrm{A}$ | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | -0.1 | | -500 | | |
| On-State Drain Current ${ }^{3}$ | ID(ON) | $\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$ | | -2 | -1.1 | | A | |
| Drain-Source On-Resistance ${ }^{3}$ | rosion) | $\begin{aligned} & V_{G S}=-10 \mathrm{~V} \\ & I_{D}=-1 \mathrm{~A} \end{aligned}$ | | 2.5 | | 5 | Ω | |
| | | | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 4.3 | | 8 | | |
| Forward
 Transconductance ${ }^{3}$ | gFs | $V_{D S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~A}$ | | 325 | 200 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | $V_{D S}=-7.5$ | $D=-0.1 \mathrm{~A}$ | 450 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $\mathrm{C}_{\text {iss }}$ | $\begin{gathered} V_{D S}=-25 \mathrm{~V} \\ V_{G S}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$ | | 75 | | 150 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 40 | | 60 | | |
| Reverse Transfer Capacitance | $\mathrm{Crss}^{\text {r }}$ | | | 18 | | 25 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | $\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$ | $\begin{aligned} & V_{D D}=-25 \mathrm{~V}, R_{L}=47 \Omega \\ & \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=-10 \mathrm{~V} \\ & R_{\mathrm{G}}=25 \Omega \\ & \begin{array}{l} \text { (Switching time is essentially } \\ \text { independent of operating } \\ \text { temperature) } \end{array} \end{aligned}$ | | 11 | | 15 | ns | |
| | t_{r} | | | 30 | | 40 | | |
| Turn-Off Time | $\mathrm{t}_{\mathrm{d} \text { (OFF) }}$ | | | 20 | | 30 | | |
| | t_{f} | | | 20 | | 30 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ for VP1008B.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
4. Data sheet limits and/or test conditions have been revised.

P-Channel Enhancement-Mode MOS Transistors

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{\text {DS }}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VP2020L	-200	20	-0.12	TO-92
VP2020E	-200	20	-0.17	TO-206AC

Performance Curves: VPDQ20 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VP2020L	VP2020E ${ }^{2}$	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	-200	-200	
Gate-Source Voltage		V_{GS}	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1 D	-0.12	-0.17	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		-0.08	-0.10	
Pulsed Drain Current ${ }^{1}$		IDM	-0.48	-0.60	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.80	1.50	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.60	
Operating Junction and Storage Temperature		$T_{j}, T_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature(1/16" from case for 10 seconds)		TL	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VP2020L	VP2020E	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	400	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^49]| ELECTRICAL CHARACTERISTICS ${ }^{1}$ | | | | LIMITS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | TEST CONDITIONS | | TYP ${ }^{2}$ | VP2020 | | UNIT |
| PARAMETER | SYMBOL | | | MIN | MAX | |
| STATIC | | | | | | | |
| Drain-Source Breakdown Voltage | $V_{\text {(BR) }}$ Dss | $V_{G S}=0 \mathrm{~V}$ | $=-10 \mu \mathrm{~A}$ | | -220 | -200 | | V |
| Gate Threshold Voltage | $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ | $V_{\text {DS }}=V_{G S}$ | $=-1 \mathrm{~mA}$ | -1.9 | -0.8 | -2.5 | | |
| Gate-Body Leakage | IGss | $\begin{gathered} V_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} \end{gathered}$ | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ | ± 1 | | $\frac{ \pm 10}{ \pm 50}$ | nA | |
| Zero Gate Voltage Drain Current | IDSs | $\begin{aligned} & V_{D S}=-160 \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$ | $T_{J}=125^{\circ} \mathrm{C}$ | $\begin{gathered} -0.02 \\ \hline-3 \\ \hline \end{gathered}$ | | $\begin{gathered} \hline-1 \\ \hline-100 \\ \hline \end{gathered}$ | $\mu \mathrm{A}$ | |
| On-State Drain Current ${ }^{3}$ | ${ }^{\text {I }}$ (ON) | $\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$ | | -270 | -100 | | mA | |
| Drain-Source On-Resistance ${ }^{3}$ | $\mathrm{r}_{\text {DS(ON) }}$ | $\begin{gathered} \mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA} \end{gathered}$ | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ | 15 | | $\frac{20}{40}$ | Ω | |
| Forward
 Transconductance ${ }^{3}$ | gfs | $V_{D S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}$ | | 150 | 100 | | mS | |
| Common Source Output Conductance ${ }^{3}$ | gos | | | 300 | | | $\mu \mathrm{S}$ | |
| DYNAMIC | | | | | | | | |
| Input Capacitance | $C_{\text {iss }}$ | $\begin{gathered} V_{D S}=-25 \mathrm{~V} \\ V_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$ | | 30 | | 70 | pF | |
| Output Capacitance | $\mathrm{C}_{\text {oss }}$ | | | 10 | | 20 | | |
| Reverse Transfer Capacitance | $\mathrm{C}_{\text {rss }}$ | | | 2 | | 10 | | |
| SWITCHING | | | | | | | | |
| Turn-On Time | ${ }^{\text {d }}$ (ON) | $\begin{gathered} V_{D D}=-25 \mathrm{~V}, R_{L}=250 \Omega \\ I_{D}=-100 \mathrm{~mA}, V_{G E N}=-10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$
 (Switching time is essentially independent of operating temperature) | | 6 | | 10 | ns | |
| | t_{r} | | | 8 | | 15 | | |
| Turn-Off Time | ${ }^{t}$ d(OFF) | | | 18 | | 30 | | |
| | t_{f} | | | 17 | | 25 | | |

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ for VP2020E.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{\text {DS }}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VP2410L	-240	10	-0.18	TO-92
VP2410B	-240	10	-0.17	TO-205AF

Performance Curves: VPDV24 (See Section 7)

1 SOURCE
2 GATE
3 DRAIN \& CASE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VP2410L	VP2410B	UNITS
Drain-Source Voltage		$V_{D S}$	-240	-240	V
Gate-Source Voltage		$V_{G S}$	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	-0.18	-0.17	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		-0.11	-0.10	
Pulsed Drain Current ${ }^{1}$		IDM	-0.72	-0.70	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	0.80	0.73	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.22	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VP2410L	VP2410B	UNITS
Junction-to-Ambient	$R_{\text {thJA }}$	156	170	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^50]

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
incorporated
N-Channel Enhancement-Mode MOS Transistor Arrays

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	rDS (ON) (Ω)	ID $_{\text {D }}$ (A)	PACKAGE
VQ1000J	60	5.5	0.225	Plastic
VQ1000P	60	5.5	0.225	Side Braze

Performance Curves: VNDS06 (See Section 7)

14-PIN DIP

 SIDE BRAZE

14-PIN PLASTIC

TOP VIEW
Dual-In-Line Package

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VQ1000J	VQ1000P	UNITS
Drain-Source Voltage		$V_{D S}$	60	60	V
Gate-Source Voltage		V_{GS}	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	0.225	0.225	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.14	0.14	
Pulsed Drain Current ${ }^{1}$		IDM	± 1	± 1	
Power Dissipation - Single	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	1.3	1.3	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.52	0.52	
Power Dissipation - Quad	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	2	
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.8	0.8	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VQ1000J	VQ1000P	UNITS
Junction-to-Ambient - Single	R $_{\text {thJA }}$	96.2	96.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		62.5	62.5	

[^51]	ELECTRICAL CHARACTERISTICS ${ }^{1}$		LIMITS			
PARAMETER			VQ1000			

STATIC

Drain-Source Breakdown Voltage	$V_{(B R) D S S}$	$\mathrm{V}_{\mathrm{GS}}=0$	100 上 A	70	60		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	$V_{D S}=V^{\prime}$	$=1 \mathrm{~mA}$	2.3	0.8	2.5	
Gate-Body Leakage	$I_{\text {GSS }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	$\frac{ \pm 1}{ \pm 5}$		$\frac{ \pm 100}{ \pm 500}$	nA
Zero Gate Voltage Drain Current	IDSS	$\begin{aligned} & V_{D S}=60 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	$48 \mathrm{~V}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$	$\frac{0.02}{1}$		$\frac{10}{500}$	$\mu \mathrm{A}$
On-State Drain Current ${ }^{3}$	$1 \mathrm{D}(\mathrm{ON})$	$V_{D S}=10$	$=10 \mathrm{~V}$	1000	500		mA
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=5$	0.2 A	5		7.5	Ω
		$\begin{aligned} & V_{G S}=10 \mathrm{~V} \\ & I_{D}=0.3 \mathrm{~A} \end{aligned}$		2.5		5.5	
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	4.4		7.6	
Forward Transconductance ${ }^{3}$	GFS	$\mathrm{V}_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$		230	100		mS
Common Source Output Conductance ${ }^{3}$	gos	$V_{D S}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}$		500			$\mu \mathrm{S}$

DYNAMIC

Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	16	60	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		11	25	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		2	5	
SWITCHING					
Turn-On Time	${ }^{\text {ton }}$	$\begin{gathered} V_{D D}=15 \mathrm{~V}, R_{L}=23 \Omega \\ I_{D}=0.6 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \\ R_{\mathrm{G}}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)	7	10	ns
Turn-Off Time	${ }^{\text {t OFF }}$		7	10	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

N-Channel Enhancement-Mode MOS Transistor Arrays

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	rDS $^{(O N)}$ (Ω)	I_{D} (A)	PACKAGE
VQ1001J	30	1	0.85	Plastic
VQ1001P	30	1	0.85	Side Braze

Performance Curves: VNDQ03 (See Section 7)

14-PIN DIP
SIDE BRAZE

14-PIN PLASTIC

TOP VIEW
Dual-In-Line Package

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VQ1001J	VQ1001P	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	30	30	V
Gate-Source Voltage		$V_{G S}$	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$1{ }^{1}$	0.85	0.85	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.53	0.53	
Pulsed Drain Current, ${ }^{1}$		IDM	± 3	± 3	
Power Dissipation - Single	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	1.3	1.3	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.52	0.52	
Power Dissipation - Quad	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	2	
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.80	0.80	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VQ1001J	VQ1001P	UNITS
Junction to Ambient - Single	R $_{\text {thJA }}$	96.2	96.2	
		C / W		
Junction to Ambient - Quad			62.5	

${ }^{1}$ Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS		VQ1001			UNIT
				TYP ${ }^{2}$	MIN	MAX	
STATIC							
Drain-Source Breakdown Voltage	$V_{\text {(BR) }{ }^{\text {dss }}}$	$V_{G S}=0 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A}$		65	30		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}^{\prime}$	$D=1 \mathrm{~mA}$	1.5	0.8	2.5	
Gate-Body Leakage	IGss	$\begin{aligned} & V_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \end{aligned}$		± 1		± 100	nA
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	± 5		± 500	
Zero Gate Voltage Drain Current	I DSs	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$		0.0001		10	$\mu \mathrm{A}$
			$24 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	0.2		500	
On-State Drain Current ${ }^{3}$	$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V}$		3	2		A
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON) }}$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}$		1.4		1.75	Ω
		$\begin{aligned} \mathrm{V}_{\mathrm{GS}} & =12 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}} & =1 \mathrm{~A} \end{aligned}$		0.85		1	
			${ }^{4} \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$	1.65		2	
Forward Transconductance ${ }^{3}$	$\mathrm{gFS}^{\text {S }}$	$V_{D S}=10 \mathrm{~V}, I_{D}=0.5 \mathrm{~A}$		500	200		mS
Common Source Output Conductance ${ }^{3}$	gos	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$		1500			us
DYNAMIC							
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=15 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		38		110	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$			28		110	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			8		35	
SWITCHING							
Turn-On Time	${ }^{\text {t ON }}$	$\begin{gathered} V_{D D}=15 \mathrm{~V}, R_{L}=23 \Omega \\ \mathrm{I}_{\mathrm{D}}=0.6 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)		9		30	ns
Turn-Off Time	${ }^{\text {t OFF }}$			13		30	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. This parameter has been revised from previous data sheet.

N-Channel Enhancement-Mode MOS Transistor Arrays

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) \text { DSS }}(\mathrm{V})$	rDS(ON) (Ω)	I_{D} (A)	PACKAGE
VQ1004J	60	3.5	0.46	Plastic
VQ1004P	60	3.5	0.46	Side Braze

Performance Curves: VNDQ06 (See Section 7)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VQ1004J	VQ1004P	UNITS
Drain-Source Voltage		$V_{D S}$	60	60	V
Gate-Source Voltage		V_{GS}	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	${ }^{1}$	0.46	0.46	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.26	0.26	
Pulsed Drain Current ${ }^{1}$		IDM	± 2	± 2	
Power Dissipation - Single	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	1.3	1.3	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.52	0.52	
Power Dissipation - Quad	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	2	
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.8	0.8	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VQ1004J	VQ1004P	UNITS
Junction to Ambient - Single	R $_{\text {thJA }}$	96.2	96.2	
Junction to Ambient - Quad		62.5	62.5	

${ }^{1}$ Pulse width limited by maximum junction temperature.

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS			
PARAMETER	SYMBOL	TEST CONDITIONS	VQ1004			UNIT
			TYP ${ }^{2}$	MIN	MAX	
STATIC						
Drain-Source Breakdown Voltage	$V_{\text {(BR)DSS }}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$	70	60		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$	1.5	0.8	2.5	
Gate-Body Leakage	1 Gss	$\begin{aligned} & V_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 15 \mathrm{~V} \quad \end{aligned}$	± 1		± 100	$n \mathrm{~A}$
			± 5		± 500	
Zero Gate Voltage Drain Current	IDSS	$\begin{aligned} & V_{D S}=60 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	0.05		1	$\mu \mathrm{A}$
			0.3		500	
On-State Drain Current ${ }^{3}$	$I_{\text {D(ON }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	1.8	1.5		A
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS (ON) }}$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$	1.8		5	Ω
		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	1.3		3.5	
		$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~A} \quad \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$	2.6		4.9	
Forward Transconductance ${ }^{3}$	g_{FS}	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$	350	170		mS
Common Source Output Conductance ${ }^{3}$	gos	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{~A}$	1100			$\mu \mathrm{S}$
DYNAMIC						
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	35		60	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		25		50	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		5		10	
SWITCHING						
Turn-On Time	${ }^{t} \mathrm{ON}$	$\begin{gathered} V_{D D}=25 \mathrm{~V}, R_{L}=23 \Omega \\ I_{D}=1 \mathrm{~A}, V_{G E N}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)	8		10	ns
Turn-Off Time	${ }^{\text {t OFF }}$		9		10	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test: $P W=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$

N-Channel Enhancement-Mode MOS Transistor Arrays

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$\begin{gathered} r_{\text {DS }(O N)} \\ (\Omega) \end{gathered}$	$\begin{aligned} & I_{D} \\ & (A) \end{aligned}$	PACKAGE
VQ1006J	90	4.5	0.40	Plastic
VQ1006P	90	4.5	0.40	Side Braze

Performance Curves: VNDQ09 (See Section 7)

14-PIN DIP SIDE BRAZE

14-PIN PLASTIC

TOP VIEW
Dual-In-Line Package

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VQ1006J	VQ1006P	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	90	90	V
Gate-Source Voltage		$V_{G S}$	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$1{ }^{1}$	0.40	0.40	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.23	0.23	
Pulsed Drain Current ${ }^{1}$		$I_{\text {DM }}$	± 2	± 2	
Power Dissipation - Single	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	1.3	1.3	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.52	0.52	
Power Dissipation - Quad	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	2	
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.8	0.8	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VQ1006J	VQ1006P	UNITS
Junction-to-Ambient - Single	R $_{\text {thJA }}$	96.2	96.2	
		C / W		
Junction-to-Ambient - Quad			62.5	

[^52]

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $P W=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. This parameter has been revised from previous data sheet.

P-Channel Enchancement-Mode MOS Transistor Arrays

PRODUCT SUMMARY

PART NUMBER	$V_{\text {(BR)DSS }}$ (V)	$r_{\text {DS }}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VQ2000J	-60	10	-0.24	Plastic
VQ2000P	-60	10	-0.24	Side Braze

Performance Curves: VPDS06 (See Section 7)

14-PIN DIP SIDE BRAZE

14-PIN PLASTIC

TOP VIEW
Dual-In-Line Package

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VQ2000J	VQ2000P	UNITS
Drain-Source Voltage		$V_{D S}$	-60	-60	V
Gate-Source Voltage		V_{GS}	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1 D	-0.24	-0.24	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		-0.15	-0.15	
Pulsed Drain Current ${ }^{1}$		IDM	± 0.8	± 0.8	
Power Dissipation - Single	$T_{A}=25^{\circ} \mathrm{C}$ $T_{A}=100^{\circ} \mathrm{C}$	PD	1.3	1.3	W
			0.52	0.52	
Power Dissipation - Quad	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	2	
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.8	0.8	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VQ2000J	VQ2000P	UNITS
Junction-to-Ambient - Single	$R_{\text {thJA }}$	96.2	96.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient - Quad		62.5	62.5	

[^53]

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

P-Channel Enhancement-Mode MOS Transistor Arrays

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) \text { DSS }}$ (V)	$r_{\text {DS(ON }}$ (Ω)	I_{D} (A)	PACKAGE
VQ2001J	-30	2	-0.6	Plastic
VQ2001P	-30	2	-0.6	Side Braze

Performance Curves: VPMH03 (See Section 7)

$$
\begin{aligned}
& \text { 14-PIN DIP } \\
& \text { SIDE BRAZE }
\end{aligned}
$$

14-PIN PLASTIC

TOP VIEW
Dual-In-Line Package

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VQ2001J	VQ2001P	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	-30	-30	V
Gate-Source Voltage		$V_{G S}$	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	-0.6	-0.6	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		-0.12	-0.12	
Pulsed Drain Current ${ }^{1}$		IDM	± 2	± 2	
Power Dissipation - Single	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	1.3	1.3	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.52	0.52	
Power Dissipation - Quad	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	2	
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.8	0.8	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VQ2001J	VQ2001P	UNITS
Junction-to-Ambient - Single	$R_{\text {thJA }}$	96.2	96.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient - Quad		62.5	62.5	

[^54]

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

P-Channel Enhancement-Mode MOS Transistor Arrays

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) \text { DSS }}$ (V)	(DS(ON) (Ω)	ID (A)	PACKAGE
VQ2004J	-60	5	-0.41	Plastic
VQ2004P	-60	5	-0.41	Side Braze

Performance Curves: VPDV10 (See Section 7)

14-PIN DIP
SIDE BRAZE

14-PIN PLASTIC

TOP VIEW Dual-In-Line Package

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VQ2004J	VQ2004P	UNITS
Drain-Source Voltage		$V_{\text {DS }}$	-60	-60	V
Gate-Source Voltage		$V_{G S}$	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	-0.41	-0.41	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		-0.23	-0.23	
Pulsed Drain Current ${ }^{1}$		IDM	± 3	± 3	
Power Dissipation - Single	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	1.3	1.3	W
	$T_{A}=100^{\circ} \mathrm{C}$		0.52	0.52	
Power Dissipation - Quad	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	2	
	$T_{A}=100^{\circ} \mathrm{C}$		0.8	0.8	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VQ2004J	VQ2004P	UNITS
Junction-to-Ambient - Single	$R_{\text {thJA }}$	96.2	96.2	
		C / W		
Junction-to-Ambient - Quad			62.5	

${ }^{1}$ Pulse width limited by maximum junction temperature.

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS				
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	VQ2004 ${ }^{4}$		UNIT	
				MIN	MAX			
StATIC								
Drain-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {DSs }}}$	$V_{G S}=0$	$=-10 \mu \mathrm{~A}$		-110	-60		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}^{\prime}$	$=-1 \mathrm{~mA}$	-3.4	-2	-4.5		
Gate-Body Leakage	IGss	$\begin{aligned} & V_{D S}=0 \mathrm{~V} \\ & V_{G S}= \pm 30 \mathrm{~V} \end{aligned}$	T $=125^{\circ} \mathrm{C}$	$\frac{ \pm 1}{ \pm 5}$		± 100 +500	nA	
Zero Gate Voltage Drain Current	Idss	$\begin{aligned} & V_{D S}=-60 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	-0.0005		-10	$\mu \mathrm{A}$	
On-State Drain Current ${ }^{3}$	$\mathrm{I}_{\text {D(ON })}$	$V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{G S}=-10 \mathrm{~V}$		-2	-1		A	
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS (ON) }}$	$\begin{aligned} \mathrm{V}_{G S} & =-10 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}} & =-1 \mathrm{~A} \end{aligned}$		2.5		5	Ω	
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	4.3		8		
Forward Transconductance ${ }^{3}$	gfs	$V_{D S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~A}$		325	200		mS	
Common Source Output Conductance ${ }^{3}$	gos	$V_{D S}=-7.5$	$=-0.1 \mathrm{~A}$	450			$\mu \mathrm{S}$	
DYNAMIC								
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=-25 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		75		150	pF	
Output Capacitance	Coss			40		60		
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			18		25		
SWITCHING								
Turn-On Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{gathered} V_{D D}=-25 \mathrm{~V}, R_{L}=47 \Omega \\ I_{D}=-0.5 \mathrm{~A}, V_{G E N}=-10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)		11		15	ns	
	t_{r}			30		40		
Turn-Off Time	$t_{\text {d (OFF) }}$			20		30		
	t_{f}			20		30		

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW $=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. Data sheet limits have been revised.

P-Channel Enhancement-Mode MOS Transistor Arrays

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	$r_{D S}(O N)$ (Ω)	I_{D} (A)	PACKAGE
VQ2006J	-90	5	-0.41	Plastic
VQ2006P	-90	5	-0.41	Side Braze

Performance Curves: VPDV10 (See Section 7)

14-PIN DIP SIDE BRAZE

14-PIN PLASTIC

TOP VIEW
Dual-In-Line Package

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VQ2006J	VQ2006P	UNITS
Drain-Source Voltage		$V_{D S}$	-90	-90	V
Gate-Source Voltage		$V_{G S}$	± 30	± 20	
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	-0.41	-0.41	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		-0.23	-0.23	
Pulsed Drain Current ${ }^{1}$		IDM	± 3	± 3	
Power Dissipation - Single	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	1.3	1.3	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.52	0.52	
Power Dissipation - Quad	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	2	
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.8	0.8	
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300		

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VQ2006J	VQ2006P	UNITS
Junction-to-Ambient - Single	R $_{\text {thJA }}$	96.2	96.2	
		C / W		
			62.5	

${ }^{1}$ Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS ${ }^{1}$				LIMITS				
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ${ }^{2}$	VQ2006 ${ }^{4}$		UNIT	
				MIN	MAX			
STATIC								
Drain-Source Breakdown Voltage	$V_{\text {(BR) }}$ DSS	$V_{G S}=0$	$-10 \mu \mathrm{~A}$		-110	-90		
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	$V_{D S}=V^{\prime}$	$=-1 \mathrm{~mA}$	-3.4	-2	-4.5		
Gate-Body Leakage	IGSS	$\begin{aligned} & V_{D S}=0 \mathrm{~V} \\ & V_{G S}= \pm 30 \mathrm{~V} \end{aligned}$		± 1		± 100	nA	
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	± 5		± 500		
Zero Gate Voltage Drain Current	IDSS	$\begin{aligned} & V_{D S}=-90 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$		-0.0005		-10	$\mu \mathrm{A}$	
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	-0.1		-500		
On-State Drain Current ${ }^{3}$	$I_{\text {D }}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$		-2	-1		A	
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON) }}$	$\begin{aligned} \mathrm{V}_{G S} & =-10 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}} & =-1 \mathrm{~A} \end{aligned}$		2.5		5	Ω	
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	4.3		8		
Forward Transconductance ${ }^{3}$	$\mathrm{gFS}^{\text {F }}$	$V_{D S}=-10 \mathrm{~V}, I_{D}=-0.5 \mathrm{~A}$		325	200		mS	
Common Source Output Conductance ${ }^{3}$	gos	$V_{D S}=-7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.1 \mathrm{~A}$		450			$\mu \mathrm{S}$	
DYNAMIC								
Input Capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{D S}=-25 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$		75		150	pF	
Output Capacitance	$C_{\text {oss }}$			40		60		
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			18		25		
SWITCHING								
Turn-On Time	$\mathrm{t}_{\mathrm{d}}(\mathrm{ON})$	$\begin{gathered} V_{D D}=-25 \mathrm{~V}, R_{L}=47 \Omega \\ I_{D}=-0.5 \mathrm{~A}, V_{G E N}=-10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$ (Switching time is essentially independent of operating temperature)		11		15	ns	
	t_{r}			30		40		
Turn-Off Time	${ }^{\text {d }}$ (OFF)			20		30		
	t_{f}			20		30		

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW = $300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. Data sheet limits have been revised.

N- and P-Channel Enhancement-Mode MOS Transistor Arrays

PRODUCT SUMMARY

PART NUMBER	$V_{(B R) D S S}$ (V)	rDS (ON $)$ (Ω)	I_{D} (A)	PACKAGE
VQ3001J	$30 /-30$	$N=1$ $P=2$	$N=0.85$ $P=0.6$	Plastic
VQ3001P	$30 /-30$	$N=1$ $P=2$	$N=0.85$ $P=0.6$	Side Braze

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS		SYMBOL	VQ3001J		VQ3001P		UNITS	
		N -Channel	P-Channel	N -Channel	P-Channel			
Drain-Source Voltage			$V_{D S}$	30	-30	30	-30	V
Gate-Source Voltage		$V_{\text {GS }}$	± 30	± 30	± 20	± 20		
Continuous Drain Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	± 0.85	± 0.6	± 0.85	± 0.6	A	
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		± 0.52	± 0.37	± 0.52	± 0.37		
Pulsed Drain Current ${ }^{1}$		IDM	± 3	± 2	± 3	± 2		
Power Dissipation - Single	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD	1.3		1.3		W	
	$T_{A}=100^{\circ} \mathrm{C}$		0.52		0.52			
Power Dissipation - Quad	$T_{A}=25^{\circ} \mathrm{C}$		2		2			
	$T_{A}=100^{\circ} \mathrm{C}$		0.8		0.8			
Operating Junction and Storage Temperature		$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150				${ }^{\circ} \mathrm{C}$	
Lead Temperature (1/16" from case for 10 seconds)		T_{L}	300					

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VQ3001J	VQ3001P	UNITS
Junction-to-Ambient - Single	R $_{\text {thJA }}$	96.2	96.2	
Junction-to-Ambient - Quad		62.5	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Pulse width limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS						
PARAMETER	SYMBOL	TEST CONDITIONS ${ }^{5}$	N-Channel			P-Channel			UNIT
			TYP ${ }^{2}$	MIN	MAX	TYP ${ }^{2}$	MIN	MAX	

STATIC

Drain-Source Breakdown Voltage	$V_{\text {(BR) }{ }^{\text {d SS }}}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$		55	30		-55	-30	-4.5	V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$		2	0.8	2.5	-3.5	-2		
Gate-Body Leakage	I Gss	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GS}}= \pm 16 \mathrm{~V} \end{gathered}$		± 0.1		± 100	± 0.1		± 100	nA
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	± 5		± 500	± 5		± 500	
Zero Gate Voltage Drain Current	Idss	$\begin{aligned} & V_{D S}=24 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$		0.005		10	-0.005		-10	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	0.5		500	-0.5		-500	
On-State Drain Current ${ }^{3}$	$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=12 \mathrm{~V}$		3	2		-2	-1.5		A
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS(ON }}$	$\begin{aligned} V_{G S} & =12 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}} & =1 \mathrm{~A} \end{aligned}$		0.8		1	1.8		2	Ω
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	1.4		1.75	3.1		3.5	
Forward Transconductance ${ }^{3}$	g_{FS}	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$		360	250		280	200		mS
DYNAMIC										
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} & V_{D S}=15 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		85		110	130		150	pF
Output Capacitance	Coss			83		110	75		100	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			20		35	20		60	
SWITCHING ${ }^{4}$										
Turn-On Time	ton	$\begin{gathered} V_{D D}=15 \mathrm{~V}, R_{L}=23 \Omega \\ I_{D}=0.65 \mathrm{~A}, \mathrm{~V}_{G E N}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$		10		30	18		30	ns
Turn-Off Time	${ }^{\text {t OfF }}$			13.5		30	26		30	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing
3. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{sec}$, Duty Cycle $\leq 2 \%$.
4. Switching time is essentially independent of operating temperature.
5. Test conditions are at (-) polarities.

N - and P-Channel Enhancement-Mode MOS Transistor Arrays

PRODUCT SUMMARY

PART NUMBER	$V_{\text {(BR)DSS }}$ (V)	$r_{D S(O N)}$ $Q_{1}+Q_{2}$ or $Q_{3}+Q_{4}$	I_{D} (A)	PACKAGE
VQ7254J	$20 /-20$	3Ω	2	Plastic
VQ7254P	$20 /-20$	3Ω	2	Side Braze

14-PIN DIP
 SIDE BRAZE

14-PIN PLASTIC

TOP VIEW
Dual-In-Line Package

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	VQ7254J		VQ7254P		UNITS
		N-Channel	P-Channel	N -Channel	P-Channel	
Drain-Source Voltage	$V_{D S}$	20	-20	20	-20	V
Gate-Source Voltage	$V_{G S}$	± 30	± 30	± 20	± 20	
Continuous Drain Current ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	1 D	2	-2	2	-2	A
Pulsed Drain Current ${ }^{1}$	IDM	± 3	± 3	± 3	± 3	
Power Dissipation - Single	PD	1.75	1.75	1.75	1.75	W
		1.05	1.05	1.05	1.05	
Operating Junction	T_{j}	-40 to 100				${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40 to 150				
Lead Temperature ($1 / 16$ " from case for 10 seconds)	T_{L}	300				
Thermal Coupling Factor - Single $\text { (K) }-Q_{1}-Q_{4} \text { or } Q_{2}-Q_{3}$		60				\%
Thermal Coupling Factor - Single $(K)-Q_{1}-Q_{2}-Q_{3}-Q_{4}, Q_{1}-Q_{3} \text { or } Q_{2}-Q_{4}$		50				

THERMAL RESISTANCE

THERMAL RESISTANCE	SYMBOL	VQ7254J	VQ7254P	UNITS
Junction-to-Ambient - Single	$\mathrm{R}_{\text {thJA }}$	96.2	96.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient - Quad		62.5	62.5	

${ }^{1}$ Pulse width limited by maximum junction temperature

VQ7254 SERIES

ELECTRICAL CHARACTERISTICS ${ }^{1}$			LIMITS			
		TEST CONDITIONS ${ }^{6}$	VQ7254			UNIT
PARAMETER	SYMBOL		TYP ${ }^{2}$	MIN	MAX	
STATIC ${ }^{4}$						
Drain-Source On Voltage	$V_{\text {DS(}}$ ON)	$\begin{aligned} & V_{G S}=11.4 \mathrm{~V}, I_{D}=1 \mathrm{~A} \\ & \left(Q_{1}+Q_{2}\right) \text { or }\left(Q_{3}+Q_{4}\right) \end{aligned}$	2.5	2	3	V
Drain-Source On-Resistance ${ }^{3}$	$\mathrm{r}_{\text {DS }}(\mathrm{ON})$		2.5	2	3	Ω

PARAMETER	SYMBOL	TEST CONDITIONS ${ }^{6}$		N-Channel			P-Channel			UNIT
				TYP ${ }^{2}$	MIN	MAX	TYP ${ }^{2}$	MIN	MAX	
STATIC										
Drain-Source Breakdown Voltage	$V_{\text {(BR) }{ }^{\text {dss }}}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$		-40	20		-55	-20		V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$\begin{aligned} & V_{D S}=V_{G S} \\ & I_{D}=1 \mathrm{~mA} \end{aligned}$		1.5	0.8		-3.6	-0.8		
			$\mathrm{T}_{J}=85^{\circ} \mathrm{C}$	1.2	0.65		-3.3	-0.65		
Gate-Body Leakage	I gss	$V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 12 \mathrm{~V}$		± 1		± 100	± 1		± 100	nA
Zero-Gate Voltage Drain Current	Idss	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		0.1		500	-0.1		-500	$\mu \mathrm{A}$
On-State Drain Current ${ }^{3}$	$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		1.8			-1.6			A
Forward Transconductance ${ }^{3}$	$\mathrm{gms}^{\text {S }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$		500	200		290	200		mS
DYNAMIC										
Input Capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{D S}=12 \mathrm{~V} \\ & V_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		85		175	130		190	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$			80		95	75		100	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			18		25	20		60	
SWITCHING ${ }^{5}$										
Turn-On Time	${ }^{\text {t }} \mathrm{ON}$	$\begin{gathered} V_{D D}=17 \mathrm{~V}, R_{L}=15 \Omega \\ I_{D}=1.1 \mathrm{~A}, V_{G E N}=10 \mathrm{~V} \\ R_{G}=25 \Omega \end{gathered}$		12		20	20		30	ns
Turn-Off Time	${ }^{\text {t OFF }}$			14		20	20		30	
DYNAMIC										
Continuous Source Current (Body Diode)	Is	Modified MOSPOV'ER symbol showing the integral P-N junction				2			-2	A
Source Current (Body Diode)	ISM					3			-3	
Diode Forward Voltage	$V_{S D}$	$\begin{aligned} & V_{G S}=0 \mathrm{~V} \\ & T_{C}=25^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {S }}=50 \mathrm{~mA}$	0.6		0.75	-0.6		-0.75	V
			$\mathrm{I}_{\text {S }}=1 \mathrm{~A}$	1		1.2	-1		-1.2	

NOTES: 1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. $r_{D S(O N)}$ and $V_{D S(O N)}$ limits are not specified for individual transistors but are measured as the sum of a n - and p-channel pair.
5. Switching time is essentially independent of operating temperature.
6. Reverse polarity for p-channel devices.

General Information
 Cross Reference

 Selector Guide JFETs DMOSLow Power MOS
Performance Curves
Package Outlines
Applications
Worldwide Sales Offices and Distributors

DMCA/B

N-Channel Enhancement-Mode DMOS FET

DESIGNED FOR:

- Ultra-High Speed Switching
- High Gain Amplifiers

FEATURES

- <1 ns Switching ton

Ultra-Low Capacitance $\mathrm{C}_{\mathrm{G}}<3.5 \mathrm{pF}$

- $g_{f s}$ (gain) $>10000 \mu \mathrm{mhos}$

TYPE	PACKAGE	DEVICE
Single	TO-72	- SD210DE, SD211DE, SD212DE, SD213DE, SD214DE, SD215DE
	SOT-143	- SST211, SST213, SST215
Quads	Dual-In-Line 16-Pin Side Braze	- SD5000I, SD5001I, SD5002I
	Dual-In-Line 16-Pin Plastic	- SD5000N, SD5001N, SD5002N
	Surface Mount	$\begin{aligned} & \text { - SD5400CY, } \\ & \text { SD5401CY, } \\ & \text { SD5402CY } \end{aligned}$
	Chip/ Wafer	- Available as above specifications

Note: For Switching Circuit
See LPD-10 (Section 9)

DMCA/B

Threshold Voltage vs. Temperature

Leakage Currents vs. Temperature

DMCD

N-Channel Depletion-Mode MOSFET

DESIGNED FOR:

- High Gain Amplification
- Analog Switching

FEATURES

TYPE	PACKAGE	DEVICE
Single	To-72	\bullet SD2100
	Chip	• Available as above specification

- High $\mathrm{g}_{\mathrm{fs}}>10 \mathrm{mS}$ (Typically)

TYPICAL CHARACTERISTICS (DEPLETION-MODE)

TYPICAL CHARACTERISTICS (ENHANCEMENT-MODE)

Drain-Source On-Resistance
Vs. Gate-Source Voltage

On-Resistance vs. Temperature

Capacitance vs. Gate-Source Voltage

Common-Source Forward
Transconductance vs. Drain Current

Leakage Current vs. Temperature

Body-Channel Leakage Current vs. Drain-Source Voltage

incarparated

TYPICAL CHARACTERISTICS (ENHANCEMENT-MODE)

P-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Analog and Digital Switching
- General Purpose Amplifiers
- Smoke Detectors

FEATURES

- High Gate Transient Voltage Breakdown Eliminates need for Gate Protective Diode
- Ultra-High Input Imedance
- Normally Off

TYPE	PACKAGE	DEVICE
Single	TO-18	\bullet MFE823
	TO-72	• 3N163, 3N164
Chip/ Wafer	• Available as above specifications	

Low-Level Output Characteristics

Common-Source Output Conductance vs Drain Voltage

Common-Source Forward Transconductance vs Drain Current

Common-Source Output Conductance vs Drain Current

N-Channel JFET Circuit

DESIGNED FOR:

- Pre-Ámplifiers
- Infrared Detectors

FEATURES

TYPE	PACKAGE	DEVICE
Single	SOT-143	• SST6908, SST6909, SST6910
	TO-72	- 2N6908, 2N6909, 2N6910

Gate is backside contact

On-Resistance \& Output Conductance vs. Gate-Source Cutoff Voltage

Common-Source Forward Transconductance vs. Drain Current

Common-Source Reverse Feedback Capacitance vs. Gate-Source Voltage

N-Channel JFET

DESIGNED FOR:

- Analog Switches
- Commutators
- Choppers
- Voltage Controlled Resistors
- Integrator Reset Switch

FEATURES

- High Speed ton < 20 ns
- High Off-Isolation $I_{D(O F F)}<100 \mathrm{pA}$
- No Offset or Error Voltages Generated by Closed Switch. Purely Resistive. High Isolation Resistance from Driver

GEOMETRY DIAGRAM

TYPE	PACKAGE	DEVICE
Single	TO-92	- 2N5638, 2N5639, 2N5640 J111, J12, J113 J111A, J112A, J113A PN4091, PN4092, PN4093 PN4391, PN4392, PN4393 U1897, U1898, U1899
	SOT-23	- SST111, SST112, SST113 SST4091, SST4092, SST4093 SST4391, SST4392, SST4393 SST4856, SST4857, SST4858, SST4859, SST4860, SST4861
	TO-18	- 2N4091, 2N4092, 2N4093 2N4391, 2N4392, 2N4393 2N4856, 2N4857, 2N4858, 2N4859, 2N4860, 2N4861 2N4856A, 2N4857A, 2N4858A, 2N4859A, 2N4860A, 2N4861A VCR2N
Dual	TO-71	- 2N5564, 2N5565, 2N5566
Single	Chip	- All of the above specifications are available
Dual	Chip	- 2N5566 specification available

2N4091 through 2N4093
2N4856 through 2N4861

2N4391 through 2N4393

TYPICAL CHARACTERISTICS

Output Characteristics $\left(\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}=-4 \mathrm{~V}\right)$

Transfer Characteristics

Transfer Characteristics

Capacitance vs. Gate-Source Voltage

C
(pF)

Output Conductance vs. Drain Current

Transconductance vs. Drain Current

N-Channel JFET Current Regulator Diode

DESIGNED FOR:

- Current Reguiation
- Current Limiting
- Biasing

FEATURES

- Simple Two Lead Current Source
- 1 to 100 V Operation
- 0 Temperature Coefficient
- Simplifies Floating Current Sources No power supplies required

TYPE	PACKAGE	DEVICE
Single	TO-92	• J501, J502, J503, J505, J506, J507, J508, J509, J510, J511, J553, J554, J555, J556, J557 - Available as above specifications

GEOMETRY DIAGRAM

Gate is backside contact

TYPICAL CHARACTERISTICS

Limiting Current vs. Temperature

Dynamic Impedance vs. Regulator Current

Output Current vs. Forward Voltage

Limiting Voltage @ $0.8 \mathrm{I}_{\mathrm{F}}$ vs. Regulator Current

Capacitance vs. Forward Voltage

N-Channel JFET

DESIGNED FOR:

- VHF/UFF Amplifiers
- Oscillators
- Mixers
- Low Input Capacitance High Speed Switch

FEATURES

- Low Noise
$\mathrm{nF}=3 \mathrm{~dB}$ Typical at 400 MHz
- Wideband High $\mathrm{g}_{\mathrm{fs}} / \mathrm{C}_{\text {iss }}$ Ratio

TYPE	PACKAGE	DEVICE
Single	TO-92 SOT-23 TO-72 Chip	- 2N3819 2N5484, 2N5485, 2N5486 BF244A, BF244B, BF244C BF245A, BF245B, BF245C J304, J305 PN4416 - SST4416 - 2N4416, 2N4416A - Available as above specifications

Gate also backside contact

TYPICAL CHARACTERISTICS

Output Characteristics ($\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}=-2 \mathrm{~V}$)

Output Characteristics ($\left.\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}=-3 \mathrm{~V}\right)$

Transfer Characteristics

Transconductance vs. Gate-Source Voltage

Transconductance vs. Gate-Source Voltage

Circuit Voltage Gain vs. Drain Current

N-Channel JFET

DESIGNED FOR:

- Low ON Resistance Analog Switches
- Commutators
- Choppers
- Integrator Reset Capacitors
- Low Noise Audio Amplifiers

FEATURES

- Low Insertion Loss
- Small Error in Measurement Systems $V_{D S(o n)}<50 \mathrm{mV}$ (2N5432)
- High Off-Isolation ID(OFF) < 200 pA
- High Speed $\mathrm{t}_{\mathrm{d}(\mathrm{on})}<4$ ns Low Noise Audio-Frequency Amplification $\bar{e}_{\mathrm{n}}<2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz

Gate also backside contact

TYPICAL CHARACTERISTICS

$I_{D}(m A)$

Forward Transconductance \& Output Conductance vs. Gate-Source Cutoff Voltage

Perating Gate Current

Transfer Characteristics

Turn-On Switching

Capacitance vs. Gate-Source Voltage

Output Conductance vs. Drain Current

$I_{D}(\mathrm{~mA})$

Turn-Off Switching

Transconductance vs. Drain Current

TYPICAL CHARACTERISTICS

N-Channel JFET Current Regulator Diode

DESIGNED FOR:

- Current Regulation
- Current Limiting
- Baising
- Low Voltage References

FEATURES

TYPE	PACKAGE	DEVICE
Single	TO-18	- CRO22 through CRO62 CRRO240 through CRRO560
	Chip	- Available as above specifications

- Simple Two Leaded Current Source
- Current Insensitive to Temperature Changes
- Tempurature Coefficient Better than $0.15 \% /^{\circ}$ on all Devices
- Simplifies Floating Current Sources No Power Supply Required

[^55]

N-Channel JFET Current Regulator Diode

DESIGNED FOR:

- Current Regulation
- Current Limiting
- Baising
- Low Voltage References

FEATURES

TYPE	PACKAGE	DEVICE
Single	TO-18	- CRO68 through CR150 CRR0800 through CRR1250
	Chip	© Available as above specifications

- Simple Two Leaded Current Source
- Current Insensitive to Temperature Changes
- Tempurature Coefficient Better than $0.15 \% /{ }^{\circ} \mathrm{C}$ on all Devices
- Simplifies Floating Current Sources No Power Supply Required

Cathode is backside contact

Limiting Voltage @ $0.8 \mathrm{I}_{\mathrm{F}}$ vs. Regulator Current

Capacitance vs. Forward Voltage

On-Resistance vs. Regulator Current

Thermal Resistance vs. Power Dissipation

NKO

N-Channel JFET Current Regulator Diode

DESIGNED FOR:

- Current Regulation
- Current Limiting
- Baising
- Low Voltage References

FEATURES

TYPE	PACKAGE	DEVICE
Single	TO-18	- CR160 through CR530 CRR1950 through CRR4300
	Chip	- Available as above specifications

- Simple Two Leaded Current Source
- Current Insensitive to Temperature Changes
- Tempurature Coefficient Better than $0.15 \% /{ }^{\circ} \mathrm{C}$ on all Devices
- Simplifies Floating Current Sources No Power Supply Required

TYPICAL CHARACTERISTICS

Limiting Current vs. Temperature

Limiting Voltage @ $0.8 \mathrm{I}_{\mathrm{F}}$ vs. Regulator Current

TYPICAL CHARACTERISTICS

Thermal Resistance vs. Power Dissipation

N-Channel JFET Dual Monolithic

DESIGNED FOR:

- FET Input Amplifiers
- Low and Medium Frequency Amplifiers
- Impedance Converters
- Precision Instrumentation Amplifiers
- Comparators

FEATURES

- Minimum System Error and Calibration 5 mV Offset (U401)
95 dB Minimum CMRR
- Low Drift with Temperature

TYPE	PACKAGE	DEVICE
Dual	SOIC-8	\bullet SST404, SST405, SST406
	TO-71	- 2N6905, 2N6906, 2N6907 U401, U402, U403, U404, U405, U406
Chip	Available as above specifications for U406 only	

- Simplifies Amplifier Design

Output Conductance $<2 \mu \mathrm{~S}$

- Low Noise
$\bar{e}_{\mathrm{n}}=6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 10 Hz Typical

On-Resistance \& Output Conductance vs. Gate-Source Cutoff Voltage

f (kHz)

Operating Gate Current

Common-Source Forward Transconductance vs. Drain Current

$I_{D}(m A)$

$I_{D}(m A)$

Output Characteristics ($\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}=-2 \mathrm{~V}$)

Output Characteristics $\left(\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}=-1.5 \mathrm{~V}\right)$

Gate-Source Differential Voltage vs. Drain Current

TYPICAL CHARACTERISTICS

N-Channel JFET Dual Monolithic

DESIGNED FOR:

- Ultra Low Leakage FET Input Op Amps
- pH Meters
- Electrometers

FEATURES

- Ultra-High Input Impedance
- Good Voltage Gain

TYPE	PACKAGE	DEVICE
Dual	TO-78	\bullet U421, U422, U423, U424, U425, U426
	Chip	- Available as above specifications for U423, U424, U425, U426

- Low Noise

Siliconix
incarparated
TYPICAL CHARACTERISTICS

Equivalent Input Noise Voltage vs. Frequency

Output Conductance vs. Drain Current

$I_{D}(\mathrm{~mA})$

N-Channel JFET

DESIGNED FOR:

- High Frequency Amplifiers
- Mixers
- Oscillators
- Hybrid Op Amps

FEATURES

- High Gain
- Low Input Capacitance

TYPE	PACKAGE	DEV!CE
Dual	$\begin{aligned} & \text { SOIC-8 } \\ & \text { TO-71 } \\ & \text { TO-78 } \\ & \text { Chip } \end{aligned}$	- SST440, SST441 SST5912 - U440, U441 - 2N5911, 2N5912 U443, U444 - Available as above specifications for 2N5912, U440, U441, U443, U444

Equivalent Input Noise Voltage vs. Frequency

TYPICAL CHARACTERISTICS

N-Channel JFET

DESIGNED FOR:

- Smail Signal Âmplifiers
- Voltage Controlled Resistors
- Choppers

FEATURES

- Low Noise NF $<1 \mathrm{~dB}$ at 1 KHz
- Operation from Low Power Supply Voltages $\mathrm{V}_{\mathrm{GS} \text { (off) }}<1 \mathrm{~V}$ (2N4338)
- High Off-Isolation as a Switch
$I_{\text {D (OFF) }}<50 \mathrm{pA}$
- High Input Impedance

TYPE	PACKAGE	DEVICE
Single	TO-92	$\begin{aligned} & \text { - J201, J202, J203, } \\ & \text { J204 } \\ & \text { PN4302, PN4303, } \\ & \text { PN4304 } \end{aligned}$
	SOT-23	- SST201, SST202, SST203, SST204
	TO-18	$\begin{aligned} & \text { - 2N4338, 2N4339, } \\ & \text { 2N4340, 2N4341 } \\ & \text { VCR4N } \end{aligned}$
	TO-72	$\begin{aligned} & \text { 2N4867, 2N4868, } \\ & \text { 2N4869, 2N4867A } \\ & \text { 2N4868A, 2N4869A } \end{aligned}$
	Chip	- Available as above specifications

Gate also backside contact

Output Characteristics ($\left.\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}=-1.5 \mathrm{~V}\right)$

Transfer Characteristics

Output Characteristics ($\left.\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}=-0.7 \mathrm{~V}\right)$

Output Characteristics ($\left.\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}=-1.5 \mathrm{~V}\right)$

Transconductance vs. Gate-Source Voltage

$I_{D}(m A)$

Circuit Voltage Gain vs. Drain Current

$I_{D}(m A)$

Common-Source Reverse Feedback Capacitance vs. Gate-Source Voltage

N-Channel JFET

DESIGNED FOR:

- General Purpose Amplifiers

FEATURES

- High Input Impedance

TYPE	PACKAGE	DEVICE
Dual	TO-71 Chip	2N3956, 2N3957, 2N3958 2N5196, 2N5197, 2N5198, 2N5199 - Available as above specifications for 2N3956 through 2N3958, 2N5198 \& 2N5199

Operating Gate Current

Common-Source Forward Transconductance vs. Drain Current

$I_{D}(m A)$

$I_{D}(m A)$

Siliconix
incorporated

N-Channel JFET

DESIGNED FOR:

- Small Signal Amplifiers
- VHF Amplifiers
- Oscillators
- Mixers
- Switches

FEATURES

TYPE	PACKAGE	DEVICE
Single	TO-72 Chip	- 2N4220, 2N4221, 2N4222 2N4220A, 2N4221A, 2N4222A - Available as above specification

- Wide Input Dynamic Range

High I_{G} Breakpoint voltage

- High Gain
- Low Insertion Loss Switches

Gate also backside contact

TYPICAL CHARACTERISTICS

Output Characteristics ($\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}=-3.5 \mathrm{~V}$)

Transfer Characteristics

Output Characteristics $\left(\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}=-1 \mathrm{~V}\right)$

Output Characteristics ($\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}=-3.5 \mathrm{~V}$)

Transconductance vs. Gate-Source Voltage

On-Resistance vs. Drain Current

Transconductance vs. Gate-Source Voltage

Circuit Voltage Gain vs. Drain Current

N-Channel JFET

DESIGNED FOR:

- Ultra-High Input Impedance Amplifier Electrometers:
Infrared Detectors
Smoke Detectors
pH Meters

FEATURES

- Low Power

I $_{\text {DSS }}<90 \mu \mathrm{~A}(2 \mathrm{~N} 4117)$

- High Input Impedance
$\mathrm{I}_{\mathrm{G}}<1 \mathrm{pA}(2 \mathrm{~N} 4117 \mathrm{~A})$

TYPE	PACKAGE	DEVICE
Single	TO-92	- PN4117, PN4118, PN4119 PN4117A, PN4118A, PN4119A
	TO-72	$\begin{aligned} & \text { 2N4117, 2N4118, } \\ & \text { 2N4119 } \\ & \text { 2N4117A, 2N4118A, } \\ & \text { 2N4119A } \end{aligned}$
	Chip	- Available as above specification

NT

Transfer Characteristics

N-Channel JFET

DESIGNED FOR:

- Analog Swiches
- Commutators
- Choppers

FEATURES

TYPE	PACKAGE	DEVICE
Single	TO-92	\bullet J105, J106, J107
	TO-52	\bullet U290, U291
Chip Available as above		
specifications		

Gate is backside contact

Operating Gate Current

Capacitance vs. Gate-Source Voltage

Transconductance vs. Drain Current

$V_{G S}(V)$

N-Channel JFET

DESIGNED FOR:

- VHF/UHF Amplifers
- Front End High Sensitivity Amplifiers
- Oscillators
- Mixers

FEATURES

- 16 dB at 100 MHz , Common Gate
- 11 dB at 450 MHz , Common Gate

TYPE	PACKAGE	DEVICE
Single	TO-92	- J308, J309, J310
	SOT-23	- SST308, SST309, SST310
	TO-52	- U308, U309, U310
Dual	TO-78	- U430, U431
	Chip	- Available as above specifications

TYPICAL CHARACTERISTICS

Transfer Characteristics

Output Characteristics $\left(\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}=-1.5 \mathrm{~V}\right)$

Output Characteristics ($\left.\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}=-3 \mathrm{~V}\right)$

Transconductance vs. Gate-Source Voltage

Forward Admittance

Output Admittance

N-Channel JFET

DESIGNED FOR:

- High Frequency Amplifiers
- Mixers
- Oscillators

FEATURES

- High Power Gain
- Low Noise

TYPE	PÂCKíáGe	device
Single	TO-92	- J210, J211, J212
	TO-71	- U440, U441
Dual	TO-78	- 2N5911, 2N5912 U443, U444
	Chip	- Available as above specifications for J210, J211, J212, U440, U441, U443, U444, and 2N5912

GEOMETRY DIAGRAM

Gate also backside contact

TYPICAL CHARACTERISTICS

Output Conductance vs. Drain Current

Transfer Characteristics

Transconductance vs. Gate-Source Voltage

TYPICAL CHARACTERISTICS

Transconductance vs. Gate-Source Voltage

Circuit Voltage Gain vs. Drain Current

Common-Source Reverse Feedback Capacitance vs. Gate-Source Voltage

Forward Admittance

Output Admittance

P-Channel JFET

DESIGNED FOR:

- Analog Switches
- Commutators
- Choppers
- Integrator Reset Switch

FEATURES

- Low Insertion Loss in Switching Systems $r_{\text {DS(on) }}<75 \Omega$ (2N5114)
- Short Sample and Hold Aperture Time Crss $<7 \mathrm{pF}$
- High Off-Isolation $I_{D(O F F)}<500 \mathrm{pA}$

TYPE	PACKAGE	DEVICE
Single	TO-92	$\begin{aligned} & \text { - J174, J175, J176, } \\ & \text { J177 } \\ & \text { J270, J271 } \\ & \text { P1086, P1087 } \end{aligned}$
	SOT-23	- SST174, SST175, SST176, SST177 SST270, SST271
	TO-18	- 2N5114, 2N5115, 2N5116 (TX, TXV)
	Chip	- Available as above specifications

Capacitance vs. Gate-Source Voltage

Output Conductance vs. Drain Current

Transconductance vs. Drain Current

$I_{D}(m A)$

P-Channel JFET

DESIGNED FOR:

- Amplifers
- Sample and Hold
- Choppers
- Analog Switches

FEATURES

- Low $\bar{e}_{\mathrm{n}}<15 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 10 kHz

TYPE	PACKAGE	DEVICE
Single	TO-92	\bullet 2N5460, 2N5461, $2 N 5462,2 N 5463$, $2 N 5464,2 N 5465$
	Chip	- Available as above specifications

- Low Leakage $<10 \mathrm{pA}$ at 30 V

7

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Transfer Characteristics

On-Resistance vs. Drain Current

Transconductance vs. Gate-Source Voltage

Circuit Voltage Gain vs. Drain Current

Siliconix
incorparated

VDDQ20

N-Channel Depletion-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- High Breakdown Voltage $>200 \mathrm{~V}$
- Low rds(on) < 3Ω

TYPE	PACKAGE	DEVICE
Single	TO-206AC	\bullet ND2012E, ND2020E
	TO-92	• ND2012L, ND2020L
Chip	• Available as above specifications	

TYPICAL CHARACTERISTICS

VDDQ20
TYPICAL CHARACTERISTICS

Effects of Drive Resistance

Capacitance

Transfer Characteristics (ND2012)

Equivalent Input Noise Voltage vs. Frequency

Output Conductance vs. Drain Current

Normalized Effective Transient Thermal Impedance, Junction-to-Ambient (TO-92)

Transient Thermal Response (TO-206AC)

N-Channel Depletion-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

TYPE	PACKAGE	DEVICE
Single	TO-205AD	\bullet ND2406B, ND2410B
	TO-92	- ND2406L, ND2410L - Available as above specifications

Body-Drain Leakage Current

Output Characteristics (ND2410)

On-Resistance vs. Drain Current

On-Resistance vs. Junction Temperature

Transfer Characteristics (ND2410)

Capacitance

Transfer Characteristics (ND2406)

Equivalent Input Noise Voltage vs. Frequency

TYPICAL CHARACTERISTICS

Normalized Effective Transient Thermal Impedance, Junction-to-Ambient (TO-92)

Transient Thermal Response (TO-205AD)

VNDB24

N-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- High Breakdown > 240 V
- Low rds(on) $<6 \Omega$

TYPE	PACKAGE	DEVICE
Single	TO-205AD	- VN1706B, VN2406B
	TO-220	- VN1706D, VN2406D
	TO-92	- VN1706L, VN2406L
	TO-237	- VN1706M, VN1710M, VN2406M
	Chip	- Available as above specifications

On-Resistance

Ohmic Region Characteristics

Transfer Characteristics

Gate Charge

On-Resistance vs. Junction Temperature

Threshold Region

Capacitance

Is
(A)

TYPICAL CHARACTERISTICS

Drive Resistance Effects on Switching

Load Condition Effects on Switching

N-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- High Breakdown > 240 V

TYPE	PACKAGE	DEVICE
Single	To-92	$\bullet 2 N 7007$
	SOT-23	• 2N7001
	Chip	• Available as above specifications

- Available in Surface Mount SOT-23

Output Characteristics for Low Gate Drive

Ohmic Region Characteristics

Transfer Characteristics

Gate Charge

Normalized Effective Transient Thermal Impedance, Junction-to-Ambient (TO-92)

On-Resistance vs. Gate to Source Voltage

Drive Resistance Effects on Switching

Off State Current

Load Condition Effects on Switching

N-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Spike Protection

FEATURES

- High Breakdown 450 V
- Available in Surface Mount Package SOT-23

TYPE	PACKAGE	DEVICE
Single	TO-92	• VN45350L VN50300L SOT-23 Chip45350T
VN50300T		
- Available as above		
specifications		

Threshold Region

Capacitance

Source-Drain Diode Forward Voltage

Normalized Effective Transient Thermal Impedance, Junction-to-Ambient (TO-92)

Drive Resistance Effects on Switching

Off State Current

(ns)
Load Condition Effects on Switching

N-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- Protection Diode
- Low rdS(on) < 10Ω

TYPE	PACKAGE	DEVICE
Single	TO-206AC	\bullet VN10KE
	TO-92	• VNO610L, VN2222L
	TO-237	• VN10KM, VN2222KM
	Chip	• Available as above specifications

VNDP06

Output Characteristics for Low Gate Drive

On-Resistance

Ohmic Region Characteristics

Gate Charge

TYPICAL CHARACTERISTICS

Normalized Effective Transient Thermal Impedance, Junction-to-Ambient (TO-92)

Drive Resistance Effects on Switching

Off State Current

Load Condition Effects on Switching

N-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- Low rdS(on) $<3 \Omega$

TYPE	PACKAGE	DEVICE
Single	TO-205AD	- VNO300B
	TO-92	- VNO300L
	TO-237	- VNO300M
Quad	14-Pin Plastic	- VQ1001J
	14-Pin Dual-In- Line	- VQ1001P
	Chip	- Available as above specifications

Output Characteristics for Low Gate Drive

On-Resistance

Ohmic Region Characteristics

VNDQ03

Capacitance

Is

(A)

TYPICAL CHARACTERISTICS

N-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- Low rDS(on) < 3.5Ω

TYPE	PACKAGE	DEVICE
Single	TO-205AD	- 2N6659, 2N6660 VN67AB
	TO-220SD	- VN40AFD, VN46AFD, VN66AFD, VN67AFD
	TO-220	- VN66AD, VN67AD
Quad	14-Pin Plastic	- VQ1004J
	$14-\text { Pin }$ Dual-InLine	- VQ1004P
	Chip	- Available as above specifications

Ohmic Region Characteristics

Transfer Characteristics

Gate Charge

TYPICAL CHARACTERISTICS

Capacitance

Source-Drain Diode Forward Voltage

Drive Resistance Effects on Switching

Load Condition Effects on Switching

TYPICAL CHARACTERISTICS

Output Conductance vs. Drain Current

Transient Thermal Response (TO-205AD)

N-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- Low rDS(on) $<4 \Omega$

TYPE	PACKAGE	DEVICE
Single	TO-205AD	VN90AB 2N6661
	TO-92	- VN0808L
	TO-237	- VN0808M
	TO-220SD	- VN88AFD
	TO-220	- VN88AD
Quad	14-Pin Plastic	- VQ1006 J
	14-Pin Dual-In- Line	- VQ1004P

On-Resistance

Ohmic Region Characteristics

Transfer Characteristics

VNDQ09
TYPICAL CHARACTERISTICS

On-Resistance vs. Junction Temperature

Threshold Region

Capacitance

Source-Drain Diode Forward Voltage
is
(A)

TYPICAL CHARACTERISTICS

Normalized Effective Transient Thermal Impedance, Junction-to-Ambient (TO-92)

Drive Resistance Effects on Switching

Load Condition Effects on Switching

N-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- Low rDS(on) $<4.5 \Omega$

TYPE	PACKAGE	DEVICE
Single	TO-205AD	\bullet VN1206B
	TO-220	\bullet VN1206D
	TO-237	\bullet VN1206M, VN1210M
	TO-92	• VN1206L, VN1210L
	Chip	• Available as above specifications

On-Resistance

Ohmic Region Characteristics

Transfer Characteristics

TYPICAL CHARACTERISTRICS

Threshold Region

Capacitance

Normalized Effective Transient Thermal Impedance, Junction-to-Ambient (TO-92)

Drive Resistance Effects on Switching

Load Condition Effects on Switching

Output Conductance vs. Drain Current

Transient Thermal Response (TO-205AD)

N-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- High Breakdown > 200 V
- Low rDS(on) $<10 \Omega$

TYPE	PACKAGE	DEVICE
Single	TO-92	$\begin{array}{l}\text { - BS107 } \\ \text { VN2010L, VN2020L }\end{array}$
Chip Available as above		
specifications		

Output Characteristics

Output Characteristics for Low Gate Drive

On-Resistance

Ohmic Region Characteristics

Transfer Characteristics

Gate Charge

Capacitance

On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

TYPICAL CHARACTERISTICS

Drive Resistance Effects on Switching

Output Conductance vs. Drain Current

N-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- Low rDS(on) $<10 \Omega$
- Low Cost
- Surface Mount Package SOT-23

TYPE	PACKAGE	DEVICE
Single	TO-206AC	- VN10LE
	TO-92	- 2N7000, 2N7008 VN0603L, VN0610LL VN2222LL
	TO-237	- VN2222LM
	SOT-23	- VN0603T, VN0605T 2N7002
Quad	14-Pin Plastic	- VQ1000J
	14-Pin	- VQ1000P
	Dual-InLine	
	Chip	- Available as above specifications

GEOMETRY DIAGRAM

Output Characteristics for Low Gate Drive

On-Resistance

Transfer Characteristics

Typical Gate Charge

TYPICAL CHARACTERISTICS

VNDS06

TYPICAL CHARACTERISTICS

On-Resistance vs. Gate to Source Voltage

Drive Resistance Effects on Switching

TYPICAL CHARACTERISTICS

Output Conductance vs. Drain Current

Transient Thermal Response (TO-206AC)

N-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- High Breakdown > 400 V
- Low rds(on) < 12Ω

TYPE	PACKAGE	DEVICE
Single	TO-205AD	\bullet VN4012B
	TO-92	• VN3515L, VN4012L
Chip	- Available as above specifications	

[^56]

Ohmic Region Characteristics

On-Resistance vs. Junction Temperature

Capacitance

Source-Drain Diode Forward Voltage

Safe Operating Area

Normalized Effective Transient Thermal Impedance, Junction-to-Ambient (TO-92)

Drive Resistance Effects on Switching

Off State Current

Load Condition Effects on Switching

Transient Thermal Response (TO-205AF)

N-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching

FEATURES

TYPE	PACKAGE	DEVICE
Single	TO-205AD	\bullet JANTX2N6660

- High Speed for Military Applications (see VNDQ06 for Industrial Applications)

Output Characteristics for Low Gate Drive

Ohmic Region Characteristics

Transfer Characteristics

On-Resistañce vs. Junction Temperature

Threshold Region

Capacitance

Source-Drain Diode Forward Voltage

Safe Operating Area

Siliconix
incorporated
VNMA06
TYPICAL CHARACTERISTICS

Load Condition Effects on Switching

Output Conductance vs. Drain Current

Transient Thermal Response (TO-39)

N-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching

FEATURES

TYPE	PACKAGE	DEVICE
Single	TO-205AD	\bullet JANTX2N6661

- High Speed for Military Applications (see VNDQ09 for Industrial Applications)

Output Characteristics for Low Gate Drive

On-Resistance

Ohmic Region Characteristics

Transfer Characteristics

On-Resistance vs. Junction Temperature

Threshold Region

Capacitance

Source-Drain Diode Forward Voltage

${ }^{1}$ Operation in this area may be limited by rDS(ON)

TYPICAL CHARACTERISTICS

Drive Resistance Effects on Switching

Equivalent Input Noise Voltage vs. Frequency

Load Condition Effects on Switching

Body Drain Leakage Current

TYPICAL CHARACTERISTICS

Output Conductance vs. Drain Current

Transient Thermal Response (TO-39)

P-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- High Breakdown > 200 V
- Low rds(on) $<20 \Omega$

TYPE	PACKAGE	DEVICE
Single	TO-206AC	\bullet VP2020E
	TO-92	• VP2020L BSS92
	Chip	- Available as above specifications

Output Characteristics for Low Gate Drive

Ohmic Region Characteristics

Transfer Characteristics

On-Resistance vs. Junction Temperature

Threshold Region

Capacitance

Source-Drain Diode Forward Voltage

Safe Operating Area

${ }^{1}$ Operation in this area may be limited by $\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$

Normalized Effective Transient Thermal Impedance, Junction-to-Ambient (TO-92)

Drive Resistance Effects on Switching

Off State Current

Load Condition Effects on Switching

$\left(\begin{array}{c}\mathrm{t} \\ \mathrm{n} \text {) }\end{array}\right.$

9 Siliconix
incorporated

P-Channel Enhancement-Mode MOSFET "FETlington"

DESIGNED FOR:

- Switching (P-Channel Complement to 2N7000)

FEATURES

- Low rdS(on) $<10 \Omega$
- Available in Surface Mount

TYPE	PACKAGE	DEVICE
Single	TO-206AC	- VP0610E, TP0610E
	TO-92	- VP0610L, TP0610L
	SOT-23	- VP0610T, TP0610T
	14-Pin Plastic	- VQ2000J
	14-Pin	- VQ2000P
	Dual-InLine	
	Chip	- Available as above specifications

Output Characteristics for Low Gate Drive

On-Resistance

Ohmic Region Characteristics

Transfer Characteristics

Capacitance

Source-Drain Diode Forward Voltage

${ }^{1}$ Operation in this area may be limited by rDS(ON)

Normalized Effective Transient Thermal Impedance, Junction-to-Ambient (TO-92)

Drive Resistance Effects on Switching

Load Condition Effects on Switching

Output Conductance vs. Drain Current

Transient Thermal Response (TO-206AC)

P-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- Low rdS(on) $<5 \Omega$

TYPE	PACKAGE	DEVICE
Single	TO-205AD	• VP0808B, VP1008B
	TO-92	• VP0808L, VP1008L
TO-237	• VP0808M, VP1008M	
	14-Pin Plastic 14-Pin Dual-In- Line Chip	• VQ2004J, VQ2006J
	• VQ2004P, VQ2006P	
Available as above		
specifications		

Output Characteristics for Low Gate Drive

On-Resistance

Ohmic Region Characteristics

Transfer Characteristics

On-Resistance vs. Junction Temperature

Threshold Region

Capacitance

Source-Drain Diode Forward Voltage

(A)

TYPICAL CHARACTERISTICS

$r_{D S}$
(Ω)
On-Resistance vs. Gate to Source Voltage

Drive Resistance Effects on Switching

Off State Current

VPDV24

P-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- High Breakdown > 240 V
- Low rdS(on) < 10Ω

TYPE	PACKAGE	DEVICE
Single	TO-205AD	\bullet VP2410B
	TO-92	• VP2410L BS208
Chip	- Available as above specifications	

Output Characteristics for Low Gate Drive

Ohmic Region Characteristics

Capacitance

Source-Drain Diode Forward Voltage

TYPICAL CHARACTERISTICS

Drive Resistance Effects on Switching

P-Channel Enhancement-Mode MOSFET

DESIGNED FOR:

- Switching
- Amplification

FEATURES

- High Speed
- Low rDS(on) $<2.5 \Omega$

TYPE	PACKAGE	DEVICE
Single	TO-205AD	• VP0300B
	TO-92	• VP0300L
Quad	TO-237 14-Pin Plastic	• VP0300M
	14-Pin Dual-In- Line	• VQ2001J
	Chip	• Available as above
specifications		

Output Characteristics for Low Gate Drive

On-Resistance

Transfer Characteristics

TYPICAL CHARACTERISTICS

On-Resistance vs. Junction Temperature

Threshold Region

Capacitance

Source-Drain Diode Forward Voltage

Drive Resistance Effects on Switching

Off-State Current

Output Conductance vs. Drain Current

N-Channel Enhancement-Mode MOSFET Protection Diode

DESIGNED FOR:

- Limiting Current
- Voltage Protection
- Voltage Decoupling

FEATURES

TYPE	PACKAGE	DEVICE
Single	TO-92	- JR135V, JR170V JR200V, JR220V, JR240V
Chip	Available as above specifications	

- Series Element
- Two Terminals
- High Breakdown > 240 V (JR240V)
- Low Cost, Simple to Use

Current vs. Forward Voltage

I_{F} vs. Temperature

Peak Operating Voltage vs. Temperature

General Information

Cross Reference Selector Guide JFETs DMOS

Low Power MOS

Performance Curves
 Package Outlines

Applications
Worldwide Sales Offices and Distributors

BOTTOM VIEW

TO-18 (2-PIN)

TO-206AA
(TO-18)

ALL DIMENSIONS IN INCHES
(ALL DIMENSIONS IN MILLIMETERS)

TO-206AC
(TO-52)

TO-71
ALL DIMENSIONS IN INCHES
(ALL DIMENSIONS IN MILLIMETERS)

(TO-78)

TO-226AA

(TO-92)

TO-226AA
(TO-92 LEAD FORM)

ALL DIMENSIONS IN INCHES
(ALL DIMENSIONS IN MILLIMETERS)

TO-226AA
TO-92 DEVICE to TO-5 PIN CIRCLE

ALL DIMENSIONS IN INCHES
(ALL DIMENSIONS IN MILLIMETERS)

PACKAGE OUTLINES

SOT-23

SOT-143

ALL DIMENSIONS IN INCHES
(ALL DIMENSIONS IN MILLIMETERS)

8-LEAD SOIC

16-LEAD DUAL IN LINE PACKAGE
(PLASTIC)

16-LEAD DUAL IN LINE PACKAGE
(SIDE BRAZE)
ALL DIMENSIONS IN INCHES
(ALL DIMENSIONS IN MILLIMETERS)

PACKAGE OUTLINES

OPTION 1

OPTION 3
style is a prefered style

STANDARD TAPE \& REEL FLAT OUT GATE OFF FIRST

OPTION 2

FLAT SIDE OF TRANSISTER AND ADHESIVE TAPE VISIBLE

STYLE A IS PREFERED

ROUNDED SIDE TRANSISTER AND ADHESIVE TAPE NOT VISIBLE

ROUNDED SIDE TRANSISTER AND ADHESIVE TAPE NOT VISIBLE

SOT-23/143/SOIC TAPE AND REEL

General Information Cross Reference Selector Guide JFETs DMOS
 Low Power MOS
 Performance Curves
 Package Outlines

Applications
Worldwide Sales Offices and Distributors

AN INTRODUCTION TO FETS

INTRODUCTION

The basic principle of the field-effect transistor (FET) has been known since J. E. Lilenfeld's patent of 1925. The theoretical description of a FET made by Schockley in 1952 paved the way for development of a classic electronic device which provides the designer the means to accomplish nearly every circuit function. At one time, the field-effect transistor was known as a "unipolar" transistor. The term refers to the fact that current is transported by carriers of one polarity (majority), whereas in the conventional bipolar transistor carriers of both polarities (majority and minority) are involved.
This Application Note provides an insight into the nature of the FET, and touches briefly on its basic characteristics, terminology, parameters, and typical applications.
The following list of FET applications indicates the versatility of the FET family:

Amplifiers

Small Signal
Low Distortion
High Gain
Low Noise
Selective
D.C.

High-Frequency

Switches
Chopper-type
Analog Gate
Commutator
Protection Diodes
Low-Leakage

Current Limiters
Voltage-Controlled Resistors
Mixers
Oscillators

This very wide range of FET applications by no means implies that the device will replace the more widelyknown bipolar transistor in every case. The simple fact is that FET characteristics - which are very different from those of bipolar devices - can often make possible the design of technically superior (and sometimes cheaper) circuits.
The family tree of FET devices (Figure 1) may be divided into two main branches, Junction FETs (JFETs) and Insulated Gate FETs (or MOSFETs, metal-oxidesilicon field-effect transistors). Junction FETs are inherently depletion-mode devices, and are available in both n - and p-channel configurations. MOSFETs are available in both enhancement and depletion modes, and also exist as both n - and p-channel devices. The two main FET groups depend on different phenomena for their operation, and will be discussed separately.

Figure 1. FET Family Tree

Junction FETs

In its most elementary form, this transistor consists of a piece of high-resistivity semiconductor material (usually silicon) which constitutes a channel for the majority carrier flow. The magnitude of this current is controlled by a voltage applied to a gate, which is a reverse-biased pn junction formed along the channel. Implicit in this description is the fundamental difference betwee JFET and bipolar devices: when the JFET junction is reverse-biased the gate current is practically zero, whereas the base current of the bipolar transistor is always some value greater than zero. The JFET is a high-input resistance device, while the input resistance of the bipolar transistor is comparatively low. If the channel is doped with a donor impurity, n-type material is formed and the channel current will consist of electrons. If the channel is doped with an acceptor impurity, p-type material will be formed and the channel current will consist of holes. N -channel devices have greater conductivity than p-channel types, since electrons have higher mobility than do holes; thus n-channel JFETs tend to be more efficient conductors than their p-channel counterparts.

Junction FETs are particularly suited to manufacture by modern planar epitaxial processes. Figure 2 shows this process in an idealized manner. First, ntype silicon is deposited epitaxially (single-crystal condensation surface) onto monocrystalline p-type silicon, so that crystal integrity is maintained. Then, a layer of silicon dioxide is grown on the surface of the n-type layer, and the surface is etched so that an acceptor-type impurity can be diffused through into the silicon. The resulting cross-section is shown in Figure 2C, and demonstrates how a p-type annulus has been formed in the layer on n-type silicon. Figure 2D shows how a further sequence of oxide growth, etching, and diffusion can produce a channel of n type material within the substrate.

In addition to the channel material, a JFET contains two ohmic (non-rectifying) contacts: the source and the drain. These are shown in Figure 2E. Since a symmetrical geometry is shown in the idealized JFET chip, it is immaterial which contact is called the source and which is called the drain; the JFET will conduct current equally well in either direction and the source and drain leads are usually interchangeable.
(For certain JFET applications, such as amplifiers, an asymmetrical geometry is preferred for lower capaci-
tance and improved frequency response. In these cases, the source and drain leads should not be interchanged).

Figure 2. Idealized Manufacture of an N -Channel Junction FET

Figure 2E also shows how the n-channel is embedded in the p-type silicon substrate, so that the gate above the channel becomes part of this substrate. Figure 3 shows how the JFET functions. If the gate is connected to the source, then the applied voltage $V_{\text {DS }}$) will appear between the gate and the drain. Since the pn junction is reverse-biased, little current will flow in the gate connection. The potential gradient established will form a depletion layer, where almost all the electrons present in the n-type channel will be swept away. The most depleted portion is in

LPD-1
the high field between the gate and the drain, and the least-depleted area is between the gate and the source. Because the flow of current along the channel from the (positive) drain to the (negative) source is really a flow of free electrons from source to drain in the n-type silicon, the magnitude of this current will fall as more silicon becomes depleted of free electrons. There is a limit to the drain current (I_{D}) which increased $V_{D S}$ can drive through the channel. This limiting current is known as IDSS (Drain-to-Source current with the gate shorted to the source). Figure 3B shows the almost complete depletion of the channel under these conditions.

Figure 3C shows the output characteristics of an nchannel JFET with the gate short-circuited to the source. The initial rise in I_{D} is related to the buildup of the depletion layer as $V_{D S}$ increases. The curve approaches the level of the limiting current IDSS when I_{D} begins to be pinched off. The physical meaning of this term leads to one definition of pinchoff voltage, V_{p}, which is the value of $V_{D S}$ at which the maximum IDSS flows.

In Figure 4, consider the case where $V_{D S}=0$ and where a negative voltage V_{GS} is applied to the gate. Again, a depletion layer has built up. If a small value of $V_{D S}$ were now applied, this depletion layer would limit the resultant channel current to a value lower than would be the case for $V_{G S}=0$. In fact, at a value of $V_{G S}>V_{p}$ the channel current would be almost entirely cut off. This cutoff voltage is referred to as the gate cutoff voltage, and may be expressed by the symbol V_{p} or by $V_{G S \text { (off). }} V_{p}$ has been widely used in the past, but $V_{G S \text { (off) }}$ is now more commonly accepted since it eliminates the ambiguity between gate cut-off and drain pinch-off. $V_{G S}$ (off) and V_{p}, strictly speaking are generally equal in magnitude but opposite in polarity.

The mechanisms of Figures 3 and 4 react together to provide the family of output characteristics shown in Figure 5A. The area below the pinch-off voltage locus is known as the triode or "below pinch-off" region: the area above pinch-off is often referred to as the pentode or saturation region. JFET behavior in these regions is comparable to that of a power-grid vacuum tube, and for this reason JFETs operating in the saturation region make excellent amplifiers. Note that in the "below pinchoff" region both $V_{G S}$ and $V_{D S}$ control the channel current, while in the saturation region $V_{D S}$ has little effect and $V_{G S}$ essentially controls I_{D}.

(A) N-channel FET working below saturation $\left(V_{G S}=0\right)$. (Depletion shown only in channel region).

(B) N-channel FET working in saturation region $\left(V_{G S}=0\right)$.

(C) Idealized output characteristic for $V_{G S}=0$.

Figure 3.

Figure 4. N-Channel FET Showing Depletion Due To Gate-Source Voltage ($\mathrm{V}_{\mathrm{DS}}=0$).

Figure 5B relates the curves in Figure 5A to the actual circuit arrangement, and shows the number of meters which may be connected to display the conditions relevant to any combination of V_{DS} and V_{GS}. Note that the direction of the arrow at the gate gives the direction of current flow for the forward-bias condition of the junction. In practice, however, it is always reverse-biased.

The p-channel JFET works in precisely the same way as does the n-channel JFET. In manufacture, the planar process is essentially reversed, with the acceptor impurity diffused first onto n-type silicon, and the donor impurity diffused later to form a second n-type region and leave a p-type channel. In the p-channel JFET, the channel current is due to hole movement, rather than to electron mobility. Consequently, all the applied polarities are reversed, along with their directions and the direction of current flow. Figure 6A shows the circuit arrangement for a p-channel JFET, and Figure 6B shows the output characteristics of the device. Note that the curves are shown in anotherquadrant than those of the n-channel JFET, in order to stress the current directions and polarities involved.

(A) Family of output characteristics for n-channel FET

(B) Circuit arrangement for n-channel FET

Figure 5.
In summary, a junction FET consists essentially of a channel of semiconductor material along which a current may flow whose magnitude is a function of two voltages, $V_{D S}$ and $V_{G S}$. When $V_{D S}$ is greater than V_{p}, the channel current is controlled largely by V_{GS} alone, because $V_{G S}$ is applied to a reverse-biased junction. The resulting gate current is extremely small.

Figure 6.

MOSFETS

The metal-oxide-silcon FET (MOSFET) depends on the fact that it is not actually necessary to form a semiconductor junction on the channel of a FET in order to achieve gate control of the channel current. Unlike the junction FET (JFET) a metallic or polysilicon gate may be simply isolated from the channel by a thin layer of silicon dioxide, as shown in Figure 7A. Although the bottom of the insulating layer is in contact with the p-type silicon substrate, the physical processes which occur at this interface dic-
tate that free electrons will accumulate in the interface, inverting the p-type material and spontaneously forming an n-type channel. Thus, a conduction path exists between the diffused n-type channel source and drain regions.

There are, however, some fundamental performance differences between MOSFETs and JFETS. JFETs, by nature, operate only in the depletion mode. That is, a reverse gate bias depletes, or pinches off the flow of channel current. A MOSFET, by virtue of its electri-cally-insulated gate, can be fabricated to perform as either a depletion-mode or enhancement-mode FET. Quite unlike the JFET, a depletion-mode MOSFET will also perform as an enhancement-mode FET.

(A) Idealized cross-section through an n-channel depletion-type MOSFET

(B) Circuit arrangement for n-channel depletion MOSFET.

Figure 7.

Figure 7.

Where the greater majority of JFETs are fabricated similar to that shown in Figure 2, and operate in a fashion described in Figures 3 and 4, the MOSFET can assume several forms and operate in either the depletion/enhancement-mode or enhancementmode only.

There are, today, three popular styles of small-signal MOSFETs. First, we have the planar, lateral MOSFET, similar to that shown in Figure 7A. By virtue of the n-doped channel spanning from source to drain, it performs as an n-channel depletion-mode MOSFET in a fashion not unlike that of the depletion-mode JFET when a voltage of the correct polarity is appliled to the gate, as in Figure 7B. However, if we forwardbias the gate (that is, place a gate voltage whose polarity equals the drain voltage polarity) additional electrons will be attracted to the region beneath the gate, further enhancing - and inverting (from p to n) the region. As the channel region thickens, the channel resistance will further decrease, allowing greater channel current to flow beyond that identified as IDSS, as we see in the family of output characteristics in Figure 7C.

This MOSFET also can be constructed for enhance-ment-mode-only performance, as shown in Figure 8. Unlike the depletion-mode device, the enhancementmode MOSFET offers no channel between the source and drain. Not until a forward bias on the gate en-
hances a channel by attracting electrons beneath the gate oxide will current begin to flow.

Figure 8. Fabrication of Planar Enhancement-Mode MOS

A newer MOSFET offering superior performance is the lateral double-diffused or DMOS FET. Because of the limitations of photo-lithographic masking, the earlier, older-style MOSFET was severely limited in performance. Some of these former limitations involved switching speeds, channel conductivity (too high an rDS), and current handling in general. The lateral DMOS FET removed these limitations, offering a viable alternative betwean the JFET and the GaAs FET for video and high-speed switching applications.

(A) p-type substrate

(B) Grow SiO_{2}
(C) Grow Silicon nitride overlay

(H) Remove nitride

(D) Mask for gate

(E) Etch nitride, leaving gate

(F) Mask drain area, overlap gate. Implant p-doped channel

(G) Replace mask, implant whole with $n+$

(J) Mask and etch poly

(K) lon-implant with light $n-$

(L) Metalize cpmtacts contacts for source, gate \& drain

Figure 9. Fabrication of Planar Enhancement-mode DMOS

The lateral DMOS FET differs radically in its channel construction when compared with the older planar MOSFET. A self-explanatory series of construction views of an n-channel, enhancement-mode device is offered in Figure 9. Note the double-diffused source implant into the implanted p-doped channel region, shown in Figures 9 (f) and (g). The novelty that improves the performance of DMOS is both the pre-cisely-defined short channel that results and the "drift region" resulting from the remaining p-doped
silicon body and light n-doped ion implant, shown if Figures 9 (k) and (1).

Although Figures 8 and 9 illustrate the fabrication sequences for n-channel enhancement-mode DMOS FETs, by reversing the doping sequences, p-channel DMOS FETs could easily be fabricated. Furthermore, by lightly doping across the short channel and drift region, depletion-mode DMOS FETs could be constructed.

The combination of the short channel and the drift region allows the MOSFET to operate in "velocity saturation" (as a result of the short channel) and to offer higher operating drain voltages (as a result of the drift region). Together, both offer low on-resistance and low interlectrode capacitances, expecially gate-to-drain, V_{GD}.

Velocity saturation coupled with low interelectrode capacitance offers us high-speed and high-frequency performance.

The novelty of the short-channel DMOS FET led to the evolution of a yet more advanced, higher-voltage, higher-current MOSFET: the Vertical Double-Diffused MOSFET, shown in Figure 10. Where this vertical MOSFET offers improved power-handling capabilities, its fundamental shortcoming is that, because of its construction and to a lesser extent because of its size, it fails to challenge the high-speed performance of the latera! DMOS FET. Consequently, the vertica! and lateral DMOS FETs complement each other in a wide selection of applications.

Figure 10. Vertical n-channel, enhancement-mode DMOS FET

UNDERSTANDING JFET PARAMETERS

JFET Characteristics

The JFET enjoys certain inherent advantages over bipolar transistors because of the unique construction and method of operation of the field-effect device. These characteristics include:

- Low noise
- "Zero offset" On-resistance
- No thermal runaway
- Low distortion and negligible intermodulation products
- High input impedance at low frequencies
- Very high dynamic range ($>100 \mathrm{~dB}$)
- Zero temperature coefficient Q point
- Junction capacitance independent of 'device current

The transfer function of a JFET approximates to a square-law response, and the second and higherorder derivatives of $g_{f s}$ are near zero; thus, strong second and negligible higher-order harmonics are produced. Intermodulation products are extremely low.

The input impedance of a JFET is simply the impedance of a reverse-biased pn junction, which is on the order of 10^{10} to $10^{13} \Omega$. In practice, the input impedance is limited by the value of the shunt gate resistor used in a self-bias common-source circuit configuration. At RF frequencies, the input impedance drop is proportional to the square of the frequency. In a 2 N 4416 JFET , for example, the input impedance would be $22 \mathrm{k} \Omega$ at 100 MHz . Also, the input susceptance increases linearly with frequency, since it is a simple parasitic capacitance.

The JFET has a very high dynamic range in excess of 100 dB . Thus it can amplify very small signals because it produces very little noise, or it can amplify very large signals because it has negligible intermodulation distortion products. It also has a zero temperature coefficient bias point (zero TC point) at which changes in temperature do not change the quiescent operating point.

Junction FET capacitances are more constant over wide current variation than are the same parameters in a bipolar device. This inherent stability allows high-
frequency (VHF through L-band) oscillators to be built which are far more stable than oscillators using low-frequency crystals and multiplier stages.

JFET Terminology and Parameters

Any introduction to the nature, behavior, and applications of field-effect transistors requires that certain questions be answered on JFET electrical quantities and parameters, in particular the most important parameters, and the means by which they can be measured. The following discussion will define specific JFET parameters and their associated subscript notations, and present basic test circuits and results.

Major parameters include:

- IDSS - Drain current with the gate shorted to the source
- $V_{G S}$ (off) - Gate-source cutoff voltage
- IGss - Gate-to-source current with the drain shorted to the source
- $V_{(B R) G S S}$ - Gate-to-source breakdown voltage with the drain shorted to the source
- $\quad g_{f s}$ - Common-source forward transconductance
- $\mathrm{C}_{\text {gs }}$ - Gate-source capacitance
- $\mathrm{C}_{\text {gd }}$ - Gate-drain capacitance

Special attention should be given to the subscript " s " because it has two different meanings and three possible uses. In JFET notations, an "s" for the first or second subscript identifies the source terminal as a node point for voltage reference or current flow. However, when using triple subscript notation, an "s" for the third subscript is an abbreviation for "shorted", and signifies that all terminals not designated by the first two subscripts must be tied together and shorted to the common terminal, which is always the second subscript. Therefore, the term lass refers to the gate-source current with the drain tied to the source.

Because of the typical low input and output admittance of the JFET, four-pole admittance equations are commonly used to describe electrical characteristics of the JFET:

$$
\begin{equation*}
I_{1}=Y_{11} V_{11}+Y_{21} V_{22} \tag{1}
\end{equation*}
$$

When Y_{11}, Y_{21}, Y_{12} and Y_{22} are defined as the input, reverse transfer, forward transconductance, and output admittance respectively, Equation 1 reduces to

$$
\begin{align*}
& i_{1}=y_{i} v_{11}+y_{r} v_{22} \tag{2}\\
& i_{2}=y_{f} v_{11}+y_{o} v_{22}
\end{align*}
$$

For a three-lead JFET, 11 usually corresponds to the gate-source terminal and 22 corresponds to the drain-source terminal (i.e., the device is connected in the common-source mode). Thus

$$
\begin{align*}
& i_{i}=y_{i s} v_{g s}+y_{r s} v_{d s} \tag{3}\\
& i_{0}=y_{f s} v_{g s}+y_{o s} v_{d s}
\end{align*}
$$

Here, the second subscript for the y parameters designates the source lead as the common or ground terminal.

Idss - Drain Current at Zero Gate Voltage (I_{D} at $V_{G S}=0$)

By itself, IDSS merely refers to the drain current that will flow for any applied $V_{D S}$ with the gate shorted to the source. However, when a particular value for $V_{D S}$ is given, equal to or greater than V_{p} (see Figure 1), loss indicates the drain saturation current at zero gate voltage. Some JFET data sheets labelldss for $V_{D S}$ greater than V_{p} as ID(ON).

Figure 1. JFET Characteristic at $\mathrm{V}_{\mathrm{Gs}}=0 \mathrm{~V}$

$\mathrm{V}_{\mathrm{GS}(\text { off })}$ - Gate-Source Cutoff Voltage

The resistance of a semiconductor channel is related to its physical dimensions by $R=\rho L / A$, where

$$
\begin{aligned}
& \rho=\text { resistivity } \\
& L=\text { length of the channel } \\
& A=W \times T=\text { cross-sectional area of channel }
\end{aligned}
$$

In the usual JFET structure, L and W are fixed by device geometry, while channel thickness T is the distance between the depletion layers. The position of the depletion layer can be varied either by the gatesource bias voltage or by the drain-source voltage. When T is reduced to zero by any combination of $V_{G S}$ and $V_{D S}$, the depletion layers from the opposite sides come into contact, and the a-c or incremental channel resistance rDS, approaches infinity. As earlier noted, this condition is referred to as "pinch-off" or "cutoff" because the channel current has been reduced to a very thin sheet, and current will no longer be conducted. Further increases in $V_{D S}$ (up to the junction reverse-bias breakdown) will cause little change in I_{D}. Accordingly, the pinch-off region is also referred to as the pentode or "constant-current" region.

Figure 2. JFET Output Characteristics
In Figure 1, pinch-off occurs when $V_{G S}=0$. In Figure $2, V_{G S}$ controls the magnitude of the saturated I_{D}, with increases in $V_{G S}$ resulting in lower values of constant I_{D} and smaller values of $V_{D S}$ necessary to reach the "knee" of the curve. The current scale in Figure 2 has been normalized to a specific value of IDSS.

The knee of the curve is important to the circuit designer because he must know what minimum $V_{D S}$ is needed to reach the pinch-off region with $V_{G S}=0 \mathrm{~V}$. When appropriate bias voltage is applied to the gate, it will pinch off the channel so that no drain current can flow; $V_{D S}$ has no effect until breakdown occurs. the specific amount of $V_{G S}$ that produces pinch-off is known as the gate-source cutoff voltage, V_{GS} (off) .

V_{GS} (off) Test Procedure

Although the magnitude of $V_{G S}$ (off) is equal to the pinch-off voltage, V_{p}, defined by the pinch-off knee in Figure 1, rapid curvature in the area makes it difficult to define any precise point as V_{p}. Taking a second derivative of $V_{D S} / I_{D}$ would yield a peak corresponding to the inflection point at the knee which approximates V_{p}. However, this is not a simple measurement for production quantities of devices. A better measure is to approach the cutoff point of the I_{D} versus $V_{G S}$ characteristic. This is easier than trying to specify the location of the knee of the I_{D} versus $V_{D S}$ output characteristic.
A typical transfer characteristic I_{D} versus $V_{G S}$ is shown in Figure 3. The curve can be closely approximated by

$$
\begin{equation*}
I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{G S(O f f)}}\right)^{2} \tag{4}
\end{equation*}
$$

Figure 3. Typical I_{D} vs $V_{G S}$ Transfer Characteristic

Equation 4 and Figure 3 indicate that at $V_{G S}=$ $V_{G S(o f f)}, I_{D}=0$. In a practical device, this cannot be true because of leakage currents. If I_{D} is reduced to less than 1 percent of IDSS,$V_{G S}$ will be within 10 percent of the $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$ value indicated by Equation 4. If I_{D} is reduced to 0.1 percent of $I_{D S S}$ the indicated $V_{G S}$ (off) error will be reduced to about 3 percent. For a true indication of $V_{G S}$ (off), and a realistic picture of the parameters of Figure 3, care must be taken that leakage currents do not result in an error in the $V_{G S}$ (off) reading. Typically, at room temperature, 1 percent of IDSS is still well above leakage currents but is low enough to give a fairly accurate value of $V_{G S}$ (off) .

A typical circuit for measuring $V_{G S(o f f)}$ is shown in Figure 4. At $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, the value of $\mathrm{I}_{\mathrm{DSS}}$ can be measured. Then by increasing $V_{G S}$ until I_{D} is 0.01 percent of I_{D} at some fixed value (such as 1 nA), rather than as a certain percentage of IDSS. Thus a pinch-off voltage specification may be given as indicated in Table I.

Figure 4. Circuit for Measuring $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$

Another method which provides an indirect indication of the maximum value of V_{GS} (off) is shown in Table II. The characteristic specified is $I_{D \text { (off) }}$, where the parameter of interest is $V_{G S}=8$ volts. The specification does say that the maximum $V_{G S}$ (off) is approximately 8 V , but no provision is made for stating a minimum $V_{G S}$ (off), as was done in Table I. Therefore, another test must be made if $V_{G S \text { (off) }}(\mathrm{min})$ is to be specified.

Table I. Typical Pich-Off Voltage Specification.

Characteristics		Test Conditions	Min	Max	Unit
$V_{\text {GS(off) }}$	Gate-Source pinch-off voltage	$V_{D S}=-5 \mathrm{~V}$,			
$I_{D}=-1 \mu \mathrm{~A}$	1	4	V		

Table II. Indication of Maximum V_{GS} (off)

Characteristics		Test Conditions	Min	Max	Unit
ID(OFF)	Pinch-off drain current	$V_{D S}=-12 \mathrm{~V}$,			
$V_{G S}=8 \mathrm{~V}$		-10	nA		

IGss - Gate-Source Cutoff Current

The input gate of a p-channel JFET appears as a simple pn junction; thus the dc input characteristic is analogous to a diode V-I curve, as shown in Figure 5.

Figure 5. P-Channel JFET Input Gate Characteristic

In the normal operating mode, with $V_{G S}$ positive for a p-channel device, the gate is reverse-biased to a voltage between zero and V_{GS} (off) . This results in a dc gate-source resistance which is typically more
than $1000 \mathrm{M} \Omega$. The gate current is both voltage and temperature sensitive. Figure 6 shows this relationship for $l_{G S S}$ versus temperature and $V_{G S}$.

If the gate-source junction becomes forward-biased, (negative voltage in a p-channel device) or if V_{GS} exceeds the reverse-bias breakdown of the junction, the input resistance will then become very low.

Figure 6. IGss vs. Temperature

The JFET is normally operated with a slight reverse bias applied to the gate-source; hence, a good measure of the dc input characteristic is to check the gate current at a value of gate-channel voltage that is below the junction breakdown rating. In device evaluation, there are the common measurements of gate current: IGDO, IGSO, and the combined measurement lass. These measurement circuits are shown in Figure 7.

Figure 7. Three Common Measurements of Gate Current

The question is, should $\mathrm{I}_{\text {GDO }}$ and $\mathrm{I}_{\text {GSO }}$ be measured separately, or will one measurement of $I_{\text {GSs }}$ suffice? One thing is certain: $I_{\text {GSO }}+l_{\text {GDO }}>I_{\text {GSS }}$, because the drain and the source are not completely isolated. They are, in fact, electrically connected via channel resistance. For most JFETs, if V_{G} is greater than $V_{G S(\text { off })}$, the difference between ($I_{G S O}+I_{G D O}$ and $I_{\text {GSS }}$ is small; therefore, the measurement of $I_{\text {GSS }}$ is a realistic means of controlling both $I_{\text {GDO }}$ and $I_{\text {GSO }}$.

In a circuit, $V_{G D}$ may be biased between zero and $V_{(B R)}$ GSS, while $V_{G S}$ will be between zero and $V_{G S(o f f)}$: therefore, I_{G} is not necessarily the same as IGSS.
$V_{(B R) G S S}$ - Gate-Source Breakdown Voltage

JFET input terminals have been previously described as having np or pn junctions, depending on the channel material. As such, the junction breakdown voltage is a necessary parameter.

A useful equivalent circuit for a JFET is the distributed constant network shown in Figure 8, for a p-channel JFET. If an n-channel device is being evaluated, the diodes would be reversed. In most applications, the
gate-drain voltage is greater than the gate-source voltage; thus, the gate-drain breakdown rating is most important. However, it is also possible to consider the gate-source junction breakdown and the apparent drain-source breakdown (i.e., in Figure 8, when a high negative voltage is applied from drain to source, CR_{1} will break down while CR_{n} becomes for-ward-biased).

Some device manufacturers use a $\mathrm{BV}_{\mathrm{GDO}}$ rating, which means they are only checking diode CR_{1}. A better method is to use a $V_{(B R) G S S}$ rating (gatesource breakdown with the drain shorted to the source), because it checks both CR_{1} and $C R_{n}$, in addition to exposing the weakest breakdown path along the entire gate-channel junction. The $V_{(B R) G S S}$ test also allows the user to interchange source and drain lead connections without worry about device breakdown ratings.

Admittedly, a $V_{(B R) G S S}$ test will reject some units which might pass a $B V_{G D O}$ test; the number rejected, however, will be insignificant compared to the advantage of providing symmetrical operation.

Figure 8. A Useful JFET Equivalent Circuit

Test Procedures for $\mathrm{V}_{(\mathrm{BR}) \text { Gss }}$

Junctions may break down softly or sharply; junctions with soft knee breakdown are undesirable. Without examining each individual unit on a curve tracer, devices with a soft knee may be eliminated by selecting a low current level for breakdown measurement (see Figure 9).

Figure 9. Example of Soft Knee and Sharp Knee Breakdown

\mathbf{g}_{fs} - Transconductance

Transconductance, g_{fs}, is a measure of the effect of gate voltage upon drain current:

$$
\begin{equation*}
g_{f s}=\frac{\Delta l_{D}}{\Delta V_{G S}} ; V_{D S}=\text { constant } \tag{5}
\end{equation*}
$$

The interrelation of g_{fs} to the parameters IDSs and $V_{\mathrm{GS} \text { (off) }}$ should be noted. Equations 4,6 , and 7 describe the value of I_{D} and $g_{\text {fs }}$ in a JFET for any value of V_{GS} between zero and V_{GS} (off).

$$
\begin{align*}
& g_{f s}=g_{f s o}\left(1-\frac{V_{G S}}{V_{G S(o f f)}}\right) \tag{6}\\
& g_{\mathrm{fso}}=-\frac{l_{\text {DSS }}}{V_{G S \text { (off) }}} \tag{7}
\end{align*}
$$

where $\mathrm{g}_{\text {fso }}$ is the value of g_{fs} at $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{DSs}}$ is the value of I_{D} at $V_{G S}=0 \mathrm{~V}$. With these equations, the value of g_{fs} can be calculated with a fair degree of accuracy (20 percent) if IDSS and $V_{G S}$ (off) are known.

Figure 10 shows normalized curves for I_{D} and g_{fs} as functions of $V_{G S}$ in a P-Channel JFET. These curves were obtained from actual measurements on typical diffused channel JFETs. The curves agree very well with Equation 4 and 6 until $\mathrm{VGS}_{\text {(off) }}$ is approached. For these curves, $\mathrm{V}_{\mathrm{GS}(\text { off })}$ was assumed to be the value of $V_{G S}$ where $I_{D} / I_{\text {DSS }}=0.001$.

Figure 10. Normalized Curves for I_{D} and $g_{f s}$ as Functions of V_{Gs}

The drain current of a JFET operating in the triode (below pinch-off) region can be accurately predicted by using Equation 8, where

$$
\begin{equation*}
I_{D} / \text { triode }=I_{D S S}\left(\frac{v_{D S}}{V_{G S \text { (off) }}}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

Specifications for $g_{\text {fs }}$ are shown in Tables III and IV. Note that there is a difference in the test conditions specified for the n-channel and the p-channel devices. The gate voltage for the n-channel is established as zero. This means that g_{fs} is measured at $I_{D}=I_{\text {DSS }}$, as in Table III.

The test conditions shown in Table IV specify a certain value for $I_{D}(-200 \mu \mathrm{~A})$. This means that for each unit tested, $V_{\text {Gs }}$ is adjusted until I_{D} equals the specified value. The conditions specified in Table II simplify testing of the $\mathrm{g}_{\text {fs }}$ parameter by eliminating the necessity of adjusting $V_{\text {Gs }}$. Figures 11 and 12 show typical test systems for the two methods.

Table III.

Characteristics		Test Conditions	Min	Max	Unit
g_{fs}	Small-signal common-source forward transconductance	$V_{\mathrm{DS}}=15 \mathrm{~V}$, $V_{\mathrm{GS}}=0$, $f=1 \mathrm{kHz}$	4,500	7,500	$\mu \mathrm{~s}$

Table IV.

	Characteristics	Test Conditions	Min	Max	Unit
$g_{f s}$	Common-source forward transconductance	$V_{D S}=20 \mathrm{~V}$, $I_{D}=200 \mu \mathrm{~A}$ $f=1 \mathrm{kHz}$	700	1,600	$\mu \mathrm{~s}$

Figure 11. Test Circuit for $g_{f s}$ with $V_{G S}=0 V$

Junction FET Capacitances

Associated with the junction between the gate and the channel of a JFET is a capacitance whose value and geometric distribution are functions of the applied voltages $V_{G S}$ and $V_{D S}$. Because of the complexity of dealing with such a distributed capacitance, a simplification is made so that two lumped capacitances, $C_{g s}$ and $C_{g d}$, exist between the gate and the source and drain, respectively. (A much smaller capacitance, C_{ds}, also exists between the drain and the source, stemming mainly from the device package; this header capacitance is small enough so that it can be ignored for most purposes.)

Data sheets quote C_{gs} and C_{gd} (or other capacitances from which they may be derived) for specified operating conditions. Occasionally, graphs are included which show the variations of $C_{g s}$ and $C_{\text {gd }}$ as the result of changing conditions of $V_{D S}, V_{G S}$ and temperature. If this data is not presented, an estimate of interelectrode capacitance values may be made by assuming that these values vary inversely with the square root of the bias voltage. The temperature variations will be very small, because they

Figure 12. Test Circuit for $g_{f s}$ with ID Specifled
depend on the $-2.2 \mathrm{mV}^{\circ} \mathrm{C}$ change in junction potential difference.

Assuming that the JFET is properly biased - that is the dc conditions are met by the external circuitry - it is possible to construct an incremental equivalent circuit from which the small-signal or ac performance may be predicted. Such an equivalent circuit is shown in Figure 13.

NOTE: $\quad C_{g s s}=C_{\text {sss }}=C_{g s}+C_{g d}$

$$
C_{o s s}=C_{g d}+C_{d s} \geq C_{g d}=C_{r s s}
$$

Figure 13. Incremental Equivalent Circuit for the Junction FET

The equivalent capacitance from the gate to the source, C_{gs}, is shunted by a very large input resistance, $r_{g s}$, with both of these parameters being characteristic of a reverse-biased junction. Similarly, the equivalent capacitance from the gate to the drain is shunted by the very large resistance $r_{g d}$. (For most purposes, $r_{g s}$ and $r_{g d}$ may be neglected, and the gate impedance of the JFET treated as pure capacitance). At the drain side of the equivalent circuit the small capacitance $C_{d s}$ - which stems from the header material - is shunted by the incremental channel resistance, $r_{d s}$. This resistance is capable of wide variations, depending on bias conditions. since the equivalent circuit is fundamentally relevant to the pinch-off or saturated condition, $r_{d s}$ will be on the order of megohms.

The incremental channel current is given by the transconductance, $g_{f s}$, multiplied by the incremental gate voltage. For the small signal, $\mathrm{vgs}_{\mathrm{g}}$, this is manifested in the equivalent circuit by the current generator $\mathrm{g}_{\mathrm{fs}} \mathrm{Vgs}$. Notice that the conventional direction of flow of this current is such that i_{d} flows into the JFET, in a "positive" direction.

Many circuits can be designed around the equivalent circuit for the junction FET. The actual values of $g_{f s}$ and $r_{d s}$ can be measured as previously mentioned; there remains only the requirement to establish the methods of determining C_{gs} and C_{gd}.

First, assume that the JFET is in operation and that the drain is connected to the source via a large capacitor, i.e., the drain and source are short-circuited to ac. Under these circumstances, a capacitance measurement between the gate and the source will give

$$
\begin{equation*}
C_{\mathrm{dss}}\left(\text { or } \mathrm{C}_{\mathrm{oss}}\right) \sim \mathrm{C}_{\mathrm{gs}}+\mathrm{C}_{\mathrm{gd}} \tag{9}
\end{equation*}
$$

Second, assume that the gate and source are shortcircuited to ac in a similar manner. A capacitance
measurement between the drain and the source will now give

$$
\begin{equation*}
\mathrm{C}_{\mathrm{dss}}\left(\text { or } \mathrm{C}_{\mathrm{oss}}\right) \sim \mathrm{C}_{\mathrm{gd}} \tag{10}
\end{equation*}
$$

The alternative symbols $C_{\text {iss }}$ and $C_{\text {oss }}$ simply refer to measurements made at the input (gate) and the output (drain) respectively. An alternative symbol for C_{gs} is $\mathrm{C}_{\text {rss }}$, which refers to the "reverse" capacitance.

In data sheets, it is customary to state $\mathrm{C}_{\text {gss }}\left(=\mathrm{C}_{\text {iss }}\right)$ and $C_{\text {dss }}\left(=C_{\text {oss }}\right) . C_{r s s}$ is often given in place of $C_{\text {oss }}$ because if $C_{d s} \ll C_{\text {oss }}$, which is usually the case, then $\mathrm{C}_{\text {rss }} \sim \mathrm{C}_{\text {oss }}$ Equations (9) and (10) can be used in those instances where it is necessary to extract $C_{g s}$ and $C_{g d}$, as in

$$
\begin{equation*}
C_{g s}=C_{i s s}-C_{g d}=C_{i s s}-C_{r s s} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{\mathrm{gd}}=\mathrm{C}_{\mathrm{rss}} \tag{12}
\end{equation*}
$$

Remember that all capacitance measurements should be made at the same bias levels, since the capacitances are functions of applied voltages. To indicate the order of the capacitances to be found in a junction FET, consider the following typical values given in a data sheet.

$$
\begin{aligned}
& C_{\text {iss }}\binom{\text { at } V_{D S}=15 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz},}{V_{G S}=0}=7 \mathrm{pF} \operatorname{Max} . \\
& C_{\mathrm{rss}}\binom{\text { at } V_{D S}=15 \mathrm{~V}, f=1 \mathrm{MHz},}{V_{G S}=0}=3 \mathrm{pF} \operatorname{Max} .
\end{aligned}
$$

and

Hence, at a drain-source voltage of 15 V and a frequency of $1 \mathrm{MHz}, \mathrm{C}_{\mathrm{gs}}=7-3=4 \mathrm{pF}$ maximum. Even though the JFET is physically symmetrical, bias conditions have forced the capacitances to be unequal.

LPD-3
FET BIASING

INTRODUCTION

Engineers often design FET amplifiers that are unnecessarily sensitive to device characteristics because they may not be familiar with proper biasing methods.

One way to obtain consistent circuit performance, in spite of device variations is to use a combination of constant voltage and self biasing. The combined circuit configuration turns out to be the same as that generally used with bipolar transistors, but its operation and design are quite different.

Three Basic Circuits

Let's examine three basic common-source circuits that can be used to establish a FET's operating point (Q-point) and then see how two of them can be combined to provide greatly improved performance. The three basic biasing schemes are:

- Constant-voltage bias, which is most useful for rf and video amplifiers employing small dc drain resistors.
- Constant-current bias, which is best suited to low-drift dc amplifier applications such as source followers and source-coupled differential pairs.
- Self bias (also called source bias or automatic bias), which is a somewhat universal scheme, particularly valuable for ac amplifiers.
The Q-point established by the intersection of the load line and the $\mathrm{V}_{\mathrm{GS}}=-0.4 \mathrm{~V}$ output characteristic of Figure 1 provides a convenient starting point for the circuit comparison. The load line shows that a drain supply voltage, V_{DD}, of 30 V and a drain resistance, R_{D}, of $39 k \Omega$ are being used.

The quiescent drain-to-source voltage, $V_{D S Q}$, is 15 V , allowing large signal excursions at the drain. Maximum input signal variations of $\pm 0.2 \mathrm{~V}$ will produce output voltage swings of $\pm 7.0 \mathrm{~V}$, a voltage gain of 35 .

The constant-voltage bias circuit (Figure 2) is analyzed by superimposing a line for $V_{G G}=$ constant on the transfer characteristic of the FET.

Figure 1. A large dynamic range is provided by the operating point at $\mathrm{V}_{\mathrm{DSQ}}=15 \mathrm{~V}$, $\mathrm{I}_{\mathrm{DQ}}=0.39 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{GSQ}}=-0.4 \mathrm{~V}$.

Figure 2. Constant-voltage blas is maintained by the V_{GG} supply as shown on this typical transfer curve. Input signal eg moves the load line horizontally.

The transfer characteristic is a plot of I_{D} vs. $V_{G S}$ for constant $V_{D S}$. Since the curve doesn't change much with changes in $V_{D S}$, it is useful in establishing operating bias points. In fact, it is probably more useful than the output characteristics because its curvature clearly warns of the distortion to be expected with large input signals. Furthermore, when a bias load line is superimposed, aiiowabie signai excursions become evident, and input voltage, gate-source signal voltage, and output signal current calculations may be made graphically.

Figure 3. Constant-current blas fixes the output voltage for any R_{D}. Hence, input signals cannot affect the output unless the current source is bypassed.

The constant-current bias approach (Figure 3) for establishing the Q-point of Figure 1 requires a $0.39-\mathrm{mA}$ current source. for an ideal constant-current generator, input signal excursions merely shift the bias line horizontally and produce no resultant gatesource voltage excursion. This bias technique is therefore limited to source followers, source coupled differential amplifiers, and ac amplifiers where the source terminal is bypassed to ground at the signal frequency.

If an ac ground is provided by a bypass capacitor across the current source, a vertical ac bias line will be established. Input signal variations will then translate the ac bias line horizontally, and signal development will proceed as with constant-voltage biasing (Figure 3).

The heavy vertical line at $\mathrm{V}_{\mathrm{GS}}=-0.4 \mathrm{~V}$ establishes the Q -point of Figure 1. No voltage is dropped across resistor R_{G} because the gate current is essentially zero. R_{G} serves mainly to isolate the input signal from the V_{GG} supply.

Excursions of the input signal, e_{g}, combine in series with V_{GS} so that they add algebraically to the fixed value of -0.4 V . The effect of signal variation is to instantaneously shift the bias line horizontally without changing its slope. The shifting bias line then develops the output signal current as shown in Figure 2.

Should the bypass capacitor not provide a sufficiently low reactance at the signal frequency, the ac bias line will not be be vertical. It will still intersect the transfer curve at the Q-point but with a slope equal to $-\left(1 / X_{C}\right)=-\omega C$ (Figure 4).

Figure 4. Partial bypassing of the current source (Figure 3) lowers the circuit gain by tilting the ac load line from the vertical. The capacitor drop subtracts from eg.

This will lower the gain of the amplifier because of signal degeneration at the source. The input signal, eg , is reduced by the drop across the capacitor:
$V_{G S}=e_{g}-V_{S}=e_{g}-i_{S} X_{C}$

It is clear from Figure 4 that the input signal only shifts the operating point by an amount equal to V_{GS}, the effective input signal. As the signal frequency is decreased, the slope of the ac bias line decreases, causing the effective input signal to approach zero.

Self Bias Needs No Extra Supply

The self-bias circuit (Figure 5) establishes the Qpoint by applying the voltage dropped across the source resistor, R_{S}, to the gate. Since no voltage is dropped across R_{S} when $I_{D}=0$, the self-bias load line passes through the origin. Its slope is given by $-1 / R_{S}=I_{D Q} / V_{G S Q}$.

Signal development is the same as in the case of the partially bypassed constant-current scheme except that the load line is a dc bias line. Signal degeneration is described by Equation 1 with X_{C} replaced by R_{s}. The ac gain of the circuit can be increased by shunting R_{S} with a bypass capacitor, as in the con-stant-current case. The ac load line then passes through the Q-point with a slope $-\left(1 / Z_{s}\right)=-(\omega C+$ 1/Rs).

The circuit is biased automatically at the desired Qpoint, requiring no extra power supply, and providing a degree of current stabilization not possible with constant-voltage biasing.

Figure 6. All three combination-bias circuits are equivalent. They add constant-voltage biasing to the self-bias circuit to establish a reasonably flat load line without sacrificing dynamic range.

A fourth biasing method, combining the advantages of constant-current biasing and self biasing, is obtained by combining the constant-voltage circuit with the self-bias circuit (Figure 6). A principal advantage of this configuration is that an approximation may be made to constant-current bias without any additional power supply. The bias load line may be drawn through the selected Q-point and given any desired slope by properly choosing $V_{G G}$. (The bias line intercepts the $V_{G s}$ axis at $V_{G G}$.) The larger $V_{G G}$ is made, the larger R_{S} will be and the better will be the approximation to constant-current biasing.

All three circuits in Figure 6 are equivalent. Circuit 6 (a) requires an extra power supply. The need for an additional supply is avoided in $6(b)$ by deriving $V_{G G}$ from the drain supply. R_{1} and R_{2} are simply a voltage divider. To maintain the high input impedance of the $F E T, R_{1}$ and R_{2} must both be very large.

Very large resistors cannot always be found in the exact ratio needed to derive the desired $V_{G G}$ in every circuit application. Circuit 6(c) overcomes this problem by placing a large R_{G} between the center point of the divider and the gate. This allows R_{1} and R_{2} to be small, without lowering the input impedance.

One point of caution worth remembering is that as $V_{G G}$ is increased, V_{S} increases, and $V_{D S}$ decreases. Therefore, with low $V_{D D}$, there may be a significant decrease in the allowable output voltage swing.

Biasing for Device Variations

The value of the combination-bias technique becomes apparent when one considers the normal production spread of device characteristics. The problem is illustrated in Figure 7 where two limiting sets of output characteristics are presented. Limiting characteristics like these are not normally available. Even if they were, however, they'd be of little help in establishing operating points suitable for all devices with output characteristics lying between the two extremes. The problem is much more easily approached by using the set of limiting transfer characteristics of Figure 8.

Figure 7. The wide variations in device performance shown by this pair of output characteristics make clear the disadvantages of constant-voltage biasing.

Attempting to establish suitable constant-voltage bias conditions for a production spread of devices is practical only for circuits with very small values of dc drain resistance - for example, circuits with inductive loads. As the constant-voltage bias plot of Figure 8 reveals, constant gate bias causes a significant difference in operating $I_{D Q}$ for the extreme limit devices. At $V_{G S}=-0.4 \mathrm{~V}$, the range of $I_{D Q}$ is 0.13 to 0.69 mA , and $V_{G S Q}$ for a given R_{D} will vary greatly for most resistance-loaded circuits. For the example of Figure 1, with $R_{D}=39 \mathrm{k} \Omega$ and $V_{D D}=30 \mathrm{~V}, V_{G S O}$ varies from near saturation (5 V) to 25 V .

Figure 8. The advantages of combination biasing, when one is working with a spread of device characteristics, are made obvious by plotting the load lines for the various types of biasing on a pair of limiting transfer curves.

An excellent method of biasing is the constant-current method of Figure 3. Biasing in this manner fixes the operating drain current for all devices and sets $V_{D S Q}$ to $V_{D D}-I_{D Q} R_{L}$ for any device in the production spread. V_{GS} automatically finds a value to set the appropriate $I_{D Q}=$ constant for all devices. For the con-stant-current bias plot of Figure 8, with $I_{D Q}=0.39$ $\mathrm{mA}, \mathrm{V}_{\mathrm{GS}}$ would range from -0.11 to -0.67 V .

Output characteristics are not needed as long as IDQ is chosen to be below the minimum loss. With $\mathrm{R}_{\mathrm{D}}=$ $39 \mathrm{k} \Omega$ and $V_{D D}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DSQ}}$ is 14.8 V for all devices.

The disadvantages of the constant-current method are that it allows no signal to be developed unless the current source is bypasssed and, as we shall see, it lacks the flexibility to provide constant gain despite variations in the forward transconductance, g_{fs}, of the devices.

The self-bias scheme is a reasonable choice for sin-gle-ended dc amplifiers and for ac amplifiers. In unbypassed or dc circuits, some compromise must be made between the gain loss due to current feedback degeneration and the advantage of current stabilization achieved with high Rs.

An appropriate choice of $I_{D Q}$ limits can be made by using the pair of limiting transfer curves. For example, for $R_{S}=1 \mathrm{k} \Omega$, the load line shown on the selfbias curve of Figure 8 is established. The maximum I_{D} is 0.52 mA , and the minimum I_{D} is 0.24 mA . The operating range of $V_{D S Q}$ may be calculated for any value of $V_{D D}$ and R_{D}. Clearly, for $R_{D}=39 \mathrm{k} \Omega$, the maximum-limit device (device B) would operate with $V_{D S Q}=9.8 \mathrm{~V}$ and the minimum-limit device (device A) would operate with $\mathrm{V}_{\mathrm{DSQ}}=20.6 \mathrm{~V}$. This results in fairly satisfactory operation for all devices. However, such a variation in IDQ imposes severe limitations on the circuit design.

LPD-3

A better approach is illustrated by the combinationbias curve of Figure 8 with $V_{G G}=1.2 \mathrm{~V}$. The range of $I_{D Q}$ for the bias condition is 0.25 mA to 0.32 mA . A similiar minimum difference in IDQ could be achieved with $R_{S}=6 \mathrm{k} \Omega$ and $V_{G G}=0$, (a self-bias condition) but the operating points would be pushed toward the toe of the transfer characteristics and allowable signal input would be reduced.

The upper load line allows $\mathrm{g}_{\mathrm{fs}}=+1.8 \mathrm{~V}$ (limited by IDSSA), while the lower line allows a $V_{G S}$ of only +0.7 V (limited by V_{GS} (off) A). (The subscript letters A and B refer to the minimum and maximum devices, respectively.) The combination circuit allows almost ideal operation over the full production spread of devices. Even with $R_{D}=6 \mathrm{k} \Omega$, the $V_{D S Q}$ would range only between 10 and 15 V .

For this circuit, R_{D} should be chosen to allow the largest output signal swing for IDQ midway between the two extremes of 0.25 and 0.32 mA ; namely 0.285 mA . Setting the voltage drop across R_{D} at one-half of ($V_{D D}-2 \mathrm{~V}_{\mathrm{GS}}$ (off)typ) or 14 V , yields $\mathrm{R}_{\mathrm{D}}=$ $(14 \mathrm{~V} / 0.285 \mathrm{~mA})=49 \mathrm{k} \Omega$.

It is helpful, in any design, to know the effect of temperature variations on the transfer curves and transconductance characteristics. Ideally, minimum and maximum transfer characteristics would be plotted at three temperatures: above, below, and at room temperature. Then the design would take all types of variation into account.

Minimize The Gain Variations

Leaving R_{S} unbypassed helps reduce gain variations from device to device by providing degenerative current feedback. However, this method for minimizing gain variations is only effective when a substantial amount of gain is sacrificed.

A better approach is to use the combination-bias technique with the bias point selected from the transfer and transconductance curves (Figure 9).

As Figure 9 shows, it is possible to find an R_{s} and a $V_{G G}$ that will set $I_{\text {DQA }}$ and $I_{\text {DQB }}$ to values so that $g_{f s Q}$ will be the same for both devices. The $g_{f s Q}$ of all intermediate devices will be approximately equal to the limiting values. Thus, a constant, or nearly constant, stage gain is obtained even with a bypass capacitor.

Figure 9. Gain variations are minimized when the load line is designed to intersect the pair of limiting transfer curves (top) at points of equal $g_{f s}$ (bottom).

The design procedure is as follows:
Step 1. Select a desiredIDQA below I DSSA. A good value, allowing for temperature variations, is 60% of I DSSA. This will allow for decreasing I DSS due to temperature variation and for reasonable signal excursions in load current.

Step 2. Enter the transfer curves at IDQA ~ 0.6 IDSSA (0.3 mA) to find $\mathrm{V}_{\mathrm{GSQA}}$. Thus $V_{G S Q A} \sim-0.2$.

Step 3. Drop vertically at $\mathrm{V}_{\mathrm{GSQA}}$ to the minmum limit transconductance curve to find $g_{f s Q A}$. The value as read from the plot is approximately $1000 \mu \mathrm{~S}$.

Step 4. Travel across the g_{fs} plot to the maximum curve to find $V_{\text {GSQB }}$ at the same value of g_{fs}. This is $\mathrm{V}_{\mathrm{GSQB}} \sim-0.7 \mathrm{~V}$.

Step 5. Travel vertically up to the maximum limit transfer curve to find $I_{\text {DQB }}$ at $\mathrm{V}_{\text {GSQB }}$. This is $1 \mathrm{DQB} \sim 0.36 \mathrm{~mA}$.

Step 6. Construct an R_{S} bias line through points Q_{A} and Q_{B} on the transfer curves. The slope of the line is $1 \mathbb{R}_{s}$, and the intercept with the $V_{G S}$ axis is the required $V_{G G}$.

As Figure 9 demonstrates, it may be somewhat inconvenient to perform Step 6 graphically. An algebraic solution can then be employed instead. The source resistance is given by
$R_{S}=\left(V_{G S Q A}-V_{G S Q B}\right) /\left(I_{D Q B}-I_{D Q A}\right)$
and the bias voltage is
$V_{G G}=R_{S} I_{D Q B}+V_{G S Q B}$

Care should be taken to maintain the proper algebraic signs in Equations 2 and 3. (For n-channel FETs, $V_{G S}$ is negative and I_{D} is positive. For p-channel units, the signs are reversed.)

If the transconductance curves of Figure 9 are not available, g_{fs} can be determined by simply measuring the slope of the transfer curve at the desired operating point. Just place a straight-edge tangent to the curve at the Q-point and note the points at which it intercepts the I_{D} and $V_{G S}$ axes. The slope and $g_{\text {fs }}$ are given by:
slope $=g_{\text {fs }}=I_{D \text { (intercept) }} /-V_{G S}$ (intercept)
In designing a constant-gain circuit, simply set the straight-edge tangent to the transfer curve of device A at point Q_{A} and slide it, without changing its slope, until it is tangent to the curve of device B. The tangency point is Q_{B}.

Designing Without Output Curves

Although the transfer characteristic has been seen to be extremely valuable in designing a bias circuit, it cannot be used to graphically establish $V_{D S Q}$. However, if a set of output curves is not available, $V_{\text {DSQ }}$ can be determined or selected from the transfer curve by using the following procedure:

Step 1. Establish RS and limiting values of IDQ, $V_{G S Q}$ and $g_{f S Q}$ from the transfer curve.

Step 2. Establish $V_{D D}$ as available, but in no case greater than $\mathrm{BV}_{\mathrm{GSs}}$ nor less than several times $\mathrm{V}_{\mathrm{GS}(\text { off })}$. There are special cases where $V_{D D}$ will be below this limit, but in no case should instantaneous $V_{D G}$ be allowed to fall below $2 \times \mathrm{V}_{\text {GS(off) }}$ if minimum distortion is to be achieved.

Step 3. Set $V_{D S Q}$ approximately midway between $V_{D D}$ and $2 \times V_{\text {GS (off) }}$; lower if large output signals will not be handled.

Step 4. Select R_{D} to give the appropriate $V_{D S Q}$. The formula is:
$R_{D}=\left[\left(V_{D D}-V_{D S Q}\right) / 0.5\left(I_{D Q A}+I_{D Q B}\right)\right]-R_{S}$
In the example of Figure 8, this procedure would have yielded $V_{D S Q}=(30-3) / 2=13.5 \mathrm{~V}$ and $R_{D}=$ $(30-13.5) / 0.5(0.52+0.24) \mathrm{mA}-1 \mathrm{k} \Omega=42.5 \mathrm{k} \Omega$.

Step 5. Check to ensure that with this R_{D}, device B is not in a saturated condition, i.e. $V_{D Q B}=$ $V_{D D}-I_{D Q B} R_{D}>2 V_{G S}($ off $)+R_{S} I_{D Q B}$.

An alternate method, that selects R_{D} to provide a specified voltage gain, follows Steps 1 and 2 above and then proceeds as follows:

Step 3 Determine required stage gain, A_{V}, and set $R_{D}=A v / g_{f Q}$.

Step 4. Calculate VDSQ to ensure that the criteria of Step 2 are not violated:
$V_{D S Q}=V_{D D}-\left(R_{D}+R_{S}\right) I_{D Q}$
Step 5. If necessary, change $I_{D Q}, V_{D D}, A_{V}$ and/or R_{D} to obtain an optimum compromise.

FET SOURCE-FOLLOWER CIRCUITS

The common-drain amplifier, or source follower, is a particularly valuable configuration; its high input impedance and low output impedance make it very useful for impedance transformations between FETs and bipolar transistors. By considering ten circuits (Figure 10), which represent virtually every sourcefollower configuration, the designer can obtain consistent circuit performance despite wide device variations.

There are two basic connections for source followers: with and without gate feedback. Each connection comes in several variations (Figure 10). Circuits 10(a) through 10(e) have no gate feedback; their input impedances, therefore, are equal to R_{G}. Circuits $10(f)$ through $10(k)$ employ feedback to their gates to increase the input impedance above R_{G}.

Before getting into the details of bias-circuit design, note several general observations that can be made about the circuits of Figure 10:

- Circuits a, c, d, f, h, and j can accept only positive and small negative signals, because these circuits have their source resistors connected to ground. The other circuits can handle large positive and negative signals limited only by the available supply voltages and device breakdown voltage.
- Circuits c, d, e, h, j, and k employ current sources to improve drain-current (D) stability and increase gain.
- Circuits d, e, and k employ FETs as current sources. In circuit d, Q_{2} must have a lower cutoff voltage, V_{GS} (off), and a lower zero gate-voltage drain current, I DSS, than Q_{1}.
- Circuits e, g, and k employ a source resistor, R_{S}, which may be selected to set the quiescent output voltage equal to zero.
- Circuits e and k use matched FETs. Rs is selected to set l_{D} near the specified low-drift operating current. The input-output offset is zero.

a

f

g

c

h

d

j

e

k

Figure 10. Virtually every practical source-follower configuration is represented in this collection of ten circuits. The configurations in the top row do not employ gate feedback; the corresponding ones in the bottom row do.

Biasing Without Feedback Is Simple

The no-feedback circuits of Figure 10 (circuits 10 (a) through 10(e) use simple biasing techniques (see the earlier article). Circuit 10(a) is a self-bias configuration; the voltage drop across R_{S} biases the gate (which draws essentially zero current) through resistor R_{G}. Since no gate-to-source voltage, $V_{G S}$, can be developed when $I_{D}=0$, the self-bias load line passes through the origin (Figure 11). The quiescent drain current is seen to lie between about 0.25 and 0.55 mA when a $1 \mathrm{k} \Omega$ source resistor is used. The quiescent output voltage lies between 0.25 and 0.55 V .

Figure 11. Self biasing (Figure 10a) uses the voltage dropped across the source resistor, R_{S} to bias the gate. The load line passes through the origin and has a slope of $-1 / R_{s}$.

Figure 12. Adding $\mathrm{aV}_{\text {SS }}$ supply to the self-bias circuit (Figure 10 b) allows it to handle large negative signals. The load line's intercept with the $V_{G S}$ axis is at $V_{G S}=V_{S S}$. Bias lines are shown for $V_{S S}=-15 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{SS}}=-1.6 \mathrm{~V}$.

Circuit 10(b) is another example of source-resistor biasing with a $-V_{\text {ss }}$ supply added. The advantage over circuit 10(a) is that the signal voltage can swing negative to approximately $-\mathrm{V}_{\mathrm{SS}}$. Two bias lines are shown in Figure 12, one for $\mathrm{V}_{\text {SS }}=-15 \mathrm{~V}$ and the other $V_{S S}=-1.6 \mathrm{~V}$. For the first case, the quiescent
output voltage lies between 0.18 and 0.74 V . For the second, it lies between 0.3 and 0.82 V .

The bias load line for circuit 10 (c) is just a horizontal line ($1 D=$ constant). The quiescent output voltage is between 0.15 and 0.7 for $I_{D}=0.3 \mathrm{~mA}$.

Circuit 10 (d) is similar to 10 (c) except that the $\mathrm{V}_{\mathrm{GS}}=$ 0 output characteristic of $F E T Q_{2}$ is used as a current source. As seen in Figure 13, Q_{2} does not supply constant current when its $V_{D S}$ gets very small. This technique should therefore be used only to bias FETs whose $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ is significantly higher than the equivalent V_{GS} (off) of the current-source FET diode.

Figure 13. $F E T Q_{2}$ doesn't behave like an ideal current source when its VDS gets very small (Figure 10d). Therefore, Q_{1} should have a significantly larger $V_{G S(o f f)}$ than the Q_{2} does.

Figure 14. This load line is set by $R_{s 2}$ and Q_{2} which acts as a current source (Figure 10e). This source follower, therefore, exhibits zero or near-zero offset. If the FETs are temperature-matched at the operating I_{D}, the source follower will exhibit zero or near-zero temperature drift.

A pair of matched FETs is used in the circuit of Figure 10(e), one as a source follower and the other as a current source. The operating drain current (I_{DQ}) is set by $R_{S 2}$, as indicated by the load line of Figure 14. The drain current may be anywhere from 0.2 to 0.42 mA , as shown by the limiting transfer characteristic intercepts; however, $\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{GS} 2}$ because the FETs are matched.

Figure 15. The bias load line is set by R_{S} but the output load line is determined by $R_{S}+R_{1}$ when gate feedback is employed (Figure 10f). The feedback $V_{F B}$ is determined by the intercept of the $R_{S}+R_{1}$ load line and the $V_{G s}$ axis.

Figure 16. R_{S} can be trimmed to provide zero offset at some point between 670Ω and $2.5 \mathrm{k} \Omega$ (Figure 10 g). The source load line intercepts the V_{GS} axis at $\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{GG}}=-15 \mathrm{~V}$. Note that this load line is not perfectly flat. It has a slope of $-1 / 50 \mathrm{k} \Omega$, because the current source is not perfect; it has a finite impedance.

Biasing With Feedback Increases $Z_{\text {IN }}$

Each of the feedback-type source followers (Figure $10(\mathrm{f})$ through $10(\mathrm{k})$ is biased by a method similar to that used with the nonfeedback circuit above it. However, in each case, R_{G} is returned to a point in the source circuit that provides almost unity feedback to the lower end of R_{G}. If R_{S} is chosen so that R_{G} is returned to zero dc volts (except in circuit 10(f), then the input/output offset is zero. R_{1} is usually much larger than R_{s}.

Circuit 10 (f) is useful principally for ac-coupled circuits. R_{S} is usually much less than R_{1} to provide near-unity feedback. The bias load line is set by R_{s} (Figure 15). The output load line, however is determined by the sum of $R_{S}+R_{1}$. The feedback voltage $V_{F B}$, measured at the junction of R_{S} and R_{1}, is determined by the intercept of the $R_{S}+R_{1}$ load line with
the V_{GS} axis. The quiescent output voltage is $\mathrm{V}_{\mathrm{FB}}-$ $V_{G S}$.

In the circuit of Figure $10(\mathrm{~g}), R_{s}$ can be trimmed to provide zero offset. As the curves show (Figure 16), R_{S} will be between 670Ω and $2.5 \mathrm{k} \Omega$. R_{S} is much less than R_{1}. The source load line intercepts the V_{GS} axis at $\mathrm{V}_{\mathrm{SS}}=-\mathrm{V}_{\mathrm{GG}}=-15 \mathrm{~V}$.

Circuit $10(\mathrm{~h})$ is almost the same as $10(\mathrm{~g})$; the difference is that resistor R_{1} is replaced by a current source. Since an ideal current source has infinite impedance, the bias curve of circuit $1(\mathrm{~h})$ differs from that of Figure $10(\mathrm{~g})$ (Figure 16) in that the load line is perfectly flat. In Figure 16 the load line is almost, but not quite, flat; it has a slope of $-1 / 50 \mathrm{k} \Omega$.

Circuit $10(\mathrm{j})$ is similar to $10(\mathrm{~h})$ except that the output is taken from the top of R_{S} to reduce the output impedance. R_{S} must be trimmed if the circuit is to work properly.

Figure 17. If R_{S} is not trimmed so that the load line passes through the origin, a voltage will appear at the gate causing a reduction in dc input impedance. The incremental input impedance will not be affected.

In Figure 17, the constant-current load line represents a 0.3 mA current source, and the effect of a $1 \mathrm{k} \Omega$ source resistor is shown. The offset voltage is seen to lie between 0.2 and 0.75 V . The intercept of the R_{S} load line and the $V_{G S}$ axis sets the voltage at the junction of R_{S} and the current source (N_{FB}). For $R_{S}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{FB}}$ will be between -0.1 V and 0.45 V . Since $V_{F B}$ appears at the gate, it must be zero if the dc input impedance of the circuit is to be preserved.

This can be done by trimming Rs, as shown dashed in Figure 17. The biasing then becomes the same as for circuit $10(\mathrm{~h})$.

Biasing for circuit $10(\mathrm{k})$ is identical to that for circuit 10(e) (Figure 14) except that feedback is added to raises the input impedance.

HIGH JFET GATE INPUT RESISTANCE SERVES WELL IF YOU CAN UTILIZE IT

Reprinted from EDN, Februar 1988 CAHNERS PUBLISH a Division of Reed Publishing USA

Many designers try to take advantage of high JFET input resistance, only to be disappointed with the results. Understanding the reasons for this characteristic can help you make the most of a useful JFET property.

One of the most widely known characteristics of JFETs - their high gate input resistance - is rarely specified on these devices' data sheets. But deriving this important parameter correctly from the information provided, and then applying it properly, are the keys to good JFET circuit design.

The sampling-probe circuit shown in Figure 1 is an example of a common JFET application. It utilizes as a source follower a 2N4868A n-channel device with a drain voltage of 30 V and a $1-\mathrm{mA}$ drain current. Because this probe must sample 10 V -rms signals on a high-impedance line and must not load the circuit under test, it must also exhibit a very high input resistance. Assuming the data sheet for the JFET used in the probe lists a $40-\mathrm{V}$ minimum breakdown voltage and a $250-\mathrm{pA}$ maximum $\mathrm{I}_{\text {GSS }}$, the probe circuit design does not provide the required high input resistance.

A MASTERY OF JFET CIRCUIT DESIGN BEGINS WITH THE DATA SHEET

To understand what's wrong with the circuit depicted in Figure 1 (and it isn't the JFET that's at fault), consider the roots of the problem. The JFET is used incorrectly here because of any or all of the following faults:

- An improperly characterized data sheet
- An improper interpretation of the data sheet
- A misunderstanding of why a JFET exhibits a high gate input resistance

You can't do much about the first fault except to make sure you know enough about these devices to recognize misleading data when you see it. For the most part, though, the latter two faults are the ones primarily responsible for incorrect JFET use.

If you design a circuit with at least $10 \mathrm{M} \Omega$ input resistance - such as the circuit in Figure 1 - and the JFET data sheet lacks an input-resistance specification, you can extract an indication of this important parameter from another specification: gate current, which is inversely proportional to gate input resistance. Thus, JFETs with a $1-\mathrm{mA}$ gate current provide an input resistance orders of magnitude lower than those with a $1-n A$ gate current.

Figure 1. This JFET-input probe is designed for failure.

However, unwary designers can also fall into the trap of using IGSS - gate current with the drain terminal shorted to the source - as an indicator of input resistance. But lass does not characterize the operating gate current - clearly, the JFET's high input resistance is not utilized with the drain shorted to the source. Some years ago, the commonly accepted design procedure specified gate current at about 1/2 IGSS for the desired drain-gate voltage. But this is a reasonable approximation only so long as the draingate voltage remains below the "IG breakpoint."

The way out of this dilemma is to recognize that I GSS represents nothing more than a measurement of reverse-bias diode current.

With source shorted to drain, the channel becomes a cathode and the gate becomes an anode, and their interaction can be considered to constitute a simple diode. in this dıode model, the reverse current typlcally stays small until it increases abruptly at some finite voltage - termed the reverse (avalanche) breakdown voltage - because of a process called avalanche multiplication.

Reverse current itself originates principally from the thermal generation of electron/hole pairs within the JFET's junction space-charge region. Avalanche multiplication then occurs when an electron within this space-charge region develops so much energy, through increasing acceleration and subsequent collisions, that other electron/hole pairs are created, resulting in rapidly increasing reverse current and rapidly decreasing gate input resistance.

JFETs Act Differently In A Circuit

An operating JFET differs from the preceding diode model because its drain is not shorted to the source and some finite drain current passes through the channel. Designers, furthermore, often overlook this drain current's effects upon gate current.

Illustrating the drain-current effect, Figure 2 shows that gate current $\left(I_{G}\right)$ increases linearly with drain current when the drain-gate voltage exceeds the I_{G} breakpoint; it also indicates that I_{G} increases exponentially with the drain-gate voltage ($V_{D G}$). (Raising the $V_{D G}$ level increases impact ionization, thus increasing gate current.)

Replotting Figure 2 as Figure 3, this time using draingate voltage as the primary variable, exposes the critical relationship between these two parameters. The tremendous difference between the I_{G} curves and the superimposed lass characteristic reveals the folly of using $I_{\text {GSS }}$ values above the I_{G} breakpoint to determine gate input resistance.

Figure 2. Gate current is a linear function of drain current in the 2 N 4868 JFET .

Figure 3. A plot of gate current versus drain gate voltage for the 2 N4868 JFET shows why you can't use lass values above the breakpoint to determine gate input resistance.

Yet another plot of the same JFET data yields additional information. Figure 4 shows a comparison of two ratios: gate current to drain current (I_{G} / I_{D}) versus drain-gate voltage to drain-gate breakdown voltage ($V_{D G} / B V_{D G O}$). Figure 2 provides data for the current ratio and Figure 3 furnishes voltage figures, with the drain-gate breakdown voltage established at the 57 VIGSS breakpoint.)

Figure 4. Normalized gate-current (leakage) variations depend upon drain-gate voltage, plotted here for n - and p -channel JFETs.

While Figure 4 illustrates the dependence of currentratio (leakage) characteristics on drain-gate voltage, it also simultaneously shows this parameter's independence from the type of n-channel JFET - fabrication technique employed. Curve A represents ratios from both a short-channel JFET and a long-channel, high-frequency JFET.

The problem of gate-leakage dependence on draingate voltage, however, is a characteristic principally of n-channel devices. The p-channel JFET (represented by curve B in Figure 4) exhibits a response
similar to that of the n-channel device, but because of this device's lower mobility and the resulting lower impact ionization, the p-channel curve is pushed out to a higher voltage and, therefore, presents less of a problem.

The Data Sheet's To Blame

Although high gate input resistance is important in many applications including differential and operational amplifiers (as well as in the probe example here), the spec sheets for many JFETs offer no hint of operating gate current.

If you have an application requiring high input resistance, you are thus confronted with something of a problem. If you don't care to tediously characterize selected JFETs yourself, you can only hope that the vendor has overridden the JEDEC format in its catalog and has included operating-gate-current figures. Alternatively, the vendor might offer a graphical presentation of gate-current data as in Figure 3. How ever this information is presented, be aware that the operating gate-current characteristic for a particular JFET type can vary among manufacturers. Thus, if you change vendors - watch out.

Referring back to the example presented at the beginning of this article, you should understand by now why the probe doesn't perform as expected. The drain-gate voltage is a combination of the $+30-\mathrm{V}$ bias supply and the peak negative potential of the $10-V_{\text {RMS }}$ signal appearing at the gate. The gate current, therefore, peaks to nearly $1 \mu \mathrm{~A}$, and the input resistance falls short of the levels it could attain.

If you want to remedy this problem, one solution is to lower the bias voltage from +30 V to +20 V , thereby increasing the probe's input resistance to an acceptable level. You could, however, choose a better solution that permits high drain voltages and appreciable gate potentials without losing the JFET's unique high gate input resistance by using a cascade circuit similar to the one shown in Figure 5b. In this arrangement, the input JFET's drain potential remains low because of its interaction with the piggyback JFET. Figure 6 compares the gate currents (and thus the input-resistance performance) of the two circuits depicted in Figure 5 and demonstrates the advantage of the dual-JFET configuration.

Figure 5. A single-JFET circuit (a) offers simplicity, but it might not provide the high input resistance you want. A cascode dual-JFET alternative (b) solves the input-resistance problem.

Figure 6. A plot of gate current for both circuits in Figure 5 reveals that the dual-JFET one maintains its low gate current over a much wider operating-voltage range.

AUDIO-FREQUENCY NOISE CHARACTERISTICS OF JUNCTION FETS

INTRODUCTION

The purpose of this application note is to identify and characterize audio frequency noise in junction fieldeffect transistors (JFETs). Emphasis is placed on basic device characteristics rather than on end applications, since it is important for the circuit designer to know the salient noise behavior of the JFET and how those characteristics may be specified by production-oriented test parameters.

Defining the FET Noise Figure

For analysis, it is convenient to represent noise in a FET by assuming that an ideal noise-free device has two external noise sources, \bar{e}_{n} and \bar{i}_{n}. These noise sources are chosen to have the same output as an actually noisy FET. An equivalent circuit is shown in Figure 1.

Figure 1. Representing Noise in an Ideal FET

A noise factor (F) is a Figure of Merit of a device with respect to the resistance of a generator. To calculate a noise factor, a source resistor, R_{G}, with a thermal noise voltage, $\overline{\mathrm{e}}_{\mathrm{T}}$, is added to the circuit.

A noise factor (F) may be defined as

Bruce Watson

$$
\begin{aligned}
& F= \frac{\text { Total available output noise power }}{\text { Noise power at output due to thermal noise of } \mathrm{R}_{\mathrm{G}}} \\
& \text { or } \\
& \mathrm{F}= \frac{\text { Noise power output due to } \mathrm{R}_{\mathrm{G}}+\text { noise power }}{} \\
& \text { or } \\
& \mathrm{Folse} \text { power output due to } \mathrm{R}_{\mathrm{G}} \\
& \mathrm{~F}= 1+\frac{\text { Noise power output due to } \mathrm{FET}}{\text { Noise power output due to } \mathrm{R}_{\mathrm{G}}} \\
& \mathrm{~F}= 1+\frac{\text { Gain } \mathrm{X} \text { noise power of } \mathrm{FET} \text { referred to input }}{\text { Gain } X \text { noise power due to } R_{\mathrm{G}}} \\
& \mathrm{~F}= 1+\frac{\text { Noise power of FET referred to input }}{\text { Noise power due to } R_{\mathrm{G}}}
\end{aligned}
$$

The thermal noise voltage across R_{G} is
$\overline{\mathrm{e}}_{\mathrm{T}}=\sqrt{4 \mathrm{KTR}} \mathrm{G}_{\mathrm{B}} \mathrm{B}$
where $\mathrm{k}=1.380 \times 10^{-23}$ Joules $/{ }^{\circ} \mathrm{K}$ (Boltzmann's Constant), $\mathrm{T}=$ temperature in ${ }^{\circ} \mathrm{K}$, and $\mathrm{B}=$ bandwidth in Hz . Therefore, noise power due to R_{G} is
$\frac{\bar{e}_{T}{ }^{2}}{R_{G}}=\frac{4 k T R_{G} B}{R_{G}}=4 \mathrm{kTB}$

The noise power of the FET referred to the input is
$\frac{\bar{e}_{n}{ }^{2}}{R_{G}}+\bar{i}_{n}{ }^{2} \cdot R_{G}$

When expressions for the noise power of both the FET and R_{G} are substituted, the noise factor becomes

$$
\begin{equation*}
F=1+\frac{\bar{e}_{n}^{2}+\bar{i}_{n}^{2} R_{G}^{2}}{4 k T R_{G} B} \tag{4}
\end{equation*}
$$

A noise figure ($N F$) expressed in $d B$ indicates the presence of added noise power from the FET or another active device. The noise figure is always given with reference to a standard, specifically the generator resistance R_{G} :
$N F=10 \log _{10}[F]$
The noise figure of the FET is
$N F=10 \log _{10}\left[1+\frac{\bar{e}_{n}{ }^{2}+\bar{i}_{n}{ }^{2} R_{G}^{2}}{4 K_{G} R_{G} B}\right] d B$
When junction FET noise is expressed in terms of the noise figure (NF), an inherent disadvantage arises because the noise figure value is dependent upon the value of the generator resistance, R_{G}. Therefore, the $\bar{e}_{\mathrm{n}}, \overline{\mathrm{i}}_{\mathrm{n}}$ method remains as the best way to quantitatively express the noise characteristics of the FET.

Describing Junction FET Noise Characteristics

Junction FET \bar{e}_{n} and \bar{i}_{n} characteristics are fre-quency-dependent within the audio noise spectrum and take the form as shown in Figure 2.
\bar{e}_{n}, the equivalent short circuit input noise voltage (with the exception of the $1 / f \mathrm{f}$ region), is defined as
$\bar{e}_{\mathrm{n}}=\sqrt{4 k \operatorname{TR}_{N} B}$
where $R_{N} \approx 0.67 / g_{\mathrm{fs}}$, the equivalent resistance for noise. The \bar{e}_{n}, except in the $1 / f \mathrm{n}$ region, closely approximates the equivalent thermal noise voltage of the channel resistance.

In the so-called $1 / f^{n}$ region, \bar{e}_{n} is expressed as

$$
\begin{equation*}
\bar{e}_{n}=\sqrt{4 k \operatorname{TR}_{N} B\left(1+f_{1} / f^{n}\right)} \tag{8}
\end{equation*}
$$

where n varies between 1 and 2 and is device- and lot-oriented.

The characteristic bulge in \bar{e}_{n} in the $1 / f \mathrm{n}$ region has been observed to some extent in all junction FETs submitted for testing. The breakpoint or corner frequency shown as f_{1} in Figure 2 is lot- and device design-oriented, and varies from about 100 Hz to 1 kHz .

As indicated in Equations (7) and (8), $\overline{\mathrm{e}}_{\mathrm{n}}$ is inversely proportional to the square root of the transconductance of the FET ($\bar{e}_{n} \propto 1 / \sqrt{g_{f s}}$). \bar{e}_{n} can be lowered by a factor of $1 / \sqrt{N}$ if N devices with matched electrical characteristics are connected in parallel. For example, when
$N=2$
let
$\overline{\mathrm{e}}_{\mathrm{n} 1}=\overline{\mathrm{e}}_{\mathrm{n} 2}$
and let
$g_{f s 1}=g_{f s 2}$
Thus,
g_{fs} TOTAL $=2 \mathrm{~g}_{\mathrm{fs} 1}$ or $2 \mathrm{~g}_{\mathrm{fs} 2}$
From equation (7)
$\bar{e}_{\mathrm{n} 1}=\sqrt{4 \mathrm{kT}\left(0.67 / \mathrm{g}_{\mathrm{fs} 1}\right) \mathrm{B}}$

Figure 2. Characteristics of Junction FET Noise
and
\bar{e}_{n} TOTAL $=\sqrt{4 \mathrm{kT}\left(0.67 / 2 \mathrm{~g}_{\mathrm{fs} 1}\right) \mathrm{B}}$
Thus,
\bar{e}_{n} TOTAL $=\sqrt{2} \quad \bar{e}_{n 1}$

A second way to achieve low \bar{e}_{n} is to use a device with a large gate area. Empirically, $\overline{\mathrm{e}}_{\mathrm{n}}$ is inversely proportional to the square of the gate area ($\bar{e}_{n} \alpha$ $1 / A_{G}{ }^{2}$), independent of $g_{f s}$. This large gate area philosophy has been followed in the design of the Siliconix 2N4867A FET, and noise performance of the device is discussed later in this application note. A major advnatage of this design is that $\overline{\mathrm{e}}_{\mathrm{n}}$ is significantly lowered and \bar{i}_{n} also remains at a low value.

The equivalent open-circuit input noise current, \bar{i}_{n}, with the exception of the shot noise region shown in Figure 2, is due to thermally-generated reverse current in the gate channel junction. It is defined as
$\bar{i}_{n}=\sqrt{2 q I_{G B}}$
where $\mathrm{q}=1.602 \times 10^{-19}$ coulomb (the magnitude of the electron charge), I_{G} is the measured dc operating gate current in amperes, and B is bandwidth in Hz . The expression is accurate only when the measured gate current is the result of bulk device conductance. It is possible for the measured gate current to be due to conductance stemming from contamination across the leads of the semiconductor package.

At higher frequencies, as in the shot noise region shown in Figure 2, \bar{i}_{n} can be approximated as being equal to the Nyquist thermal noise current generated by a resistor:
$\bar{i}_{n}=\sqrt{\frac{4 k T B}{R_{p}}}$
where R_{p} is the real part of the gate-to-source input impedance. The breakpoint or corner frequency f_{2} in Figure 2 is lot- and device design-oriented and can vary from 5 kHz to 50 kHz .

Another form of noise found in junction FETs is known as "popcorn" or burst noise; the term popcorn noise
was originated in the hearing aid industry because of noise or level shifts which are present in input stages, and which resemble the sound of corn popping.

Popcorn noise is a form of random burst input noise current which remains at the same amplitude and which is confined to frequencies of 10 Hz or lower. The suitability of a FET device is dependent on the amplitude of the burst, its duration, and its repetition rate. The origins of popcorn noise are not completely identified, but are believed to be caused by intermittent contact in aluminum-silicon interfaces and by contamination in the oxidatin processes.

A test circuit to measure popcorn noise in differential junction FET amplifiers is shown in Figure 3. In practice, popcorn noise is evaluated on an engineering basis, not on a production-line basis. No correlation between $1 / f^{n}$ noise at 10 Hz and popcorn noise has yet been found in junction FETs. However, if the amplitude of the burst is large and occurs frequently, then $1 / f \mathrm{n}$ noise voltage ($\overline{\mathrm{e}}_{\mathrm{n}}$) is masked and difficult to evaluate at 10 Hz .

Figure 3. Test Circult to Measure Popcorn Noise

The graph in Figure 4 shows "moderate" burst noise observed in a group of junction FET differential amplifiers which were measured in the test circuit.

Figure 4. Popcorn Noise in Differential Amplifiers

Operating Point Considerations

Unlike bipolar transistors, where \bar{e}_{n} and \bar{i}_{n} characteristics vary directly with changes in the collector current (IC), similar characteristics in junction FETs will vary only slightly as drain current (I_{D}) is varied. This is true as long as the FET is biased so that the drain-source voltage is greater than the pinch-off voltage ($V_{D S}>V_{p}$ or $V_{G S}($ off $)$).

The \bar{e}_{n} in junction FETs will be lowest when the devices are operated at $V_{G S}=0\left(I_{D}=I_{D S S}\right)$, where transconductance $\left(g_{f s}\right)$ is at its highest value. This will be true only if device dissipation is maintained very low in relation to the total dissipation capability of the FET.

The curves shown in Figure 5 illustrate changes in $\overline{\mathrm{e}}_{\mathrm{n}}$ as the operating drain current (l_{D}) is varied. Note that the lowest \bar{e}_{n} did not occur at $\mathrm{V}_{\mathrm{GS}}=0$ because of high power dissipation and a resultant rise in junction temperature at the operating point.

The optimum (lowest) \bar{i}_{n} in depletion-mode junction FETs should occur at $V_{G S}=0\left(I_{D}=I_{D S S}\right)$. In practice, very little change will be seen in I_{D} when the operat-
ing point is changed, provided that the drain-gate voltage is maintained below the gate current (I_{G}) breakpoint and power dissipation is kept at a low level. The curves shown in Figure 6 illustrate \bar{i}_{n} characteristics as a function of drain-gate voltage at points below, on, and above the I_{G} breakpoint voltage.

Figure 5. \bar{e}_{n} Changes vs. I_{D} Variations

Figure 6. Characteristics as Function of brain-Gate Voltage
In circuit design, particular attention must be paid to drain-gate voltage (V_{DG}) to minimize gate current $\left(I_{G}\right)$ under operating conditions. The critical draingate voltage (I_{G} breakpoint voltage) can be anywhere from 8 to 40 V , depending on device design. Gate operating current $\left(I_{\mathrm{G}}\right)$ should not be considered equal to gate reverse current (IGSS) in linear amplifier applications. I GSS is only an indication of reversebiased junction leakage under non-operating conditions. The curves shown in Figures 7 and 8 reveal how the I_{G} breakpoint is related to basic device design. Device designs with a high $g_{f s} / C_{\text {iss }}$ ratio have low breakpoint voltages, typically at $\mathrm{V}_{\text {DSG }}=$ 10 V ; whereas, high μ devices ($\mu=\mathrm{r}_{\mathrm{ds}} \cdot \mathrm{g}_{\mathrm{fs}}$) have much higher I_{G} breakpoints, typically $V_{D G}=20-$ 30 V .

Characteristics of $\overline{\mathrm{e}}_{\mathrm{n}}$ and T_{n} at Low Temperature

Three equations presented earlier [(7), (16) and (17)] show that $\overline{\mathrm{e}}_{\mathrm{n}}$ and $\overline{\mathrm{i}}_{\mathrm{n}}$ are temperature dependent. \bar{e}_{n} and $\overline{\mathrm{i}}_{\mathrm{n}}$ are proportional to $\sqrt{\mathrm{T}}$, and both will be reduced if the temperature is lowered. In Equation (16), \bar{i}_{n} is proportional to $\sqrt{I_{G}}$; l_{G} will halve for each temperature drop of 10 to $11{ }^{\circ} \mathrm{C}$. \bar{e}_{n} is also proportional to $\sqrt{R_{N}}$, where $R_{N} \approx 0.67 / g_{f s}$. Thus when $g_{f s}$ is increased, which is typical of junction FETs operating at low temperature, $\overline{\mathrm{e}}_{\mathrm{n}}$ will also become lower.

In Figure 9, g_{fs} has been plotted vs. temperature for silicon junction FETs, and the low temperature limitation caused by a drop-off in g_{fs} is clearly shown.

Figure 7. Gate Operating Current vs. Drain-Gate Voltage

Figure 8. Gate Current vs. Drain-Gate Voltage

Figure 9. $\quad g_{f s}$ vs. Temperture

LPD-5

In connection with the plot of $g_{\text {fs }}$ vs. temperature, note that the relationship can vary from approximately 0.2% to 1% per ${ }^{\circ} \mathrm{C}$. The g_{fs} slope depends upon the basic design of the FET and upon the proximity of the drain current operating point to $I_{D Z}$, the zero temperature coefficient point.

The major application of junction FETs at low temperature is in charge-sensitive amplifiers. For best performance in this type of application, a high $\mathrm{g}_{\text {fs }} / \mathrm{C}_{\text {iss }}$ ratio is required. Recommended Siliconix FET types for such applications are the 2N4416 and the U310.

Test Measurements

By definition, \bar{e}_{n} and \bar{i}_{n} are referred to the input of the device under test. To measure \bar{e}_{n}, the test circuit shown in Figure 10 will prove useful.

The following procedure should be used to make the \bar{e}_{n} test:

1. Set the tunable filter to the required f low and $f_{\text {high }}$. Adjust the oscillator to the mean center frequency $\left[f_{\text {mean }}=\left(f_{\text {low }} \bullet f_{\text {high }}\right)^{1 / 2}\right.$].
2. Set Vosc to 100 mV with Switch 1 in position (1).

Computer $\mathrm{V}_{\mathrm{in} 1}=10^{-1} \times \frac{10^{2}}{16^{6}}=10^{-5} \mathrm{~V}=10 \mu \mathrm{~V}$.
3. Measure Vout1. Compute overall gain as

$$
A_{V}=\frac{V_{\text {OUT } 1}}{V_{\text {in } 1}}=\frac{V_{\text {OUT1 }}}{10 \mu \mathrm{~V}}
$$

4. Set Switch 1 to position (2) and measure VOUT2. Compute $\mathrm{Vin2}$, the equivalent short-circuit input noise voltage (\bar{e}_{n}), using $A v$ from Step 3.
$V_{\mathrm{in} 2}=\frac{V_{\text {OUT2 }}}{A v}=\bar{e}_{\mathrm{n}}$ in volts over bandband $f_{\text {low }}$ to $f_{\text {high }}$.

An alternate method of performing the above test uses a Quan-Tech Transistor Noise Analyzer consisting of a Model 2173 Control Unit and a Model 2181 Filter. The analyzer has provision for measuring \bar{e}_{n} and determining NF with various values of R_{G} in FET and bipolar devices with selectable test conditions. The measuring system has a constant gain of 10,000 . The analyzer records output noise at selected frequencies between 10 Hz and 100 kHz in the device under test, with the scale shown as the actual output divided by 10,000 . This is then the output noise referred to the input. The equivalent bandwidth for testing is 1 Hz .

There are certain instances where the test circuit or the Transistor Noise Analyzer are not adequate to measure $\overline{\mathrm{e}}_{\mathrm{n}}$ at certain frequencies over certain bandwidths in the $1 / \mathrm{f} \mathrm{n}$ region. The RMS noise over a bandwidth from $f_{\text {low }}$ to $f_{\text {high, }}$ where there is a $1 / f \mathrm{n}$ characteristic over the entire range, can be computed as

Figure 10. Test Circuit to Measure $\overline{\mathbf{e}}_{\mathrm{n}}$

Figure 11. Computing rms Noise Over a Bandwidth

Figure 11 represents this equation graphically. For example, \bar{e}_{n} known $=70 \times 10^{-9} \mathrm{~V} / \sqrt{\mathrm{Hz}}$ at 10 Hz . How much noise is in the band from 4.5 to 5.5 Hz ? The noise has a $1 / f^{1}$ characteristic over the entire range. Thus
$\bar{e}_{n}=\left[70 \times 10^{-9}\right] \cdot\left[10 \cdot \ln \left(\frac{5.5}{4.5}\right)\right]^{1 / 2}$ Volts
or
$\bar{e}_{n}=99.16 \times 10^{-9} \mathrm{~V} / \sqrt{\mathrm{Hz}} @ 4.975 \mathrm{~Hz}$,
4.975 Hz is the mean center frequency where $\mathrm{f}_{\text {mean }}$ $=\left(f_{\text {low }} \bullet f_{\text {high }}\right)^{1 / 2}$.
\bar{i}_{n} measurements are difficult to implement at best. At frequencies below f_{2} in Figure $2, \bar{i}_{n}$ is assumed to have a constant level or "white" noise characteristic which may be correlated to gate current, I_{G}. From Equation (16) I_{G} is established as the measured bulk gate current. Because measured gate current $\left(I_{G}\right)$ is the result of all conductances at the gate, the resulting gate current and the computed \bar{i}_{n} due to bulk material can be assumed to be this value or less.

The total equivalent input noise of the FET can be approximated by
$\bar{e}_{n i}{ }^{2}=\bar{e}_{T}{ }^{2}+\bar{e}_{n}{ }^{2}+\bar{i}_{n}{ }^{2} \cdot R_{G}{ }^{2}$
where $\overline{\mathrm{e}}_{\mathrm{T}}{ }^{2}$ is the thermal noise of the generator resistance R_{G} and $\bar{e}_{n i}{ }^{2}$ is the total noise referred to the input. This approximation assumes that the equivalent noise voltage and the current generators vary
independently. Equation (21) implies that $\overline{\mathrm{i}} \mathrm{n}^{2}$ can be calculated if $\overline{\mathrm{e}}_{\mathrm{T}}{ }^{2}$ and total noise $\overline{\mathrm{e}}_{\mathrm{nl}}{ }^{2}$ are known. The difficulty here is that in MOS or junction FETs, the R_{G} must be very large to detect the anticipated small value of \bar{i}_{n}. However, when R_{G} is very large, $\bar{e}_{T}{ }^{2}$ is much greater than $\overline{\mathrm{i}}_{\mathrm{n}}{ }^{2} \cdot \mathrm{R}_{\mathrm{G}}{ }^{2}$. For example, over a $1-\mathrm{Hz}$ bandwidth at $25^{\circ} \mathrm{C}$, if R_{G} is equal to $100 \mathrm{M} \Omega$, then

$$
\begin{align*}
\overline{\mathrm{e}}_{\mathrm{T}}{ }^{2} & =4 \mathrm{kTRG} \\
& =4 \times 1.38 \times 10^{-23} \times 2.95 \times 10^{2} \times 10^{8} \\
& =1.63 \times 10^{-12} \mathrm{~V} / \sqrt{\mathrm{Hz}} . \tag{22}
\end{align*}
$$

Anticipated \bar{i}_{n} is
$\bar{i}_{n} \approx 10^{-15}$ Amperes $/ \sqrt{\mathrm{Hz}}$
and
$\overline{\mathrm{I}}_{\mathrm{n}}{ }^{2}=10^{-30}$ Amperes $/ \sqrt{\mathrm{Hz}}$.
Thus
$\bar{i}_{n}{ }^{2} \cdot R_{G}{ }^{2}=10^{-30} \cdot 10^{16}=10^{-14} \mathrm{~V} / \sqrt{\mathrm{Hz}}$.
Therefore, $\bar{i}_{n}{ }^{2} \cdot R_{G}{ }^{2}$ is much less than $\overline{\mathrm{e}}^{2}{ }^{2}$, which renders this method of finding \bar{i}_{n} impractical for most common MOSFETs or junction FETs.

An improved method of measuring $\bar{i}_{n}{ }^{2}$ is to substitute a low-loss mica capacitor for resistor R_{G}. The mica capacitor by definition does not have equivalent thermal noise voltage and, thus, Equation (21) becomes
$\bar{e}_{n i}{ }^{2}=\bar{e}_{n}{ }^{2}+\bar{i}_{n}{ }^{2} \cdot X_{C}{ }^{2}$
(where $X_{C}=$ capacitive reactance)
or
$\bar{i}_{n}=\frac{\left(\bar{e}_{n i}^{2}-\bar{e}_{n}^{2}\right)^{1 / 2}}{X_{C}}$

When a $10-\mathrm{pF}$ mica capacitor was used in the evauluation circuit (up to a frequency of 100 Hz), a correlation of from 80 to 90% was obtained when compared to $\bar{i}^{n}{ }^{2}$ computed from measured gate current readings. At frequencies above 100 Hz , direct computation of \bar{i}_{n} via the capacitor method becomes unwieldy because of the rapid decrease in capacitor reactance at these frequencies.

Figure 12. Low-Frequency Limit for Calculated \bar{i}_{n}

Figure 13. Extrapolated \bar{i}_{n} vs. Frequency

In calculating \bar{i}_{n} at higher frequencies, an alternate method is to measure (R_{p}) the real part of the gatesource impedance of the FET. When R_{p} is measured at various frequencies, the equivalent short-circuit input noise current (\bar{i}) can be computed as a function of frequency (see Equation (17). A convenient instrument to measure R_{p} is the Hewlett-Packard Type

250A $R \times$ meter or equivalent. The 250A Rx meter can measure R_{p} accurately up to $200 \mathrm{k} \Omega$. As is shown in Figure 12, this establishes the low-frequency limit of 20 MHz for $\overline{\mathrm{i}}_{\mathrm{n}}$ computed via direct measurement of R_{p} for the Siliconix FETs 2N4117A. For frequencies between 100 Hz and 20 MHz , ìn must be extrapolated, as shown in Figure 12 and 13. For FET types with lower R_{p} (such as the Siliconix 2 N 4393) $\overline{\mathrm{I}}_{\mathrm{n}}$ can be computed down to 2 MHz , and, hence, extrapolating \bar{i}_{n} between 100 Hz and 100 kHz is more accurate.

The curves shown in Figure 14 are representative \bar{e}_{n}, $\bar{i} \mathrm{n}$ curves for Siliconix JFET products. Of particular importance is the geometry which by its design governs the basic noise characteristics of product types derived from it.

CONCLUSION

Contemporary junction FETs have noise voltages (\bar{e}_{n}) equal to those found in low-noise bipolar transistors. Each type of device has a different operating mechanism: the FET is voltage-actuated, while the bipolar transistor is current-actuated. Hence, FETs have an inherently lower noise current ($\overline{\mathrm{i}} \mathrm{n}$) and are preferred over bipolar devices in most audio-frequency applications where low-noise performance is a design requirement.

When bias points are properly selected, as described in this application note, the excellent low-noise characteristics of high $g_{f s}$ junction $F E T S$ can be realized.

The process geometry of the basic FET design of the FET governs the noise characteristics of product types derived from it. Readers are invited to refer to the Siliconix FET catalog for full geometry performance data and for specific part numbers stemming from the generic process geometries.

The measurement section of this application note showed that direct \bar{e}_{n} measurements can readily be made. ín can be guaranteed at frequencies below 100 Hz by measuring the dc operating gate current (I_{G}. When I_{G} is known, i_{n} can be extrapolated from frequencies below 100 Hz to predict noise performance at frequencies to 100 kHz .

Figure 14. Noise Characteristics by Geometry

JFETS FOR VIDEO AMPLIFIERS

INTRODUCTION

The field-effect transistor lends itself well to video amplifier applications. Gain bandwidth products in excess of 250 MHz may be easily achieved using simple one- or two-transistor circuits. DC input resistances in the tens of $M \Omega$ range may also be easily achieved while input capacitances may be significantly reduced to less than 1 pF by well-known circuit techniques. Video amplifiers have applications in communications and pulse amplifying circuits and normally operate up to 100 MHz .

Behavior of JFET Input Resistance

A prime JFET parameter, input impedance, has a large effect in determining the frequency response of a JFET video amplifier. It is not a simple RC network, but one in which the real and imaginary parts are a function of frequency.

The voltage generator source resistance R_{G} and the JFET input impedance $Z_{\text {IN }}$ form a frequency sensitive attenuation network. The larger the R_{G}, the worse will be the frequency response and vice versa. Examining this in greater detail, consider the input equivalent circuit of a JFET connected in the common source configuration,
where

$R_{\text {gs }}$ and $R_{\text {gd }}$	$=$ bulk series gate resistance
$C_{\text {gs }}$ and $C_{\text {gd }}$	$=$ bulk series gate capacitance
$g_{\text {oss }}$	$=$ output conductance

Figure 1.

For this analysis the gate source leakage resistance has been ignored due to its high value. Redrawing the input equivalent circuit as a simple parallel resis-tance-capacitance combination results in

Figure 2.
where

$$
\begin{align*}
& G_{1}=\operatorname{Re}\left|Y_{i n}\right| \\
& =\frac{\omega^{2}\left[T_{1} C_{1}\left(1+\omega^{2} T_{2}{ }^{2}\right)+T_{2} C_{2}\left(1+\omega^{2} T_{1}{ }^{2}\right)\right]}{1-\left(\omega^{2} T_{1} T_{2}\right)^{2}+\omega^{2}\left(T_{1}{ }^{2}+T_{2}{ }^{2}\right)} \tag{1}
\end{align*}
$$

and

$$
B_{1}=I_{m}\left|Y_{i n}\right|
$$

$$
\begin{equation*}
=\frac{\omega\left[C_{1}\left(1+\omega^{2} T_{2}^{2}\right)+C_{2}\left(1+\omega^{2} T_{1}^{2}\right)\right]}{1-\left(\omega^{2} T_{1} T_{2}\right)^{2}+\omega^{2}\left(T_{1}^{2}+T_{2}^{2}\right)} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& T_{1}=C_{g d} R_{g d} \tag{3}\\
& T_{1}=C_{g s} R_{g s}
\end{align*}
$$

The input resistance varies inversely with the square of the frequency (see Figures 3 and 4), while the input reactance is inversely proportional to the frequency (see Figure 3).

In common-source circuits, $/ / \mathrm{G}_{1}$ will typical fall to $<2 \mathrm{k} \Omega$ at 100 MHz while C_{1} remains substantially constant at least up to 1000 MHz . Figures 3 and 4 exhibit these relationships.

Figure 3

a.

b.

Figure 4

To maintain low input capacitance and, thus, a high input impedance over a wide frequency range, feedback may be applied to most circuits. Such techniques are explored in "JFET and Bipolar Cascade" section of this application note. The effect of R_{G} on the frequency response is shown in Figures 6, 9, 11, and 13 where various amplifier configurations are investigated.

Circuits to Consider

The following five video amplifier circuits are considered.

1. Common-Source Configuration

2 Shunt-Peaked Common-Source Configuration
3. Source Follower

4 Cascode Amplifier
5. JFET and Bipolar Cascade

Common-Source Circuit

The circuit shown in Figure 5 features high input impedance and high voltage gain. The drain resistor is set at 560Ω to maintain good bandwidth which, with $50-\Omega$ generator impedance, is determined primarily by the drain load components. These are:
$R_{D}=560 \Omega$
$C_{T}=C_{g d}+C_{D}+C_{S}$
$\mathrm{C}_{\mathrm{gd}}=2.0 \mathrm{pF}, \mathrm{C}_{\mathrm{D}}$ the VTVM probe, 2.0 pF , and C_{S} is circuit stray capacitance of 3 pF .
$C_{T}=2+2+3=7 \mathrm{pF}$

The $3-\mathrm{dB}$ frequency ω_{3} is given by
$\omega_{3}=\frac{1}{C_{T} R_{D}}$

$$
\begin{equation*}
=\frac{1}{7 \times 10^{-12} \times 560} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{3}=255 \times 10^{6} \tag{9}
\end{equation*}
$$

$\mathrm{f}_{3}=39 \mathrm{MHz}$

Figure 5
The low frequency voltage gain for this configuration is given by:
$A_{V}=\frac{g_{f s} R_{D}}{1+g_{f s} R_{S}}$
$A_{V}=4.9$
where
$\mathrm{g}_{\mathrm{fs}}=15 \mathrm{mV}$ when
$I_{D}=12 \mathrm{~mA}$, the quiescent current
$R_{D}=560 \Omega$
$R_{D}=47 \Omega$

Figure 6

Measured Performance

Figure 6 shows the frequency response of the circuit. The low-frequency gain was measured at 4.5 and the $3-\mathrm{dB}$ bandwidth at 44 MHz giving a gain bandwidth product of 197 MHz . This compares with a calculated gain bandwidth of 191 MHz .

Effect of Increasing Generator Impedance

If the generator resistance R_{G} is increased to $1 \mathrm{k} \Omega$, the input time constant of the JFET is increased. The bandwidth of the amplifier is now determined primarily by the input time constant which consists of generator impedance $\left(R_{G}=1 \mathrm{k} \Omega\right)$ shunted by $C_{\text {in }}$ (see Figure 7).

Figure 7
where
$C_{\text {in }}=\left(1+\frac{g_{f s} R_{D}}{1+g_{f s} R_{S}}\right) C_{g d}+\left(1-\frac{g_{f s} R_{S}}{1+g_{f s} R_{S}}\right) C_{g s}+$ Strays
$=(5.9 \times 3.5)+(0.6 \times 10)+3$.
$C_{\text {in }}=30 \mathrm{pF}$
where
$C_{g d}=3.5 \mathrm{pF}$
$C_{g s}=10 \mathrm{pF}$
The corresponding $3-\mathrm{dB}$ frequency is given by:

$$
\begin{align*}
\omega_{3} & =\frac{1}{\mathrm{C}_{\text {in }} \mathrm{R}_{\mathrm{G}}} \tag{19}\\
& =\frac{1}{30 \times 10_{-12} \times 10^{3}}=\frac{10^{9}}{30} \tag{20}
\end{align*}
$$

$\mathrm{f}_{3}=5.3 \mathrm{MHz}$
which agrees closely with the measured bandwidth shown in Figure 6.

Shunt-Peaked Common-Source Circuit

The frequency response of the resistance-loaded common-source circuit may be significantly extended by shunt peaking at the gate and/or drain. First, consider the gate circuit. Here an inductor may be connected in shunt with the gate and set to such a value that it forms a tuned circuit with the JFET input capacitance. The frequency of resonance is determined by
$f_{o}=\frac{1}{2 \pi \sqrt{L C_{i n}}}$
where
$C_{\text {in }}=C_{\text {iss }}+C_{\text {Stray }}+C_{\text {miller }}$

The response of an input signal of frequency f_{o} will then be boosted to an extent depending on the loaded Q of the tuned circuit; the loaded Q, in turn is dependent on the unloaded Q of inductor L, R_{G}, and the JFET input resistance.

Next, consider shunt peaking in the drain circuit. In Figure 8 the inductor L is set to such a value that a low Q tuned circuit is formed; the resonating capacitance C is the parallel combination of $C_{\text {gd }}$ plus stray and load capacitances. For a flat response, the LC circuit is tuned to the $3-\mathrm{dB}$ frequency of the resistance loaded circuit of Figure 5. (See Appendix.)

Figure 8
$L=\frac{R_{D}{ }^{2} C}{2}$, and for the cicuit in Figure 8.

$$
\begin{equation*}
=0.78 \mu \mathrm{H} \tag{25}
\end{equation*}
$$

where

$$
\begin{align*}
& R_{D}=560 \Omega \tag{26}\\
& C=C_{g d}+C_{\text {Stray }}+C_{V T V M ~ P R O B E ~} \tag{27}\\
& C=1.2+1.3+2.5=5 \mathrm{PF} \tag{28}
\end{align*}
$$

Due to the low circuit Q (about 5), the value of L is not critical.

The 3-dB bandwidth shown in Figure 9 now extends to 67 MHz , giving a gain bandwidth product of
$67 \times 4.2=281 \mathrm{MHz}$

When R_{S} is bypassed by a $0.1 \mu \mathrm{~F}$ capacitor, the lowfrequency voltage gain is given simply by

$$
\begin{align*}
A_{V} & =g_{f s} R_{D} \tag{30}\\
& =15 \times 10^{-3} \times 560 \tag{31}\\
& =8.4(18.5 \mathrm{~dB}) \tag{32}
\end{align*}
$$

The gain bandwidth product tends to remain constant whether R_{S} is bypassed or not, and this effect is shown in Figure 9.

Figure 9

The required value of L is

Source-Follower Circuit

A J 300 is used in the JFET source-follower circuit Figure 10, because of its low input capacitance and high g_{fs}, which remains high at the frequency range of interest. A source follower exhibits a high input impedance and low output impedance. The real part of the output impedance is the reciprocal of $g_{f s}$ which is independent of frequency up to about 600 MHz . The input capacitance is $\mathrm{C}_{\mathrm{gd}}+\mathrm{C}_{\mathrm{gs}}(1-\mathrm{A}$) which, in this case, is approximately 1.5 pF maximum. The input capacitance is also independent of frequency and independent of load when the load is larger than the output resistance R_{O}.

Figure 10

The frequency response is dependent mainly on the generator internal impedance. For example, when R_{g} is increased to $1 \mathrm{k} \Omega$ the bandwidth falls to 80 MHz . In this particular circuit, the low-frequency voltage gain is 0.94 .

The input resistance is proportional to $1 / \mathrm{f}^{2}$ (as explained in the section, "Behavior of JFET Input Resistance) and at some high frequency will go negative, particularly if the source resistor is large. For example, with the circuit shown in Figure 10, the input resistance is high at 10 MHz but in the negative resistance region at 100 MHz . However, when R_{S} is 1000Ω, the input resistance is real at this frequency.

The voltage gain of a source follower is given by
$A_{V}=\frac{g_{f s} R_{S}}{1+g_{f s} R_{S}}$

Thus, A_{V} is almost independent of R_{S} when R_{S} is large. Using typical values for the J 300 (or $1 / 2$ 2N5912) in Figure 10, the drain current is $3 \mathrm{~mA}, \mathrm{~g}_{\mathrm{fs}}$ is 5 mS and R_{S} is 4700Ω.
$A_{V}=0.96$
which is near the measured value of 0.94 . Measured performance is shown in Figure 11. The output resistance of this source follower is given by
$R_{o}=\frac{1}{g_{f s}}=\frac{1}{5 \times 10^{-3}}=200 \Omega$
and in this circuit, R_{0} was measured at 165Ω. The source follower is a useful versatile circuit which may be used as an impedance converter, level shifter, buffer stage, or as an input circuit to an op amp or feedback amplifier.

Figure 11

Cascode Circuit

The cascode circuit has applications as a buffer amplifier for use with high-stability oscillators or in lowlevel power amplifiers ${ }^{2}$ mainly due to its low reverse transfer characteristics. The advantages and considerations of this configuration (Figure 12) are similar to those listed for the common-source circuit. An extra advantage exists in the cascode circuit, namely the low input capacitance:
$C_{i n}=C_{g s}+\left(1-A_{V}\right) C_{d g}$
$C_{\text {in }}=C_{\text {iss }}+C_{\text {gd }}$
where A_{V} is the voltage gain from Q_{1} gate to Q_{1} drain, which is essentially unity. $\mathrm{C}_{\text {iss }}$ for the 2 N 5912 dual JFET is 5 pF , and C_{gd} is 1 pF ; therefore,

$$
\mathrm{C}_{\text {in }}=5+1=6 \mathrm{pF} \text {, excluding strays of } 4 \mathrm{pF}
$$

Thus, Miller effect is minimized, and a good gain bandwidth product is achieved.

Figure 12

Figure 13

Figure 13 shows cascode frequency response. The voltage gain at low frequency is 15 dB ($\times 5.6$), and the bandwidth is 24.5 MHz with a generator impedance of 50Ω. The gain bandwidth product is 137 MHz .

JFET and Bipolar Cascade

The JFET and bipolar transistor combination shown in Figure 14 makes a good video amplifier because the JFET input provides the voltage gain, thus obtaining a superior gain bandwidth product. The feedback capacitor ac couples the emitter to the drain. The acvoltage at the gate is nearly equal to that at the source. This source voltage is dc coupled to the base. This produces an A/C voltage at the emitter, whose amplitude is almost equal to that at the base. Thus, at the JFET, $V_{g} \sim V_{s} \sim V_{d}$, and all three signals are in phase. In this way, Miller effect capacitance is largely eliminated.

The frequency response of this circuit is controlled by the output time constant if f_{t} of the transistor is much greater than the amplifier bandwidth. In the circuit shown the A/C load is 2.5 pF .

Figure 14

CONCLUSION

The input resistance of a JFET is inversely proportional to the frequency squared, while the input capacitance remains constant to at least 1000 MHz .

Several video amplifier configurations are considered. The common-source circuit is considered first. In the example, the low frequency gain is 4.5 and the $30-\mathrm{dB}$ bandwidth is 44 MHz (gain bandwidth $=197 \mathrm{MHz}$). By shunt peaking in the drain circuit, gain bandwidth is increased to 260 MHz . The simple source-follower circuit gives a gain near unity with gain bandwidth almost 300 MHz and an output resistance of $1 / g_{\mathrm{fs}}$. The cascode circuit features a low input capacitance and gain bandwidth of 137 MHz . The circuit featuring the best gain bandwidth is the JFET and bipolar combination, where gain of 11 dB and bandwidth of 90 MHz is achieved.

Figure 15

APPENDIX

Selection of Video Amplifier Designs with Performance Summary

Note: All output voltages measured with Boonton 91C VTVM.

Table 1

DEVICE	$\begin{gathered} R_{\mathrm{g}} \\ (\Omega) \end{gathered}$	Вура	$\begin{gathered} \mathrm{R}_{\mathrm{S}} \\ (\Omega) \end{gathered}$	$\begin{gathered} R_{D} \\ (\Omega) \end{gathered}$	GAIN	dB	$\begin{aligned} & C_{i n} \\ & (p F) \end{aligned}$	$\begin{gathered} \mathrm{BW} \\ (\mathrm{MHz}) \end{gathered}$	GBW (MHz)
2N4393	50		47	560	4.5	13.0		44	197
	50	X	47	560	7.5	17.5		40	300
	1 k		47	560	4.5	13.0		5.0	22
	1 k	X	47	560	7.5	17.5		3.5	26
$\begin{aligned} & \text { J300 } \\ & \text { 1/2 } \\ & \text { 2N5912 } \end{aligned}$	50		91	1 K	3.8	11.6	11.0	27.5	103
	50	X	91	1 K	6.3	16.0	14.5	30.0	189
	1 k		91	1 K	3.8	11.6	11.0	9.5	36
	1 k	X	91	1 K	6.3	16.0	14.5	6.5	41
2N4416	50		120	1.5 K	3.9	11.8	11.5	25	98
	50	X	120	1.5 K	6.2	15.8	13	19	118
	1 k		120	1.5 K	3.9	11.8	11.5	8	31
	1 k	X	120	1.5 K	6.2	15.8	13	7	44

COMMON SOURCE STAGE

COMMON-SOURCE CIRCUIT

R_{g} (Ω)	R_{S} Bypassed	Gain	$d B$	$C_{i n}$ (pF)	BW (MHz)	GBW (MHz)
50		2.7	8.5	9	27	73
50	X	5.6	15	11.5	27	151
1 k		2.7	8.5	9	9.5	73
1 k	X	5.6	15	11.5	9.0	51

R_{g} (Ω)	L (μH)	Gain	dB	$C_{\text {in }}$ (pF)	BW (MHz)	GBW (MHz)
50	0	3.5	11	2	20	70
1 k	0	3.5	11	2	11	38.5
50	8	3.5	11	2	37	130
1 k	15	3.5	11	2	17	60

SHUNT-PEAKED COMMON-SOURCE STAGE

2N4393

R_{g} (Ω)	R_{S} Bypassed	Gain	$d B$	BW (MHz)	GBW (MHz)
50		4.2	12.5	66	277
50	X	7.5	17.5	54	405
1 k		4.2	12.5	6.0	25
1 k	X	7.5	17.5	3.5	26

\mathbf{R}_{g} (Ω)	$\mathbf{R}_{\mathbf{S}}$ Bypassed	Gain	dB	BW (MHz)	GBW (MHz)
50		3.9	11.8	67	262
50	X	6.3	16.0	67	421

COMMON-DRAIN COMMON-EMITTER STAGE

$\begin{gathered} R_{g} \\ (\Omega) \end{gathered}$	R_{S} Bypassed ($0.1 \mu \mathrm{~F}$)	Gain	dB	$\begin{gathered} \mathrm{C}_{\text {in }} \\ (\mathrm{pF}) \end{gathered}$	$\begin{aligned} & \mathrm{BW} \\ & (\mathrm{MHz}) \end{aligned}$	$\begin{aligned} & \text { GBW } \\ & (\mathrm{MHz}) \end{aligned}$
50		3	9.5	2.0	39	117
50	x	25	28	2.0	21	525
1 k		3	9.5	2.0	13	39
1 k	X	25	28	2.0	11	275

R_{g} (Ω)	Gain	$d B$	$\left.\begin{array}{c}C_{\text {in }} \\ (\mathrm{pF})\end{array}\right)$	BW (MHz)	GBW (MHz)
50	5.6	15	1.0	32	179
1 k	5.6	15	1.0	15	84

SOURCE-FOLLOWER CIRCUIT

\mathbf{R}_{g} (Ω)	Gain	$C_{\text {in }}$ (Stray pF)	Total (pF)	\mathbf{R}_{\circ} (Ω)	BW (MHz)	GBW (MHz)
50	0.92	2.2	2.7	165	350	326
1 k	0.92	2.2	2.7	165	55	50

Offset (Max) (Input to Output) Dual FET					R_{g} (Ω)		
(mV)						\quad Gain $\left.$	BW
:---:							
(mHz)		GBW					
:---:							
(MHz)	\right\rvert\,						

Derivation of Input Admittance Terms

 where$$
\begin{aligned}
R_{1} & =R_{g s} \\
R_{2} & =R_{1}=C_{g d} \\
& C_{2}=C_{g d} \\
s & =j \omega
\end{aligned}
$$

Derivation of Shunt Peaking Formula

The equivalent circuit of the drain load is shown in the Figure below. The total impedance seen by the drain is given by:

$$
\begin{equation*}
Z=\left[\frac{R_{L}^{2}+\omega^{2} L^{2}}{\left(1-\omega^{2} L C\right)^{2}+\omega^{2} C^{2} R_{L}^{2}}\right]^{1 / 2} \tag{5}
\end{equation*}
$$

The response below shows the "normal" 3-dB frequency without peaking $-f_{1}$. It is now required to raise the response at f_{1} by 3 - dB to achieve a maximally flat response. Therefore, under these conditions the total impedance seen by the drain at f_{1} must equal the impedance seen by the drain at f_{0}. Also, at $f_{1}, X_{C}=$ R_{L}. Substituting for X_{C} in Equation 5:
$R_{L}{ }^{2}=\frac{R_{L}{ }^{2}+\omega^{2} L^{2}}{\left(1-\frac{\omega L^{2}}{R_{L}}+1\right)}$
$R_{L}^{2}-2 \omega L R_{L}+\omega^{2} L^{2}+R_{L}^{2}=R_{L}^{2}+\omega^{2} L^{2}$
$R_{L}{ }^{2}=2 \omega L R_{L}$
$R_{L}=2 \omega L$

$$
\begin{equation*}
L=\frac{R_{L}}{4 \pi f_{1}} \tag{9}
\end{equation*}
$$

and
$f_{1}=\frac{1}{2 \pi R_{L} C}$, therefore, $L=\frac{R_{L}{ }^{2} C}{2}$

INTRODUCTION

Junction FET input operational amplifiers generally consist of a discrete FET differential preamplifier followed by a monolithic bipolar operational amplifier. FET input op amps have a number of advantages over op amps with bipolar transistor input stages. Most of these advantages are attributable to the low input and offset current characteristics of JFET pairs, which are typically three to five orders of magnitude lower than those of bipolar op amps. This is presented graphically in Figure 1.

Figure 1. Comparison of Input Bias Currents in Dual FET and Bipolar Op Amps

In integrator circuits, the low offset current of junction FET input op amps permit the integrator charge to be held more than 1000 times longer at $25^{\circ} \mathrm{C}$ than is possible with a typical bipolar input op amp. FET input op amps also pay off in high impedance amplifier circuits where their low offset current results in low (loffset) \times ($\mathrm{R}_{\text {generator }}$) error voltage.

Behavior of JFET Preamplifiers

FET input op amps usually include a preamplifier constructed of a matched FET pair and a monolithic bipolar op amp. Two configurations of the preamplifier circuit are shown in Figures 2 and 3. These

DESIGNING JUNCTION FET INPUT OP AMPS

circuits are a common-drain or differential source follower (Figure 2) and a common-source or long tailed pair differential amplifier (Figure 3).

Figure 2. Common-Drain or Differential Source Follower

Figure 3. Common-Source Differential Amplifier

The differential common drain (or "source follower") circuit has a differential voltage gain
$A_{\text {diff }}=\frac{R_{S}}{1+R_{S}\left(g_{f s}+g_{o s}\right)}$
Adiff never exceeds unity for the common drain circuit, and only approaches unity for high values of R_{s} and light loading.

The differential output impedance is twice that of the single-ended output impedance, or
$Z_{\text {out }}$ (diff) $=2\left[\frac{R_{S}+g_{o s} R_{S}{ }^{2}}{1+R_{S}\left(g_{f s}+g_{o s}\right)}\right]$

Neglecting the output conductance, $g_{\text {os }}$, and assuming R_{S} is very large, one can arrive at the useful approximation that
$Z_{\text {out }}($ diff $) \approx \frac{2}{g_{f s}}$

The common-source (or "long-tailed pair") differential amplifier has a differential voltage gain of,
$A_{\text {diff }}=\frac{-g_{f s} R_{D}}{1+g_{\text {os }}\left(R_{D}+R_{S}\right)+g_{f s} R_{S}}$
A useful approximation for the case where $R_{S}=0$ can be arrived at if, again, $g_{o s}$ is neglected. In that instance,
$A_{\text {diff }} \approx-g_{f s} R_{D}$

Note that there is a phase inversion between the gate and the drain, and that the value of the commonmode resistor, $R_{C M}$, does not affect the gain.

The differential output impedance is

$$
\begin{equation*}
Z_{\text {out }} \text { (diff) }=\frac{2 R_{D}}{\frac{g_{\text {os }}\left(R_{D}+R_{S}\right)}{1+g_{f s} R_{S}}+1} \tag{6}
\end{equation*}
$$

If $R_{D} \ll \frac{1}{g_{\text {os }}}$ and if $R_{S}=0$, then
$Z_{\text {out (diff) }} \approx 2 R_{D}$

In the common-source differential amplifier, the addition of R_{S} lowers the gain and raises the output impedance. Lower gain and higher output impedance will tend to degrade the offset, drift and noise of the FET input amplifier. For this reason it not generally advisable to use source resistors in common-source FET preamplifiers. The use of a source resistor does tend to stabilize the gain of a FET pre-amplifier over the temperature range of the device, but stable open loop gain is not generally of great importance in an op amp.

At low frequencies, input impedance is not a very useful concept for a FET amplifier. It is far more realistic to consider that there is a very small current source, typically ranging from 0.01 to 1000 pA in the gate lead. The value of this current source is dependent on a number of factors. This aspect of op amp applications will be covered in a subsequent section of this Application Note. In general neither the common-drain circuit or the common-source circuit enjoys any particular advantage over the other in terms of input current.

As general rule, a common-source FET preamplifier will produce better results in a FET input op amp than will a common-drain preamplifier. There are three reasons for this superior performance. A common source preamplifier tends to mask the drift and offset of the second stage because of its voltage gain. By the same mechanism, the noise of the second stage is diminished. The third advantage of the commonsource preamplifier is that is removes commonmode variations from the input of the second stage. These points will all be considered in more detail in later sections of this Application Note.

Offset and Drift

The offset of a FET pair is the difference in gate-tosource voltage between the two devices when measured at the operating current. Drift is the change of offset with temperature. As is the case with any dc amplifier, the offset and drift of the input devices are indistinguishable from the input signal. Thus offset and drift are erroneous signals, and must be minimized until their magnitude is small in comparison to the input signal.

In a FET input op amp the input FET pair and the second stage both contribute to offset and drift. Figure 4 shows an equivalent circuit for a common-drain FET input op amp, including the sources of offset.

Figure 4. Offset Equivalent Circuit for FET Input Op Amp with Common-Drain Preamplifier

If
$R_{T} \quad=Z_{\text {OUT }}$ of the FET preamp in parallel with $\mathrm{Z}_{\text {IN }}$ of the second stage,
$E_{\text {os1 }}=$ Voltage offset of the FET pair,
$\mathrm{E}_{\mathrm{os} 2}=$ Voltage offset of the second stage,
los $=$ Current offset of the second stage.
$A_{1}=$ Voltage gain of the FET preamplfier,
$A_{2}=$ Open-loop voltage gain of the second stage,
$\mathrm{E}_{\text {Tout }}=$ Total offset error at output of second stage,
$E_{\text {Tin }}=$ Total offset from all sources referred to the input, and
$\mathrm{g}_{\mathrm{fs}} \quad=$ Forward transconductance of the FET at the operating current,
then
$E_{\text {Tout }}=E_{o s 1} A_{1} A_{2}+\operatorname{los} R_{T} A_{2}+E_{o s 2} A_{2}$
and
$E_{T i n}=\frac{E_{\text {os } 1} A_{1} A_{2}+\operatorname{los} R_{T} A_{2}+E_{\text {os } 2} A_{2}}{A_{1} A_{2}}$
or
$E_{T i n}=E_{o s 1}+\frac{l_{\text {os }} R_{T}}{A_{1}}+\frac{E_{o s 2}}{A_{1}}$

Allowing the simplifications $Z_{\text {IN }} \gg Z_{\text {OUT }}, g_{\text {os }}=0$, A_{1}, $=1$, and $Z_{\text {OUT }}=2 / g_{f s}$, one can obtain an equation for the total offset referred to the input of a FET op amp, using a common-drain preamplifier:
$E_{\mathrm{Tin}} \approx \mathrm{E}_{\mathrm{os} 1}+\frac{2 \mathrm{l}_{\mathrm{os}}}{\mathrm{g}_{\mathrm{fs}}}+\mathrm{E}_{\mathrm{os} 2}$

If both sides of Equation (11) are divided by ΔT, and equation is derived for total drift referred to the input:
$\frac{E_{\mathrm{Tin}}}{\Delta T} \approx\left(\frac{E_{\mathrm{os} 1}}{\Delta T}\right)+\frac{2}{\mathrm{~g}_{\mathrm{fs}}}\left(\frac{\mathrm{los}}{\Delta \mathrm{T}}\right)+\left(\frac{\mathrm{E}_{\mathrm{os} 2}}{\Delta \mathrm{~T}}\right)$

Thus the total drift referred to the input of a FET input op amp with a common drain preamp is approximately the sum of the voltage drift of the FET pair plus the voltage drift of the second stage.

Figure 5. Offset Equivalent Circuit for FET Input Op Amp with Common-Source Preamplifier

Figure 5 shows the offset equivalent circuit for a FET input op amp with a common-source FET preamplfier.

As is the case of the common-drain preamplifier, Equation (10) applies. If it is assumed that $Z_{\text {IN }} \gg$ $Z_{\text {OUT }}, Z_{\text {OUT }}=2 R_{D}, g_{\text {os }}=0$, and $A_{1}=g_{\text {fs }} R_{D}$, where R_{D} is the drain resistance and R_{S} is the source resistance, then one can derive an equation for the total offset referred to the input for an op amp with a common source FET preamp.
$E_{T i n} \approx E_{o s 1}+\frac{2 \text { los }}{g_{f s}}+\frac{E_{o s 2}}{g_{f s} R_{D}}$

If both sides of equation (13) are divided by ΔT, then
$\frac{E_{T i n}}{\Delta T} \approx\left(\frac{E_{o s 1}}{\Delta T}\right)+\frac{2}{g_{\mathrm{fs}}}\left(\frac{\mathrm{l}_{\mathrm{os}}}{\Delta T}\right)+\frac{1}{g_{\mathrm{fs}} R_{D}}\left(\frac{E_{\mathrm{os} 2}}{\Delta T}\right)$

Thus a FET input op amp with a common-source preamplifier has a total drift referred to the input of the drift of the FET pair, plus the current-related voltage drift and the voltage drift of the second stage divided by the gain of the preamplifier. Note that for lowest offset and drift, the gain of the preamplifier should be as large as possible. For high gain, the drain resistors should be as large as possible, consistent
with other design criteria (See FET biasing, a later section of this Application Note). When equations (12)-(14) and (11)-(13) are compared, it is apparent that the common-source FET preamplifier always will produce lower overall offset and drift.

Offset Nulling

Methods of nulling offset in the FET input op amp will depend on the configuration of the FET preamplifier in the circuit. Two common methods of nulling offset in common-drain FET preamplifiers are shown in Figure 6 A and 6 B .

Figure 6A. Nulling a Common-Drain Preamp with Source Resistor Blasing

By changing the drain current in the FET, one can change the gate-to-source voltage and thus change the offset. In a junction FET
$V_{G S}=V_{G S(\text { off })}\left[1-\left(\frac{I_{D}}{I_{D S S}}\right)\right]^{1 / 2}$

In a source-follower configuration where $V_{G G}-V_{D D} \gg$ $V_{\text {GS(off) }}$,
$I_{D} \approx \frac{V_{G G}-V_{D D}}{R_{S}}$

If Equation (16) is substituted into Equation (15) :
$V_{G S} \approx V_{G S \text { (off) }}-\left[\frac{V_{G S(\text { off }}{ }^{2}\left(V_{G G}-V_{D D}\right) R_{S}^{-1}}{I_{D S S}}\right]^{1 / 2}$

If $V_{G S}$ is differentiated with respect to R_{S}, one can derive a value of $\Delta V_{G S} / \Delta R_{S}$ for small changes in R_{S} :
$\frac{\mathrm{dV}_{\mathrm{GS}}}{d R_{S}} \approx \frac{\Delta \mathrm{~V}_{\mathrm{GS}}}{\Delta \mathrm{R}_{\mathrm{S}}} \approx\left[\frac{\left.\mathrm{V}_{\mathrm{GS}(\text { off }}\right)^{2}\left(\mathrm{~V}_{\mathrm{GG}}-\mathrm{V}_{\mathrm{DD}}\right)}{4 l_{\mathrm{DSS}} R_{S}{ }^{3}}\right]^{1 / 2}$

Thus in a single-source follower, to correct for an offset $E_{\text {Tin }}$, the value of ΔR_{S} should be
$\Delta R \approx \frac{E_{T i n}}{\frac{\Delta V_{G S}}{\Delta R_{S}}}$

In the circuit in Figure 6A, where the resistor is a potentiometer in both legs of the differential source follower, the effect of any resistance change is double that of Equation (19). Hence the value of the null potentiometer R_{N} to correct for an expected maximum offset of $\mathrm{E}_{\text {Tin }}$ is
$R_{N} \approx \frac{E_{\text {Tin }}}{\frac{\Delta V_{G S}}{\Delta R_{S}}} \approx \frac{E_{\text {Tin }}}{\left[\frac{V_{G S(\text { off })^{2}}\left(V_{G G}-V_{D D}\right)}{l_{D S S} R_{S}{ }^{3}}\right]^{1 / 2}}$
For any type of junction FET, there will be a range of $V_{G S}$ (off) and $I_{\text {DSS }}$ values. For a conservative value of R_{N}, minimum values of $V_{G S}$ (off) and $l_{D S S}$ should be
used in Equation (20). Also, there will inevitably be small differences in the values of the the two source resistors due to their tolerance; the value of R_{N} must be increased to correct for these differences.

In the circuit in Figure 6B, the offset is nulled by varying the difference between e_{1} and e_{2}. The value of the fixed resistor, R , is
$R=\frac{E_{\text {Tin }}}{I_{\text {BIAS }}}$

The value of the potentiometer then is $2 R$. The value of $\mathrm{E}_{\text {Tin }}$ in Equation (21) is the value found in Equation (11),

Figure 6B. Nulling a Common-Drain Preamp with Constant Current Biasing
plus any offset caused by unbalance in the current sources. The voltage offset caused by current unbalance in the current sources can be calculated from Equation (15).

In a common-source FET preamplifier, offset can be nulled by either of two techniques. One method is to insert a potentiometer in the source circuit, as is shown in Figure 7A.

In the circuit in Figure 7A, the offset is nulled by the difference in $I_{\text {CM }} R_{1} / 2-I_{\text {CM }} R_{2} / 2$. The value of the potentiometer should be
$\mathrm{R}_{\mathrm{N}} \approx \frac{2 \mathrm{E}_{\mathrm{Tin}}}{\mathrm{I}_{\mathrm{cm}}}$
where $E_{\text {Tin }}$ is the worst-case value calculated in Equation (13). Before the source nulling method is used, the value of R_{N} calculated in Equation (22) should be checked against Equations (4) and (6) to confirm that it has no significant effect on gain and output impedance.

Figure 7A. Source Nulling in Common-Source FET Differential Amplifier

Figure 7B. Drain Nulling in Common-Source FET Differential Amplifier

The second method of accomplishing offset null is a common-source FET differential amplifier is know as drain nulling, and an equivalent circuit is shown in Figure 7B. The basic principle of drain nulling is the same as that employed in source nulling except that the offset which is to be nulled is multiplied by the gain of the stage. Hence, for drain nulling:
$\mathrm{R}_{\mathrm{N}} \approx \frac{2 \mathrm{E}_{\mathrm{Tin}} \mathrm{g}_{\mathrm{fs}} \mathrm{R}_{\mathrm{D}}}{\mathrm{I}_{\mathrm{CM}}}$

Offset nulling is a relatively simple technique which consists of adjusting an offset potentiometer for zero output with zero input. The technique to compensate for drift, however, is more complex and time consuming. The method is based upon the fact that the temperature coefficient of V_{GS} is dependent on drain current. Thus by varying the ratio of the drain current in the two FETs, the drift can be compensated. The technique is of limited practical value, however, because of the lengthy oven testing required. For this reason, drift compensation will not be discussed in depth in this Application Note.

Noise

During design of a FET input operational amplifier, it is useful to be able to predict the total noise of the amplifier referred to the input. The total noise output is then equal to the total noise referred to the input, multiplied by the voltage gain of the amplifier. In a FET amplifier, the total noise can be broken down to three specific sources, for ease of mathematical analysis.

The first noise source is the thermal noise of the generator, which is caused by random electron movement in the generator resistance. Thermal noise is often referred to as "white" noise, since its spectral density is constant for all frequencies. The power spectral density of thermal noise is
$\bar{S}_{t}=4 K T R_{G}$
where \bar{S}_{t} is the power spectral density of the thermal noise in the generator resistance in $\mathrm{V}^{2} / \mathrm{Hz}, \mathrm{T}$ is the temperature in degrees Kelvin, R_{G} is the generator resistance, in ohms, and k is Boltzmann's constant to 1.38×10^{-23} Joules/ ${ }^{\circ} \mathrm{Kelvin}$.

LPD-7

The total noise over a bandwidth $f_{b}-f_{a}$ is
$\left|\bar{e}_{t}\right|=\sqrt{\left|\bar{S}_{t}\right|\left(f_{b}-f_{a}\right)}$
where $\left|\bar{e}_{t}\right|$ is the magnitude of the thermal noise stemming from the generator resistance is rms volts, and $f_{b}-f_{a}$ is the bandwidth in Hz .

The second significant source of noise is the equivalent short circuit input noise voltage of the FET. This noise voltage, referred to as \bar{e}_{n}, is caused by a number of phenomena within the channel of the FET, and is not constant with frequency; it is made up of two noise components. One of these is white noise, with a spectral density that is constant with frequency. The second is " 1 over f " noise, so termed because its power spectral density varies inversely with frequency. 1/f noise usually becomes dominant below a frequency between 100 and 1000 Hz . The power spectral density of \bar{e}_{n} is the sum of the power spectral densities of the white noise and the $1 / \mathrm{f}$ noise components, thus
$\bar{S}_{e}=\bar{S}_{W}+\bar{S}_{f}$
where \bar{S}_{e} is the total power spectral density of \bar{e}_{n} in $\mathrm{V}^{2} / \mathrm{Hz}, \overline{\mathrm{S}}_{\mathrm{W}}$ is the power spectral density of the white noise generated in the FET channel in V^{2} / Hz, and \bar{S}_{f} is the power spectral density of the $1 / \mathrm{f}$ noise in the FET channel in $\mathrm{V}^{2} / \mathrm{Hz}$.

To find the total rms noise voltage over a given bandwidth, $\bar{S}_{e}(f)$ must be integrated over the frequency range of interest, and its square root obtained. To accomplish this, it is necessary to define an analytical expression for $\bar{S}_{e}(f)$. This can be done if two values of $\bar{S}_{e}(f)$ are known. Usually $\bar{S}_{e}(f)$ is not given on FET data sheets, however \bar{e}_{n} is usually given and \bar{e}_{n} is the square root of $\bar{S}_{e}(f)$. One value of \bar{S}_{e} (f) must lie in the $1 / \mathrm{f}$ region, and is referred to as $\left|\bar{S}_{e 1}\right|$ at f_{1}, and the other (which must lie out of the $1 / f$ region), and is referred to as $\left|\bar{S}_{\mathrm{e} 2}\right|$. A typical graph carrying these values is shown in Figure 8. Note that Figure 8 is a graph of power spectral density, not $\overline{\mathrm{e}}_{\mathrm{n}}$.

Figure 8. Equivalent Short Circuit Input Nolse Power Spectral Density vs. Frequency

Then
$\bar{S}_{e}(f) \approx \frac{\left(\left|\bar{S}_{e 1}\right|-\left|\bar{S}_{e 2}\right|\right) f_{1}}{f}+\left|\bar{S}_{e 2}\right|$
and
$\left|\bar{\theta}_{n T}\right| \approx \sqrt{\int_{f_{b}}^{f_{a}}\left[\frac{\left(\left|\bar{s}_{e 1}\right|-\left|\bar{s}_{e 2}\right|\right) f_{1}}{f}+\left|\bar{S}_{e 2}\right|\right] d f}$
where $\left|e_{n T}\right|$ is the total rms noise voltage attributable to the short circuit input noise of the FET.

Then,
$\left|\bar{\theta}_{n T}\right|$
$\approx \sqrt{\left(\left|\bar{S}_{e 1}\right|-\left|\bar{S}_{e 2}\right|\right) f_{1} \ln \left(\frac{f_{a}}{f_{b}}\right)+\left|\bar{S}_{e 2}\right|\left(f_{b}-f_{a}\right)}$
It should be noted that if fa is chosen to be zero Hz in Equation (29), the total noise, $\left|\bar{e}_{n T}\right|$, will be infinite. In reality, as the period of the noise becomes greater than several seconds, it begins to resemble drift rather than noise. With this rationale in mind, it is wise to choose a non-zero frequency for f_{a}, such as 0.1 Hz . Such a frequency selection will provide reasonably accurate data, and will allow comparison between various device types and amplifier circuits.

The third source of noise is current noise, usually referred to as \bar{i}_{n}. Noise current has a flat spectral density up to the region of 10 to 100 kHz . Beyond this point, the spectral density increases because of noise which feeds through the drain-gate capacitance to the gate. Feed through noise above 100 kHz is known as "shot noise", and will not be dealt with in this Application Note.
The power spectral density of noise current is expressed in the white noise region as

$$
\begin{equation*}
\left|\bar{S}_{\mid}\right|=2 q I_{G} \tag{30}
\end{equation*}
$$

where $\left|\bar{S}_{1}\right|$ is the power spectral density of the current noise in $A^{2} / \mathrm{Hz}, q$ is the charge of an electron, 1.6×10^{-19} coulombs, and I_{G} is the gate current in amperes. Thus the total input current-caused noise referred to the input of the amplifier is
$\left|\bar{e}_{i T}\right|=R_{G} \sqrt{\left|\bar{S}_{i}\right|\left(f_{b}-f_{a}\right)}$

When using Equation (30) it is important to choose a value for I_{G} which corresponds to the actual operating conditions of the FET. IG will vary over several decades, depending on temperature, $V_{D G}$ and I_{D}.

The total input FET noise of a single-ended amplifier is the vector sum of the three components
$\left|\bar{e}_{T}\right|=\sqrt{{\overline{e_{t}}}^{2}+{\overline{e_{n T}}}^{2}+{\overline{\bar{e}_{i T}}}^{2}}$

Since the differential amplifier contains two devices, the noise from both FETs must be accounted for:
$\left|\overline{\mathrm{e}}_{\mathrm{Tdiff}}\right|=\sqrt{2}\left|\overline{\mathrm{e}}_{\mathrm{T}}\right|$

The foregoing analysis covers only the noise in the FET pre-amplifier. It does not include the noise contribution of the second stage. As in the case of offset and drift, the noise contribution of the second stage can be referred back to the input of the op amp. For a common-drain preamplifier, the total noise referred to the input of the op amp is
$\left|\bar{e}_{T t}\right| \approx \sqrt{\left|\bar{e}_{T d i f f}\right|^{2}+\left(\frac{2\left|\bar{i}_{n}\right|}{g_{f s}}\right)^{2}+\left|\bar{e}_{n 2}\right|^{2}}$
where $\left|\bar{e}_{T t}\right|$ is the magnitude of the total op amp noise from all sources referred to the input in rms volts, $\left|\bar{i}_{n 2}\right|$ is the magnitude of the input noise current of the second stage in rms amperes, and $\left|\bar{e}_{n 2}\right|$ is the magnitude of the input voltage noise of the second stage in rms volts.

Since the spectral densities of $\bar{i} n 2$ and $\bar{e}_{n 2}$ are functions of frequency, the $\left|\bar{i}_{n 2}\right|$ and $\left|\bar{e}_{n 2}\right|$ must be determined in a manner similar to that of Equation (29). That is

$$
\begin{equation*}
\left|\bar{e}_{\mathrm{n} 2}\right| \approx \sqrt{\left(\left|\bar{S}_{\mathrm{e} 1}\right|-\left|\bar{S}_{e 2}\right|\right) f_{1} \ln \left(\frac{f_{a}}{f_{b}}\right)+\left|\bar{S}_{e 2}\right|\left(f_{b}-f_{a}\right)} \tag{35}
\end{equation*}
$$

where $\left|\bar{S}_{e 1}\right| . \mid \bar{S}_{e 2} l, f_{1}, f_{a}$ and f_{b} are as previously defined, except that they now refer to the noise voltage of the second stage. Also,

$$
\begin{equation*}
\left|\bar{i}_{n 2}\right| \approx \sqrt{\left(\left|\bar{S}_{i 1}\right|-\left|\bar{S}_{i 2}\right|\right) f_{1} \ln \left(\frac{f_{a}}{f_{b}}\right)+\left|\bar{S}_{e 2}\right|\left(f_{b}-f_{a}\right)} \tag{36}
\end{equation*}
$$

where $\bar{S}_{i 1} \mid$ is a point on the curve of input current power spectral density vs frequency in the $1 / f$ region, and $\bar{S}_{12} \mid$ is a point totally out of the $1 / f$ region.

In the case of a FET input op amp with a commonsource FET preamplifier, the total op amp noise referred to the input is
$\left|\overline{\mathrm{e}}_{\mathrm{Tt}}\right| \approx \sqrt{\left|\overline{\mathrm{e}}_{\mathrm{Tdiff}}\right|^{2}+\left(\frac{2\left|\bar{i}_{\mathrm{n} 2}\right|}{g_{\mathrm{fs}}}\right)^{2}+\left(\frac{2\left|\overline{\mathrm{e}}_{\mathrm{n} 2}\right|}{g_{\mathrm{fs}} R_{D}}\right)^{2}}$

As was the case for offset and drift, the common source FET preamplifier will always product lower equivalent input noise for the total op amp than will the FET common-drain preamplifier.

In any discussion of noise the term "noise figure" is bound to arise. Noise figure is the ratio of added noise power to the thermal noise power of the generator resistance. In a FET preamplifier

$$
\begin{equation*}
N F=10 \log _{10}\left[1+\frac{\bar{e}_{n}^{2}+\bar{i}_{n}^{2} R_{G}^{2}}{\left(f_{a}-f_{b}\right) 4 k T R_{G}}\right] \tag{38}
\end{equation*}
$$

For any device there is one value of generator impedance for which the noise figure is optimum
$R_{\text {opt }}=\frac{\left|\bar{e}_{n}\right|}{\left|\bar{i}_{n}\right|}$
Noise figure is a useful concept in RF circuits where, by various matching techniques, the generator resistance can be adjusted for $R_{\text {opt }}$ so that the required noise figure is achieved. Most FET input op amps, however, are used in dc-coupled applications, and there is seldom any choice for the designer concerning generator resistance. For this reason, noise figure is not a very useful concept in FET input op amps. A much more useful figure of merit is simply $\sqrt{\left|\bar{e}_{n}^{2}\right|+\left|\bar{i}_{n}^{2}\right| R_{G}^{2}}$, which is added noise voltage referred to the input of the device.

Input and Offset Current

The gate of a JFET forms a reverse-biased junction with the channel. For this reason, the input current of a junction FET is the leakage current through the re-verse-biased gate-to-source and gate to drain junctions. In normal operation the drain-to-gate voltage is much higher than the source-to-gate voltage; thus it is the drain-to-gate junction which is responsible for most of the leakage current.

N-Channel junction FETs experience an I_{G} "breakpoint" where the gate current rises rapidly with increasing drain-to-gate voltage. This is shown in the plot of gate current vs drain-to-gate voltage in Figure (9).

Figure 9. Gate Current vs. Drain-to-Gate Voltage

The I_{G} breakpoint results from carriers in the channel being accelerated by the applied field to such a degree that they are capable of generating hole-electron pairs upon collision with a silicon atom. This phenomenon is similar to normal junction breakdown, but occurs at a lower voltage than $\mathrm{BV}_{\mathrm{Gss}}$. This is because, under operating conditions, there are more carriers available in the channel for collisions. Operation at higher drain current will result in lowerl ${ }_{G}$ breakpoints for the same reasons.

At low drain-to-gate voltages the leakage current doubles for approximately every $10^{\circ} \mathrm{C}$ increase in temperature. However, I_{G} breakpoints occur at a higher voltage for increasing temperature. This is consistent with normal breakdown voltage behavior for diodes above 6 V , where the avalanche effect dominates.

Figure 10 shows that for some voltages, I_{G} at $125^{\circ} \mathrm{C}$ is actually lower than I_{G} at room temperature!

Figure 10. Gate Current vs Drain-to-Gate Voltage at $25^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$.

In a dual FET, the difference between the I_{G} of each device is known as I_{G} offset. A good rule of thumb for design analysis is
I_{G} offset $\approx 0.1 I_{G}$

Common Mode Errors

Common mode errors are output errors caused by common-mode input signals. A common-mode input signal is any signal which equally affect both sides of a differential amplifier. Common-mode inputs often take the form of either 60 Hz signal pickup or dc bias signals. It is interesting to note that ambient temperature is also a common-mode signal since it affects both devices equally.

Common-mode input signals cause two types of output errors in differential amplifiers. One type of error is a differential output signal caused by the commonmode input; the other is a common-mode output signal where both outputs change equally and in the same direction. Since the op amp which follows the FET input stage will typically amplify the differential
mode error 80 dB more than the common-mode error(assuming its CMRR is 80 dB), the differential mode error is by far the more important of the two.

Differential mode error is the result of unequal gain between the two sides of the differential amplifier. This can be caused by imprecise transconductance matching of the dual FETs, unbalanced drain resistances, unbalanced source resistances, imprecise output conductance matching of the FETs, or any combination of these factors. Thus, if the drain or source resistances are adjusted for drift or offset nulling, the differential output error will be increased and CMRR degraded.

Consider the case where the differential amplifier has slightly unbalanced gain. An equivalent circuit is shown in Figure 11.

Figure 11. Differential Output Equivalent Circuit

A Figure of Merit CMRR can be derived for differential out errors:
$\mathrm{CMRR}_{\text {(diff) }}=\frac{\text { Adiff }^{A C M(\text { diff })}}{}$

The differential mode gain, assuming both halves of the differential amplifier are nearly equal, can be approximated as:

$$
\begin{align*}
& \text { Adiff }_{\approx} \frac{g_{f s R_{D}}}{1+g_{f s} R_{S}}\left(\frac{1}{1+g_{o s} R_{D}}\right) \tag{42}\\
& \text { for } \frac{1}{g_{o s}} \gg R_{s}
\end{align*}
$$

For $R_{S} \gg 1 / g_{f s}$ and $R_{D} \ll 1 / g_{\text {os }}$, this simplifies to the familiar expression:

Adiff $\approx g_{f s R_{D}}$

If the circuit is balanced except for the drain resistors, the differential mode error resulting from a common-mode input signal becomes:
$A C M$ (diff) $\approx \frac{R_{D}}{2 R_{C M}}$
so
$\mathrm{CMRR}_{(\mathrm{db})}=20 \log \left[\frac{2 R_{c m}}{R_{D}} g_{f s R_{D}}\right]$

Similarly, the error introduced by unbalanced transconductance is taken into account:
$\operatorname{CMRR}_{(\mathrm{db})}=20 \log 2 \Delta \mathrm{~g}_{\mathrm{fs}} \mathrm{Rcm}_{\mathrm{cm}}$
When unequal output conductances are taken into account:
$\operatorname{CMRR}_{(d b)}=20 \log \frac{2 g_{f s} R_{C M} R_{0}}{\Delta R_{0}}$
and with unbalanced source resistors,
$\mathrm{CMRR}_{(\mathrm{db})}=20 \log \frac{2 R \mathrm{CM}}{\Delta R s}$
assuming $1 / g_{\mathrm{fs}} \gg \mathrm{R}_{\mathrm{S}}$.

A more general equation, resulting from the combination of all the above factors, is:
$\mathrm{CMRR}_{(\mathrm{db})}=20 \log \left[\frac{2 g_{f s} R_{C M}}{\frac{\Delta R_{S}+1 / \Delta g_{f s}}{R_{s}+1 / g_{f s}} \pm \frac{\Delta R_{D}}{R_{D}} \pm \frac{\Delta R_{0}}{R_{0}}}\right]$
The other type of error, common-mode output voltage, is important when only one of the outputs of the differential stage is used, or when the following stage has a poor CMRR. Figure 12 shows how commonmode output error can be measured. If commonmode gain for common-mode output errors is defined as

$$
\begin{equation*}
A_{\mathrm{CM}(\mathrm{~cm})}=\frac{V_{\mathrm{D} 1}}{V_{\mathrm{G} 1}}=\frac{V_{\mathrm{D} 2}}{V_{\mathrm{G} 2}} \tag{50}
\end{equation*}
$$

Figure 12. Common-Mode Output Equivalent Circuit
then an expression may be found by noting that
$V_{D}=-g_{f s} V_{G S} R_{D}$

However,
$V_{G S}=V_{G}-V_{S}$
and
$V_{S}=\frac{-2 V_{D} R_{C M}}{R_{D}}$

Thus,
$V_{D}=-g_{f s} V_{G} R_{D}-g_{f s} 2 R_{C M} V_{D}$
and
$A_{C M(c m)}=\frac{V_{D}}{V_{G}}=\frac{-g_{f s R_{D}}}{1+2 g_{f s} R_{C M}}$

It is common practice to assign a Figure of Merit to a differential amplifier. This Figure of Merit is "common mode rejection ratio," usually abbreviated as CMRR. CMRR is defined as
$C M R R=\frac{A_{\text {diff }}}{A_{C M}}$

When equations (5) and (55) are substituted into equation (56), it is apparent that the common-mode rejection ratio for common-mode output errors is
$\mathrm{CMRR}_{(\mathrm{cm})} \approx \frac{-g_{f s R_{D}}}{\frac{-g_{f s} R_{D}}{1+2 g_{f s} R_{C M}}}=1+2 g_{f s} R_{C M}$

Most op amps have single-ended outputs. In such cases, there can be only one result of a commonmode input signal; and error in the output. In a FET input op amp the total CMRR will be a function of the common-mode and differential output errors of the preamplifier as well as the CMRR of the second stage. To calculate the combined CMRR of both stages of the FET input op amp, refer to Equation (56), which is the definition of CMRR.

Figure 13. Two-Stage Op Amp CMRR Model

A two-stage amplifier is shown in Figure 13. Calculations of CMRR in this circuit is made as follows:

$$
\begin{align*}
\mathrm{CMRR} & =\frac{A_{\text {diff }}}{A_{\mathrm{CM}}} \tag{58}\\
& =\frac{\left[A_{\text {diff1 }}\right]\left[A_{\text {diff2 }}\right]}{\left[A_{\mathrm{CM}}(\mathrm{~cm}) 1\right]\left[A_{\mathrm{CM} 2}\right]+\left[A_{\mathrm{CM}}(\text { diff }) 1\right]\left[A_{\text {diff2 }}\right]}
\end{align*}
$$

Substituting Equation (56) into Equation (58) we have,

where $\operatorname{CMRR}(\mathrm{cm}) 1$ is the CMRR referred to in Equation (57) for the FET preamplifier, CMRR_{2} is the CMRR specification of the second stage, and CMRR(diff) 1 is the CMRR referred to in Equation (49) for the FET preamplifier.

In a common drain stage, the common-mode gain with respect to common-mode output error [ACM(cm)] is unity (when $A_{\text {diff }}=1$). Hence, the entire output common-mode signal is passed along to the second stage. All of the equations in this section, except for (50)-(55) and (57) apply equally to common drain preamplifiers.

Frequency Response

The frequency response of a FET differential amplifier is determined by two time constants, one for the input and one for the output.

The input time constant is formed by the generator impedance and the effective input capacitance, $\mathrm{C}_{\text {in }}$, where
$C_{\text {in }}=\left(\frac{g_{f s} R_{D}}{1+g_{f s} R_{S}}\right) C_{D G}+\left(1-\frac{g_{f s} R_{S}}{1+g_{f s} R_{S}}\right) C_{G S}+C_{\text {stray }}$
and
$f_{\text {in }}=\frac{1}{2 \pi C_{\text {in }} R_{G}}$

The output time constant is formed by the drain resistance and the output capacitance, $\mathrm{C}_{\text {out }}$, where
$f_{\text {out }}=\frac{1}{2 \pi C_{\text {out }} R_{D}}$
and
$C_{\text {out }}=C_{\text {gd }}+C_{\text {load }}+C_{\text {stray }}$

Equations (60) and (61) apply to common drain preamplifiers as well as to common source preamplifiers, if $R_{D}=0$.

For the case of the output time constant for the common drain preamplifier.
$f_{\text {out }}=\frac{g_{f s}}{2 \pi C_{\text {out }}}$
$C_{\text {out }}=C_{\text {gs }}+C_{\text {sd }}+C_{\text {load }}+C_{\text {stray }}$

Typically, the Bode plot of a FET preamplifier will resemble that shown in figure 14.

FREQUENCY

Figure 14. Phase and Gain Bode Plots for Typical FET Preamplifier

Stability and Phase Compensation

The stability criterion for any closed loop system, including an operation amplifier, is that the phase shift around the loop must never reach 360° for any fre-
quency at which the gain is unity or greater. SInce the feedback around an op amp is in the inverting input there is an intrinsic 180° phase shift. This dictates that the additional phase shift in the amplifier plus the phase shifty of the feedback network must be less than 180° for all frequencies where gain is unity or greater.

Most commercially-available operational amplifiers are compensated so that they have only 90° of phase shift where gain is unity or greater. This is demonstrated in Figure 15. When a FET preamplifier is added ahead of an op amp, the total gain and phase response will be the sum of the response of the preamplifier and the second stage. Often, this results in a phase shift of 180° or greater over much of the frequency range. An intolerable situation is thus created in that the total FET input op amp will oscillate if the gain is set to a value where the phase shift is greater than 180°.

\square

As a rule of thumb, an op amp will not oscillate if the closed loop gain is such that the slope of the roll-off is no greater than $20 \mathrm{~dB} /$ decade. This point corresponds to a worst-case phase shift of 135°.

There are a number of techniques for stabilizing the amplifier; this Application Note will not attempt to treat them.

Selecting the Proper FET Pair

FeT differential pairs can be broken down into four general types, according to their intended application. These types include low leakage, low noise, high frequency and general purpose FET duals.

Low-leakage FETs generally have leakage currents in the range of 0.1 to 1.0 pA at $25^{\circ} \mathrm{C}$. To achieve this low leakage, the active area of the device is made as small as possible. This small active area produces low g_{fs} and low capacitance. Although low leakage FETs are preferred whenever low circuit leakage is is the primary design criterion, the designer should consider using a general-purpose FET if slightly higher leakage can be tolerated. General purpose devices offer better $g_{f s}$, offset, drift and $\overline{\bar{e}}_{n}$ than do low-leakage devices. One feature of the low-leakage FET which is not often specified in data sheets, but which is important to actual circuit performance, is the I_{G} breakpoint; that is, the drain-to-gate voltage at which the gate current rises rapidly. In practical circuits, the drain-to-gate voltage can reach 15 or 20 volts causing excessive leakage for $\mathrm{FETs}^{\text {with }}$ low I_{G} breakpoints.

Low-noise FETs are designed primarily for low $\overline{\mathrm{e}}_{\mathrm{n}}$. They also have moderate g_{fs}, low $\mathrm{g}_{\text {os }}$, and moderate leakage and breakdown voltage. Low-noise devices tend to have better drift and CMRR characteristics than do other types of dual FETs. A low-noise FET can product the lowest noise operation of any FET when the generator impedance is below 1 to $10 \mathrm{M} \Omega$. For higher generator impedances, low-leakage FETs may well provide lower overall noise performance because of their lower noise current.

High frequency dual FETs have very high $g_{f s}$ and low capacitance. To achieve these characteristic leakage currents, breakdown voltage and the l_{G} breakpoint must be sacrificed. Because of these performance tradeoffs, high-frequency FETs should be used only when their high-gain bandwidth is a
design requirement. High-frequency FETs are usually of hybrid (two chip) construction rather than of a monolithic design, because of the significantly lower capacitances between the two chips.

General-purpose dual devices are often the best choice for FET input op amp applications, exhibiting good $g_{f s}$ and breakdown voltage and moderately low gos, leakage current, and capacitance. Generalpurpose dual FETs also tend to have low $\overline{\mathrm{e}}_{\mathrm{n}}$ and good CMRR and drift characteristics.

Representative geometries of the four types of FETs described preceding are shown in Figure 16, and provide a good insight into the relationship of device active area and performance characteristics.

When selecting any dual FET, two factors which affect the overall performance of the devices should be considered. One is the maximum value of $V_{G S \text { (off) }}$; a low maximum value of $V_{G S \text { (off) }}$ simplifies bias design and improves common-mode range, CMRR, offset and drift. The other factor is the offset of the device. Although any value of offset can be nulled out of a circuit, the nulling process itself degrades CMRR and the drift performance of the circuit.

Selecting the Op Amp Integrated Circuit

The monolithic IC op amp portion of a FET input op amp circuit either contributes to or solely determines five parameters of the complete circuit. For three of the parameters - offset, drift and noise - the contributions are diminished in the complete op amp circuit by the gain of the FET differential amplifier. In many circuits, however, these parameters are still significant and should not be ignored. Whenever possible, an IC op amp device should be chosen which specifies maximum values for $V_{O S}, l_{O S}, V_{d r i f t}$, e_{n} and i_{n}. Many IC op amp data sheets will provide only typical values for these parameters. Typical values can be in error by an order of magnitude, and almost inevitably vary from lot to lot.

One parameter which is usually ignored on IC op amp data sheets is so-called "popcorn noise". Even though this parameter is missing from the data sheet it is usually present in the op amp IC and can be quite troublesome in low noise designs. If low noise is a prime design criterion an op amp specified for low "popcorn noise" should be selected.

Figure 16. Four FET Geometries
All dimensions in inches (All dimensions in millimeters)

Two other circuit parameters, output impedance and slew rate, are determined entirely by the IC op amp portion of the circuit.

Biasing the FET preamplifier

After the proper FET has been selected and the op amp IC chosen for the second stage, the next consideration is the bias design of the FET preamplifier. The first objective in biasing a FET preamplifier is the determination of the correct FET operating current. Usually, this will be the manufacturer-recommended operating current of the FET, which can range from $30 \mu \mathrm{~A}$ for the low-leakage devices to $200 \mu \mathrm{~A}$ for general purpose or low-noise devices. If some other value of operating current is desired, two limiting factors exist and should be kept in mind.

The upper limit is the minimum value of IDSS for the type of FET selected, that is
I_{D} operating $\leq I_{\text {DSS }(m i n)}$

If a value of operating current greater than minimum IDSS is selected, the FETs will operate with forwardbiased gate-source junctions, and thus negate the low I_{G} characteristics of the circuit.

The lower limit for I_{D} is determined by the fact that $g_{f s}$ is related to I_{D} through the following equation
$g_{f s} \approx g_{f s o} \sqrt{\frac{I_{D}}{I_{D S S}}}$
where g_{fs} is the forward transconductance at $\mathrm{V}_{\mathrm{GS}}=$ 0 and $I_{D S S}, I_{D}$ is the operating current, I_{D} is the operating current, and lDSS is the drain current with $V_{G S}=0$.

For very small values of drain current, the transconductance and thus the gain become very small.

The next step in bias design is selection of the current source. The simplest means of establishing a current source is via a resistor. This method, however, has an inherent drawback in that the current will change as the common-mode voltage changes on the gates; offset, drift and CMRR are unfavorably affected.

A better approach to selection of a current source is to use an active device, such as a juction FET current limiter diode. These devices have very low g os and temperature coefficient; recommended types are the CR100 series of diodes.

In the case of the common-drain preamplifier, selection the the current sources completes the bias design. For the common-source preamplifier, however, the value of the drain resistor remains to be established. The value of these resistors affects offset, drift, noise, open-loop gain, current leakage, common-mode range, and bandwidth in the circuit. With the exception of the last two, these parameters will be improved if the resistors are as large as possible; the factor which ultimately limits resistor size is the voltage drop across them. Figure (17) shows a typical circuit employing this form of biasing.

Figure 17. Op Amp Circuit Biasing

Since the voltage drop across the drain resistors is $I_{C M} R_{D} / 2$, the voltage on the drains of the FETs is $V_{D Q}$ where
$V_{D Q}=V_{C C}-\frac{I_{C M} R_{D}}{2}$

It is important to insure that the voltage drop across the FET drain to the FET source is always greater than $V_{G S}$ (off). This is necessary for the FET to operate in the "pentode" or saturation region, where the drain current is relatively independent of the drain-tosource voltage. In this condition, the device g os will be low, and in turn will assure good offset and CMRR.

The maximum common mode bias voltage which can be applied to the gates without operating the FETs in the triode region is

$$
\begin{align*}
V_{G G(\max)} & =V_{C C}-\frac{I_{C M} R_{D}}{2} \\
& +V_{G S \text { (off)max }}+V_{G S \text { (on)max }} \tag{69}
\end{align*}
$$

Where $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ and $\mathrm{V}_{\mathrm{GS}(\mathrm{on})}$ are negative voltages and
$V_{G S \text { (on)max }} \approx V_{G S \text { (off) }}\left[1-\left(\frac{I_{D}}{I_{D S S}(\text { max })}\right)^{1 / 2}\right]$

However in most cases $\mathrm{V}_{\text {GS(on)max }}$ is approximately $\mathrm{V}_{\text {GS (off) }}$ max so
$V_{G G(\max)} \approx V_{C C}-\frac{I_{C M} R_{D}}{2}+V_{G S(\text { off }) \max }$

The minimum common mode voltage which can be applied to the gate is
$V_{G G(\min)}=V_{D D}+V_{C M(\max)}+V_{G S}(\min)$
when $V_{D D}$ and $V_{G S}(\min)$ are negatives voltages and $V_{G S}($ min $)=V_{G S(\text { off }) \text { min }}\left[1-\left(\frac{I_{D}}{I_{D S S}(\text { max })}\right)^{1 / 2}\right]$

But in most cases $V_{G S}(\min) \approx 0$ so
$V_{G G(\min)} \approx V_{D D}+V_{C M(\max)}$

Drain resistors should be of good quality, such as metal film, and should be mounted in close physical proximity to minimize temperature differentials. Temperature-induced resistance differentials of only hundredths of a percent can cause offsets of many millivolts.

APPENDIX A - DESIGN EXAMPLE

This Appendix deals with a typical FET input op amp design example, using a Slliconix U401 N-Channel junction FET. The U401 is designed to be operated with an I_{D} of $200 \mu \mathrm{~A}$ per device, or with an ICM of $400 \mu \mathrm{~A}$. A general-purpose operational amplifier should have a large common-mode range and good CMRR. These two requirements dictate that an active current source be used, such as the Siliconix CR043 current regulator diode. The CR043 is ideal for this purpose, with a nominal current value of $430 \mu \mathrm{~A} \pm 10 \%$ and a low temperature coefficient of less than $0.05 \% /{ }^{\circ} \mathrm{C}$ typically, or $0.2 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$.

General Purpose Design Example Circuit

Selection of drain resistor value involves a trade-off between preamplifier gain and common-mode range. Common-mode range decreases and gain increases proportionally to increased value of the drain resistor. If a voltage drop of 3 V across the drain resistors is
permissible, then the value of the drain resistors can be found by applying Ohm's Law, as in
$R_{D}=\frac{3 \mathrm{~V}}{200 \mu \mathrm{~A}}=15 \mathrm{k} \Omega$

Gain of the preamplifier will be as established in

Adiff $\approx-g_{f s} R_{D}$

From the U 401 data sheet, g_{fs} at $200 \mu \mathrm{~A}$ operating current varies from a minimum of $1000 \mu \mho$ to a maximum of $1600 \mu \mho$. For a worst-case design, the minimum value should be used:

Adiff $(\min) \approx\left(1 \times 10^{-3}\right) \cdot\left(1.5 \times 10^{4}\right)=15.0$

The maximum positive common-mode excursion can be calculated if the voltage drop across the drain resistors is subtracted and the device $V_{G S}$ (off) and the device $V_{G S(o n)}$ are added to the positive power supply voltage

$$
\begin{align*}
V_{G G(\max)} & =V_{C C}-\frac{I_{C M} R_{D}}{2} \tag{4}\\
& +V_{G S(\text { off })} \max +V_{G S(\text { on }) \max }
\end{align*}
$$

ICM can be up to $430 \mu \mathrm{~A}+10 \%=473 \mu \mathrm{~A}$. $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ max from the data sheet is given as 2.5 V , and $V_{G S}(0 n)$ may be obtained from Equation (64), preceding
$\mathrm{V}_{\mathrm{GS} \text { (on) } \text { max }} \approx \mathrm{V}_{\mathrm{GS} \text { (off) } \max }\left[1-\left(\frac{I_{D}}{I_{\mathrm{DSS}(\text { max }}}\right)^{1 / 2}\right]$

Maximum values of $V_{G S \text { (off) }}$ and $I_{D S S}$ will provide the maximum value of $V_{\text {GS }}$ (on)
$\mathrm{V}_{\mathrm{GS} \text { (on) } \max } \approx-2.5\left[1-\left(\frac{0.2}{10.0}\right)^{1 / 2}\right] \approx-2.2 \mathrm{~V}$
if $\pm 15 \mathrm{~V}$ supplied are used.
$V_{G G(\max)}=15-3.6-2.5-2.2=+6.7 \mathrm{~V}$
and
$V_{G G(\text { min })}=V_{D D}+V_{C M(\max)}+V_{G S(\text { min })}$
(8)
where $V_{D D}$ and $V_{G S}$ are negative numbers.
The CR043 data sheet indicates that a minimum knee impedance of $0.75 \mathrm{~m} \Omega$ occurs at $\mathrm{V}_{\mathrm{CM}}=6 \mathrm{~V}$. Thus
$V_{G G(\text { min })}=-15+6+V_{G S}($ min $)$
but
$V_{G S}(\min) \approx V_{G S(\text { off }) \min }\left[1-\left(\frac{I_{D}}{I_{D S S}(\text { min })}\right)^{1 / 2}\right]$
or
$V_{G S}(\min) \approx-(0.5)\left[1-(0.4)^{1 / 2}\right]$
$=-(0.5) \cdot(1-0.6)$
$=-(0.5) \cdot(0.4)=-0.20$
then
$V_{G G(\text { min })}=-15+6.0-0.2=-8.8 \mathrm{~V}$

If the U401 FET is used a $\mu \mathrm{A} 741$ bipolar op amp, the offset will be as established in Equation (13), preceding:
$E_{T i n} \approx E_{o s 1}+\frac{2 l_{o s}}{g_{f s}}+\frac{E_{o s 2}}{g_{f s R_{D}}}$

From the U 401 data sheet, $\mathrm{E}_{\mathrm{os} 1}=5 \mathrm{mV}$, and $\mathrm{g}_{\mathrm{fs}}(\mathrm{min})$ at $I_{D}=200 \mu \mathrm{~A}$ is $1000 \mu \mathrm{~J}$. From the op amp data sheet, Iso(max) is given as 200 nA . Therefore

$$
\begin{align*}
E_{\operatorname{Tin}(\max)} & =5 \times 10^{-3}+\frac{2\left(2 \times 10^{-7}\right)}{1 \times 10^{-3}} \tag{14}\\
& +\frac{5 \times 10^{-3}}{15.0} \approx 5.73 \mathrm{mV}
\end{align*}
$$

In Equation (14) preceding, drift was established as

$$
\begin{equation*}
\frac{E_{\mathrm{Tln}}}{\Delta T} \approx \frac{E_{\mathrm{os} 1}}{\Delta T}+\frac{2}{\mathrm{~g}_{\mathrm{fs}}}\left(\frac{\mathrm{l}_{\mathrm{os}}}{\Delta T}\right)+\frac{1}{\mathrm{~g}_{\mathrm{fs}} \mathrm{R}_{\mathrm{D}}}\left(\frac{\mathrm{E}_{\mathrm{os} 2}}{\Delta T}\right) \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\frac{E_{T i n}}{\Delta T} \approx 10 \times 10^{-6}+\frac{2\left(6 \times 10^{-10}\right)}{9 \times 10^{-4}}+\frac{1 \times 10^{-5}}{15.0} \tag{16}
\end{equation*}
$$

or
$\frac{\mathrm{E}_{\mathrm{Tin}}}{\Delta \mathrm{T}} \approx 12 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ worst case

Equation (17) assumes that the drain resistors are perfectly balanced.

For drain nulling, the value of the null potentiometer should be
$R_{N}=\frac{2 E_{T i n(\max)} g_{f s(\max) R_{D}}}{I_{C M(\min)}}$
or
$R_{N}=\frac{2\left(5.8 \times 10^{-3}\right)\left(1.6 \times 10^{-3}\right)\left(1.5 \times 10^{4}\right)}{3.87 \times 10^{-4}}$
or
$R_{N}=720 \Omega$

However, to this approximation for R_{N} must be added the maximum drain resistor unbalance, which is $2 \% R_{D}$ for 1% tolerance resistors or 300Ω. Thus $R_{N} \approx 1 \mathrm{k} \Omega$.

Equation (29) established total rms noise voltage attributable to the short circuit input noise voltage of the FET as

LPD-7
$\left|\bar{e}_{\mathrm{nT}}\right| \approx \sqrt{\left(\left|\bar{S}_{e 1}\right|-\left|\bar{S}_{e 2}\right|\right) f_{1} \ln \left(\frac{f_{a}}{f_{b}}\right)+\left|\bar{S}_{e 2}\right|\left(f_{b}-f_{a}\right)}$

From typical values given in the U401 data sheet, $\overline{\mathrm{S}}_{\mathrm{e} 1}=36 \times 10^{-18} \mathrm{~V}^{2} / \mathrm{Hz} ; \overline{\mathrm{S}}_{\mathrm{e} 2}=6.25 \times 10^{-18}$;
$f_{1}=10 \mathrm{~Hz} ; f_{2}=10 \mathrm{kHz}$; and if $\mathrm{f}_{\mathrm{a}}=1 \mathrm{~Hz}$ and $f_{b}=1 \mathrm{kHz}$, then,
$\left|\bar{e}_{\mathrm{n}}\right| \approx$

$$
\begin{equation*}
\sqrt{\left(3 \times 10^{-17}\right) 10(6.9)+\left(6.25 \times 10^{-18}\right)\left(1 \times 10^{3}\right)} \tag{21}
\end{equation*}
$$

or
$\left|\bar{\theta}_{\mathrm{nT}}\right| \approx \sqrt{2.07 \times 10^{-15}+6.25 \times 10^{-15}}$
and
$\left|\bar{e}_{\mathrm{nT}}\right| \approx \sqrt{83.2 \times 10^{-16}}=9.1 \times 10^{-8}=91 \mathrm{nV} \mathrm{rms}$.

In Equation (36), $\bar{i} n$ was established as
$\left|\bar{i}_{n}\right| \approx \sqrt{\left(\bar{S}_{i 1}\left|-\left|\bar{S}_{i 2}\right|\right) f_{1} \ln \left(\frac{f_{b}}{f_{a}}\right)+\left|\bar{S}_{i 2}\right|\left(f_{b}-f_{a}\right)\right.} ;$
and from the op amp data sheet, values are given so that $\bar{S}_{11}=5 \times 10^{-23}, \bar{S}_{i 2}=3 \times 10^{-25}$,
$f_{1}=10 \mathrm{~Hz}$ and $f_{2}=10 \mathrm{kHz}$. Therefore,
$\left|\bar{i}_{n}\right| \approx$

$$
\begin{equation*}
\sqrt{5 \times 10^{-23}(10)(6.9)+\left(3 \times 10^{-25}\right)\left(1 \times 10^{3}\right)} \tag{25}
\end{equation*}
$$

or
$\left|\bar{i}_{n}\right|=$
$6.2 \times 10^{-11} \mathrm{amps} \mathrm{rms}=62$ femtoamps rms.

Equation (35) preceding established that
$\left|\bar{e}_{n 2}\right| \approx \sqrt{\left(\left|\bar{S}_{e 1}\right|-\left|\bar{S}_{e 2}\right|\right) f_{1} \ln \left(\frac{f_{b}}{f_{a}}\right)+\left|\bar{S}_{e 2}\right|\left(f_{b}-f_{a}\right)} ;$
from the data sheet,
$\overline{\mathrm{S}}_{\mathrm{e} 1}=5 \times 10^{-15} \mathrm{~V}^{2} / \mathrm{Hz}, \overline{\mathrm{S}}_{\mathrm{e} 2}=4 \times 10^{-16} \mathrm{~V}^{2} / \mathrm{Hz}$, $f_{1}=10 \mathrm{~Hz}$ and $f_{2}=10 \mathrm{kHz}$. Therefore,
$\left|\bar{e}_{\mathrm{n} 2}\right| \approx$
$\sqrt{\left(4.6 \times 10^{-15}\right) 10 I_{n}(1000)+4 \times 10^{-16}\left(1 \times 10^{3}\right)}$
or
$\left|\overline{\mathrm{e}}_{\mathrm{n} 2}\right| \approx 8.47 \times 10^{-7} \mathrm{~V} \mathrm{rms}=847 \mathrm{nV} \mathrm{rms}$.

In Equation (33) preceding it was established that

$$
\begin{equation*}
\left|\overline{\mathrm{e}}_{\mathrm{Tdiff}}\right|=\sqrt{2}\left|\overline{\mathrm{e}}_{\mathrm{T}}\right|=1.4(91 \mathrm{nV})=129 \mathrm{nV} \tag{30}
\end{equation*}
$$

and from Equation (37) preceding, $\overline{\mathrm{e}} \mathrm{Tt}$ was defined as
$\left|\overline{\mathrm{e}}_{\mathrm{Tt}}\right|$

$$
\begin{equation*}
\approx \sqrt{\left|\bar{e}_{\mathrm{Tdiff}}\right|^{2}+\left(\frac{2\left|\bar{i}_{n}\right|}{g_{\mathrm{fs}}}\right)^{2}+\left(\frac{\left|\bar{e}_{\mathrm{n} 2}\right|}{g_{\mathrm{fs}} R_{D}}\right)^{2}} \tag{31}
\end{equation*}
$$

or

$$
\begin{align*}
\left|\overline{\mathrm{e}}_{\mathrm{Tt}}\right| \approx & \left\{\left(1.29 \times 10^{-7}\right)^{2}+\left[\frac{2\left(6.2 \times 10^{-11}\right)}{\left(1 \times 10^{-3}\right)}\right]^{2}+\right. \\
& \left.\left(\frac{8.47 \times 10^{-7}}{1.5 \times 10^{1}}\right)^{2}\right\}^{1 / 2} \tag{32}
\end{align*}
$$

or

Frequency Response

As defined in Equation (57) preceding, the output frequency of the preamplifier will be
$f_{\text {out }}=\frac{1}{2 \pi C_{\text {out }} R_{D}}$
where
$C_{\text {out }}=C_{\text {gd }}+C_{\text {load }}+C_{\text {stray }}$
or
$C_{\text {out }} \approx 5 \mathrm{pF}+2 \mathrm{pF}+5 \mathrm{pF} \approx 12 \mathrm{pF}$
and thus
$f_{\text {out }}=\frac{1}{(6.28)\left(1.5 \times 10^{4}\right)\left(1.2 \times 10^{-11}\right)}=880 \mathrm{kHz}$

The combined Bode plot of the preamplifier and the second stage is shown in Figure 18.

The Bode plot indicates that the op amp will be stable for any closed-loop gain of greater than 35 dB . For closed-loop gains of less than this value, one of the
numerous forms of op amp compensation must be used.

FREQUENCY (Hz)

Figure 18. Bode Plot of Preamplifier and Second Stage

PREVENTING LATCH-UP IN MONOLITHIC DUAL JFETS

Ed Oxner
Central Applications

Monolithic JFETs offer the designer unmatched performance for a wide range of applications. While their monolithic structure offers tight matching and good drift characteristics it can also lead to a regenerative current flow known as latch-up. Fortunately, it is completely preventable, but only with some understanding of the mechanism by which it occurs.

Figure 1. Cross-Sectional View of a Junction-Isolated Monolithic Dual JFET

Like CMOS, a monolithic JFET consists of multiple layers of both p - and n -doped silicon. Figure 1 offers a greatly simplified view. This construction technique is commonly called "junction isolation," so named for the fact that each junction in the monolithic structure is reverse biased. Ideally, junction isolation means a p-n junction will not conduct when a positive potential is applied to the n-doped region and a negative voltage is applied to the p-doped region. In practice, of course, there will be leakage currents.

Latch-up results when, as an unexpected result of normal functioning, conduction current flows that cannot be halted. This flow will stop only when the device burns out or power to the device is physically interrupted.

The potential for latch-up exists when a combination of p-n junctions forms an SCR - a silicon-controlled rectifier. An SCR consists of a pnp transistor and an npn transistor in a cascode arrangement as shown in Figure 2. SCR action occurs when the product of the individual current gains (Beta) of the npn and pnp
exceed unity. If the base of the npn is more positive than its emitter, the npn turns on. Likewise, if the base of the pnp is more negative than its emitter, it turns on. Consequently, a positive potential applied to the npn's base will turn it on. Conduction through the npn pulls the pnp's base below its emitter potential (base-negative with respect to the emitter) and the pnp turns on, while conduction through the pnp pulls the npn base high (positive), resulting in the regenerative latch-up effect. Physically interrupting conduction is the only way to stop this effect.

Figure 2. The Silicon-Controlled Rectifier, represented Symbolically and Electrically

In Figure 1's simplified cross-sectional view, both JFETs are junction-isolated from each other. The Figure shows a pair of n-channel JFETs with a p-doped region - representing the "back" gate - surrounded by an n-doped epi that forms an effective junctionisolated buffer between each JFET. This combination of p-n junctions, however, forms a potential SCR. This is more clearly shown in Figure 3.

The path in Figure 3 shows that SCR action will occur if either "back" gate is biased more positively than the opposing source (n-doped region) when the substrate is left floating.

Figure 3. Cross-Sectional View of a Junction-Isolated Monolithic Dual JFET Showing SCR Effect

In some cases, such a combination of biases does not exist and latch-up will not be a worry. However, in
many popular JFET applications, SCR action is entirely possible. Typical applications are shown in Figure 4.

As Figure 5 shows, preventing latch-up is simple. Bias the substrate at a positive potential equal to or greater than the positive potential of the uppermost gate. This prevents the parasitic pnp from conducting, and in turn halts any SCR action.

In the special case of a differential amplifier, substitute a current regulator for the source resistor. This not only ensures against latch-up but also improves the amplifier's common-mode rejection performance.

For monolithic dual JFETs available in the TO-78 case, pin 4 is the substrate. For the TO-71, the substrate is the can, and there is no pin connection. In this case, a bond to the can may be improvised with a spring clip; this is generally preferred to soldering a lead to the can.

CASCODE AMPLIFIER

CASCODE CONSTANT-CURRENT SOURCE FOLLOWER

Figure 4. Typical Circuits Where Latch-Up is Possible

CASCODE AMPLIFIER
SUBSTRATE CONNECTION TO-78 Pin 4 TO-71 Can

CASCODE CONSTANT-CURRENT SOURCE FOLLOWER

DIFFERENTIAL AMPLIFIER

Figure 5. Procedures to Prevent SCR Latch-Up

APPLICATIONS FOR THE 2N6908 SERIES JFET AMPLIFIER

Doyle Slack

INTRODUCTION

The Siliconix 2 N 6908 series is much more than a JFET; it is a complete monolithic amplifier circuit featuring a low-noise, low-leakage JFET and two parallel diodes from the gate of the device to the substrate. This application note will discuss the operation of the 2N6908 series and its uses and advantages. Also, several example circuits are included to show the 2N6908 series' versatility as an impedance matching circuit and/or small-signal amplifier.

DEVICE OPERATION AND SPECIFICATIONS

The $2 N 6908$ series (2N6908, 2N6909, 2N6910) incorporates the features of two of our more popular JFET products, producing a unique combination of low noise and low leakage. Two parallel diodes are con-
nected between the JFET gate and the substrate (which is tied to the fourth lead of the package). These diodes clip transient spikes and overvoltages, protecting the output of the circuit from sudden voltage fluctuations.

Figure 1 shows the two circuits and their connections to the leads of a TO-72 can. It also shows the pad layout and dimensions of the 2N6908 die for use in hybrid circuit applications. Added flexibillity can be achieved with the 2 N 6908 series when they are used as source-follower amplifiers. By varying the source resistor, a wide range of amplifiers can be designed - all featuring input protection. Table 1 shows some of the more important typical values for the 2N6908 series. A transfer characteristic graph is included in Figure 2 to give an idea of the operating range of the 2N6908 series.

Figure 1. Schematic Diagrams, Lead Connections, and Die Layout for the 2N6908 Series.

Table 1. Typical Values for discussed parameters of the 2N6908 series

Parameter	2N6908 Family	Test Conditions
Diode Leakage	$<2 \mathrm{pA}$	$V_{G 4}= \pm 100 \mathrm{mV}$
JFET Leakage	$<1 \mathrm{pA}$	$V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$
		$\mathrm{V}_{\mathrm{G} 4}=0 \mathrm{~V}$
Noise	$10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$\begin{aligned} V_{D S} & =10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ f & =10 \mathrm{~Hz} \end{aligned}$

Figure 1. Graph of the Transfer Characteristics of the 2N6908 series

ADVANTAGES AND APPLICATIONS

Several advantages of the 2 N6908 series - such as low noise, low leakage, and small size - have already been mentioned. These and other advantages over discrete amplifiers, including improvements in both circuit operation and ease of implementation, make this series very attractive:

1. A low-noise and low-leakage combination is effective in providing an extremely high input impedance and low loading. These characteristics allow connection to the outputs of high-impedance transducers with minimal signal loss and signal noise injection.
2. The diodes provide overvoltage protection for later stages. If voltage sensitive circuits follow the 2 N6908 series part, the maximum output swing of the 2N6908 source follower amplifier will be less than a diode forward voltage drop above or below ground potential if the fourth lead of the device is grounded.
3. Monolithic design reduces space requirements to a minimum, allowing circuit placement in locations that are often impossible for discrete amplifiers. It also reduces the possibility of noise insertion from nearby sources because the case of the part is normally grounded to provide an effective RF shield. Also, the 2 N6908 series' small die size makes it very attractive for use in hybrid circuits, such as those designed for hearing aids where minimizing space is an essential design factor.
4. Low-current/low-voltage capability makes the 2N6908 series amplifier ideal for battery operation. This is important for low-cost field operation and for portable equipment.

The most universal application of the 2N6908 series is in impedance matching for high-impedance sources (such as transducers) to low-impedance loads (such as transmission lines). Figure 3 demonstrates how simply the 2 N 6908 can solve the impedance problem. The input impedance of JFETs is typically in the range of $1000 \mathrm{G} \Omega\left(10^{12}\right)$ while the output impedance of the amplifier is set by the source resistor. In Figure 4, the 2 N 6908 is shown in a more specific application - as a preamplifier for an electret microphone.

Figure 3. 2N6908 Devices Connected As Impedance Transformers

Figure 4. Schematic Dlagram of An Audio Amplifier Using the 2 N 6908 As A Microphone Preamplifier

But what if an even lower load impedance, such as 50Ω, from a transmission line is to be used? Figure 5 shows how the output impedance of the source follower circuit can be lowered even more with the help of a bipolar transistor. The reflected resistance through the base of the bipolar is paralleled with the effective output resistance of the 2N6908 circuit to produce an output resistance of less than 60Ω and a voltage gain of better than $0.95 \mathrm{~V} / \mathrm{V}$. This allows both the source and load to be optimally matched with virtually no signal loss.
The bipolar-assisted source follower gives great flexibility by allowing interface between any ultra high-impedance source and a 50Ω load with virtually no signal loss or noise insertion. Some examples of ultra high-impedance transducers are electret microphones, input preamplifiers for hearing aids, accelerometers for military and industrial sensing, infrared sensors, and ion chambers such as those used for industrial radiation exposure monitors.

Figure 5. Schematic Diagram of the Bipolar Assisted Low Output Impedance SourceFollower Amplifier

Figure 6. Schematic Diagram of the 2N6908 Series Proximity Sensor

Another example of how the 2 N 6908 family could be used is given in Figure 6. Here, the 2N6908 series circuit input is connected to a capacitive field sensor (as simple as a piece of double sided circuit board). Any induced voltage change on the plates is fed to the input of the peak detector section of the op-amp circuit. The Schmitt trigger monitors the voltage across the capacitor and changes its output state when the capacitor voltage crossed the 2.5 V trigger point. The output from the Schmitt trigger switches between 0 and 5 V and is microprocessor-compatible for sensor applications, such as computer-controlled intruder alarms.

Another transducer interface problem occurs when high impedance measurement networks are connected to operational amplifiers for differential measurement. This can be solved by the circuit shown in Figure 7. Here a pair of 2 N 6908 series parts has been used to monitor a high-impedance bridge for an instrumentation amplifier. This circuit allows precision
measurement at low input signal levels and easy zeroing of the amplifier output.

Figure 7. Schematic Diagram of the Low Signal 2N6908 High Impedance Instrumentation Amplifier

Figure 8. Schematic Diagram of the 2 N 6908 Series Low Power Common Source Amplifier

Another use for the 2 N 6908 is in the common-source amplifier mode where low power or battery operation is important. Figure 8 shows a circuit that will operate in the $10-$ to $20-\mu \mathrm{A}$ range at a 12 V supply. voltage. The diode protection is still available in this configuration, but the circuit voltage gain will be between 10 and 20 V , with extremely low power consumption (approximately $250 \mu \mathrm{~W}$). This is very desirable for remote or battery operation where minimum maintenance is important.

CONCLUSION

With its low noise and low leakage combination, the 2N6908 series amplifier is an ideal circuit for impedance matching. Although this series has been de-
signed for source follower applications, it is flexible enough to be converted to any suitable amplifier design and still provide diode protection. There are many good reasons to include these devices in your designs, such as small size, outstanding performance, and reasonable cost, lower parts count, and higher reliability. These advantages make the 2N6908 series preferable for numerous small signal applications.

ANALOG SWITCHING USING FETS

SECTION 1: FETS AS ANALOG SWITCHES

INTRODUCTION

The past few years have seen a pronounced growth of analog/digital systems which employ integrated circuits. One of the interface elements in such a system is the digitally-controlled analog switch. As more and more applications arise for the analog switch, especially in the areas of industrial processing and control, the question is often asked: "Which is the best switch for my application?"

The sheer variety of applications precludes any pat answer to this question; however, the user of analog switches can gain valuable insight on the subject through an understanding of the nature of solid-state switches. Areas which require exploration include:

1. Base factors affecting switch performance.
2. Details of switch-driver circuit design.
3. Total switching characteristics of driver circuits and switches.
4. Characterization of the analog switch at high frequencies.

The intent of this section is to consider (1) above, in detail, with minor attention to the other areas.

Field-Effect Transistor Operation

The field-effect transistor (FET) is in effect a conductor whose cross-sectional area may be varied by the application of appropriate voltages. When the conducting area (the channel) is maximum, conductance is also maximum (minimum resistance). When the conducting area is minimum, conductance is minimum (maximum resistance). This phenomenon makes possible the use of FETs as analog switches. When conductance is maximum, the switch is in the ON state; when conductance is minimum, the switch is in the OFF state. In the ON state, an n-type channel contains n-type carriers; similarly, p-channel FETs contain p-type carriers. Cross-sections for three types of n-channel FETs are shown in Figure 1.

(A)

Figure 1. N-Channel FET Cross-Sections

P-channel FET cross-sections are quite similar, except that the channel contains p-type carriers and the voltage polarities are reversed. Depletion-mode devices are shown in Figures 1 A and 1B; these FET types have high channel conductance (are ON) with zero gate-channel voltage, and are characterized as "normally-ON" switches. An enhancement-mode FET is shown in Figure 1C. This device requires that voltage be applied to the control gate to create a conducting channel - the ON state. Enhancementmode FETs are said to be normally-OFF.

For enhancement-mode devices, channel conductance (gDs) is a function of length (L), width (W), thickness (T), carrier mobility (μ), and mobile carrier concentration (Nc):

$$
g_{D S}=K_{1} \frac{W T}{L} \mu N c
$$

Effective channel thickness and carrier concentration are functions of the electric field in the channel. Voltage on the control gate changes the field, and hence the channel conductance, gDS.

The gate voitage is applied with respeci to the channel (source or drain). In most devices, the function of the source and drain can be interchanged, because of symmetrical FET geometry. By convention, however, voltage is specified between gate and source, V_{GS}. Figure 2 shows the variation of g_{DS} with $V_{G S}$ for both n - and p-channel devices. In all cases, $g D S=1 / r D S$.

Figure 2. Channel Conductance vs Gate-Source Volatage

Note that the slopes ($\Delta \mathrm{g}_{\mathrm{DS}} / \Delta \mathrm{V}_{\mathrm{GS}}$) for all three types of n-channel FETs are constant and positive, while the slopes for the p-channel devices are constant and negative. n - and p-channel depletion-mode FETs are $O N$ when $V_{G S}=0$, while enhancement-mode devices of both types are OFF when $V_{G S}=0$. Typically, the cut-off voltage, V_{GS} (off), is designed to fall in the 1-to-10 volt range, while the gate-to-source threshold voltage, $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ - that amount of voltage applied to the point where the device begins to conduct - falls in the 1 -to- 5 volt range. Figure 2 also demonstrates that $g_{D S}$ is approximately a linear function of $V_{G S}$, with zero $g_{D S}$ occurring at $V_{G S}$ (off) or $V_{G S}(t h)$, as follows:

$$
\begin{array}{ll}
g_{D S}=K_{2} \mid V_{G S}-V_{G S} \text { (off) } \mid & \text { (depletion) } \\
g_{D S}=K_{2} \mid V_{G S}-V_{G S}(\text { th) } \mid & \text { (enhancement) }
\end{array}
$$

For a given active area, a junction FET (JFET) will have a higher conductance slope than a MOS FET. Additionally, n-channel carriers have higher mobility than p-type carriers. Thus, all things being equal, n type FETs have higher gDS ($=1 / r_{D S}$) than p-type devices. If the active area of the device is increased to raise the gDs level, three other FET parameters will also be increased: leakage, capacitance, and cost. The design tradeoffs of these latter parameters are discussed in this Application Note.

When a FET is used as an analog switch, the drain-to-source voltage, $V_{D S}$, may be either positive or negative. In the OFF state, a typical switch may have $\mathrm{V}_{\mathrm{DS}}= \pm 20 \mathrm{~V}$. In the ON state, current flows equally well from drain to source or from source to drain (the channel is resistor). For most applications, the voltage across the switch will be small.

Figure 3. DC Equivalent Circuits

DC Equivalent Circuits

The perfect switch would have infinite resistance (zero conductance) when open and zero resistance (infinite conductance) when closed. While the FET is not a perfect switch, there are many applications where this deviation from perfection is unimportant. This statement can be justified by an analysis of the implications of the circuits shown in Figure 3.

The general two-port network in Figure 3A couples the signal source, $\mathrm{V}_{\text {SIG }}$, to a resistive load, R_{L}. The network can be characterized by its terminal voltage and currents. V_{1}, V_{2}, I_{1}, and I_{2}. Figure $3 B$ shows the equivalent circuit of a FET switch in the OFF state. In this condition, the "source" and "drain" are not connected to one another; however, two leakage current sources, I_{S} and I_{D}, are present. The same device is shown in the ON state in Figure 3C. The following typical values are assumed for the circuit:
$V_{S I G}=10 \mathrm{~V}$ (full scale)
$I_{S}=I_{D}=1 \mathrm{nA}$
$r_{D S}=100 \Omega$
$R_{L}=200 \mathrm{k} \Omega$
$R_{S I G}=10 \Omega$

In the following calculations, leakage current (deviation from the state of a perfect switch) is expressed in terms of error percentage.

OFF Condition Calculation

(1) $I_{1}=I_{S}=1 n A$
$V_{S I G}-V_{1}=I_{1} \cdot R_{S I G}=(1 n A)(10 \Omega)=10 n V$
$\%$ Error in $\mathrm{V}_{1}=\frac{\left(10^{-8} \mathrm{~V}\right)\left(10^{2}\right)}{10 \mathrm{~V}}=1 \times 10^{-7} \%$
(2) $I_{2}=I_{D}=1 n A$
$V_{2 \text { (off) }}=I_{2} R_{L}=(1 \mathrm{nA})(200 \mathrm{k} \Omega)=-200 \mu \mathrm{~V}$
$\%$ Error in $\mathrm{V}_{2 \text { (off) }}{ }^{*}=\frac{\left(2 \times 10^{-4}\right)\left(10^{2}\right)}{10}=0.002 \%$

ON Condition Calculation

```
\(I_{1}=I_{s}+I_{D}-I_{2}\)
\(I_{2}=\frac{V_{2}}{R_{L}} \simeq \frac{V_{S I G}}{R_{L}+R_{S I G}+r_{D S}}\)
\(V_{S I G}-V_{2} \simeq=(50 \mu A)(110 \Omega)=5.5 \mathrm{mV}\)
\(\%\) Error in \(\mathrm{V}_{2}{ }^{*}=\frac{\left(5.5 \times 10^{-3}\right)\left(10^{2}\right)}{10}=5.5 \times 10^{2}=\)
                                    0.005 \%
* Referred to \(\mathrm{V}_{\text {SIG }}\) (full scale)
```

The foregoing calculations indicate that for all but the most critical applications the performance of the FET equivalent circuits in Figure 3 is a good approximation of the perfect switch. In particular, the OFF condition leakage currents contribute only a negligible portion of total error.

The actual error currents of three different types of FET switches are shown in Figure 4. The measured error is much lower than the $1 \mathrm{nA}(1000 \mathrm{pA})$ obtained from the sample calculations. These data are taken from a MOS FET, an n-channel JFET, and a complementary MOS (CMOS) combination including a p channel device and an n-channel device diffused onto the same substrate. The behavior of these FETs as elements of analog switching integrated circuits will be dealt with in detail elsewhere in this Application Note.

Figure 4. FET Switch Error Currents

The JFET as a Switch

A suitable driving circuit must be considered when assessing the performance of the JFET as a switch. Such a circuit is shown in Figure 5.

Figure 5. JFET Switch Control Circuit

Note that Q_{1} is an n-channel JFET, Q_{2} is an enhance-ment-mode p-channel MOS FET, and Q_{3} is an en-hancement-mode n-channel MOS FET. From Figure $2, V_{\text {IN }}$ of $-20 V$ will turn $Q_{2} O N$ and $Q_{3} O F F$, so that S_{1} and G_{1} are connected $N_{G S}=0 \mathrm{~V}$) and Q_{1} is $O N$. If V_{GS} is allowed to vary, $\mathrm{g}_{\mathrm{DS}}\left(=1 / \mathrm{r}_{\mathrm{DS}}\right)$ will also vary. This variation in resistance appears as a source of error when the switch is ON , and the error is defined as resistance modulation. In Figure 6, the error percentage in the case of resistance modulation is greater than that which occurs when $\Delta r_{D S}=0$.

The suggested driving circuit of Figure 5 eliminates $\Delta r_{\text {DS }}$ at low frequencies. The typical positive supply voltage is +10 V and the typical negative supply voltage is -20 V . In order for V_{GS} to change, current must flow through Q_{2}, which is $O N$. There are only two possible current paths through Q_{2}; (1), through
Q_{3}, which is OFF and subject only to variations in leakage current, or (2), into the gate of Q_{1}, which is also subject to leakage current. Since both paths through Q_{2} provide only negligible changes in V_{GS}, their effect in the circuit may be ignored. As the switching frequency is increased, capacitive reactance will provide lower impedance paths, so that some degree of $\Delta r_{\text {DS }}$ is possible. Thus two conditions contribute to $\Delta r_{D S}=0$ in the circuit. First, $V_{S I G}$ $\simeq V_{G 1}$, due to the low impedance between these points. Second, the output impedance of Q_{3} (driver output) is very large when compared to the RON of Q_{2}.

NO RESISTANCE
MODULATION:
$\%$ ERROR $=\frac{-100}{1+\frac{R_{L}}{r_{D S}}}$

Figure 6. Error Due to Switch ON-Resistance (r_{DS})

When $V_{I N}$ is $+10 \mathrm{~V}, \mathrm{Q}_{2}$ is OFF and Q_{3} is ON ; G_{1} is at -20 V and Q_{1} is OFF. In Figure 7, note that Q_{1} will remain OFF only so long as $V_{S I G}>V_{G 1}-V_{G S}$ (off) $)$. $V_{G S}$ (off) is a negative voltage for an n-channel FET; thus the negative analog signal is limited by the $V_{\mathrm{GS}(\mathrm{off})}$ of Q_{1} and the negative supply $\mathrm{V}_{\mathrm{G} 1} \simeq$ -20 V).

The ON condition is also shown in Figure 7. gDs is constant because with $\mathrm{V}_{\mathrm{G} 1}=\mathrm{V}_{\text {SIG }}$ imposed by the switch control circuit, $\mathrm{V}_{\mathrm{GS}} \simeq 0$.

Figure 7. Switch ON Condition

The MOS FET as a Switch

The p-channel enhancement-mode MOS FET is currently used in more applications than its n-channel counterpart. The consideration of MOS FET switch performance will thus center on p-channel devices.

The ON and OFF conditions of the MOS FET are analyzed in Figure 8. When the device is in the ON stage, note that the FET begins to turn ON when $V_{\text {SIG }}$ (V_{S} or V_{D}) becomes $V_{G S}(t h)$ volts more positive than V_{G} ($=-20 \mathrm{~V}$).

Figure 8. PMOS Channel Conductance ($r_{D S}$) vs Signal Voltage

Figure 8 also indicates that at any given point along the $g_{D S}$ vs $V_{\text {SIG }}$ curve, a unique value of $g_{D S}$ will be obtained. Assume that a battery is inserted between the source and the gate, with the source clamped to the body as shown in Figure 9.

Figure 9. "Floating" Battery and Clamped Source

A constant voltage between source and gate will produce a constant value of $g_{D S}$ vs $V_{\text {SIG }}$, provided that the body-to-source voltage is also constant. In a MOS FET, variation of the body-to-source voltage will also cause a modulation of g_{DS}. To further complicate the picture, several MOS FETs will have a common body when they are integrated on a single chip. Finally, the construction of a "floating battery" circuit is difficult. Thus MOS FET switch designers currently cope with the problem of $\Delta r_{\text {Ds }}$ by specifying ros for a given switch at several points over the entire analog voltage range.

Referring to the switch in the OFF condition $N_{G}=$ +10 V), it is apparent that no problem will exist until the source-to-body or drain-body diode becomes forward-biased.

The CMOS Switch

As noted previously, the typical PMOS switch circuit will exhibit a variation in ON conductance as the analog voltage is varied. This undesirable characteristic can be overcome by paralleling p - and n-channel FETs, as shown in Figure 10A. For the ON state, the n-channel gate is forced positive and the p-channel gate is forced negative. Figure 10 B shows the combined conductance of the two FET switches. The integrated combination of n-channel and p-channel devices on a common substrate is referred to as complementary MOS (CMOS).

(B)

PARALLEL P-MOS AND N-MOS (CMOS)

OFF CONDITION:

$V_{G}(\mathrm{n}$-TYPE $)=-15 \mathrm{~V}$
$V_{G}(p-T Y P E)=15 \mathrm{~V}$

(C)

Figure 10. Characteristics of CMOS Devices

The OFF condition for the CMOS device will be maintained so long as the channel-to-body diodes do not become forward-biased, as shown in Figure 10C.

The major advantages the CMOS construction technique makes to analog switching are:

- Lower rDS variation with analog signal characteristics, similar to the performance of a junction FET.
- Analog signal range extends to + and - supply voltages. For instance, using the same $\pm 15 \mathrm{~V}$ supplies typical of operational amplifiers, the signal-handling capability of the system is limited by the op amp, not by the switch.

Summary of FET Switch Performance and Tradeoffs

Figure 11 compares the performance of two switch types with respect to $r_{D S(o n)}$ vs $V_{S I G}$.

Figure 11. Performance of Three FET Switches

The curves in Figure 12 define the maximum ros (or $\Delta r_{\text {DS }}$) which can exist for a given allowable error percentage with a fixed value of R_{L}. Recall that in the circuit in Figure 3, a resistive load of $200 \mathrm{k} \Omega$ was assumed. If it is also assumed that an error level of 0.1% is tolerable, then $r_{D S}=200 \Omega$ is the maximum allowable switch resistance. On the other hand, if settling time is not critical, then an R_{L} of $1 \mathrm{M} \Omega$, yielding $r_{D S}=1 \mathrm{k} \Omega$ is permissible.

Figure 12. Tolerable Level of $\Delta r_{D S}$ and $r_{D S}$

In situations where settling time is indeed a design consideration, the circuits in Figure 13 will provide an overview of the exact nature of settling time for V_{2} (= V_{L}) at turn-OFF and turn-ON. For a turn-ON signal, C_{L} charges through ros. During turn-OFF, C_{L} discharges through R_{L}. For a system error level of $0.1 \%, R_{L}=1000 r_{D S}$; therefore, the maximum settling time for V_{2} occurs during turn-OFF.

Consider a switch with $\mathrm{C}_{S}=\mathrm{C}_{\mathrm{D}}=3 \mathrm{pF}$, for an application requiring 0.1% accuracy with $5 \mu \mathrm{~s}$ settling time. A typical stray capacitance ($\mathrm{C}_{\mathbb{I N}}$ for an op amp) may be 6 to 7 pF . Therefore, $\mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}+7 \mathrm{pF}=$ 10 pF . Resistance loads, R_{L}, of $100 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $25 \mathrm{k} \Omega$ are considered for the switch. The time required for an RC system to settle to within 0.1% of its final value is 6.9 time constants (6.9 RC). Table 1 shows the R_{L} and $r_{D S}$ values necessary to satisfy a number of settling time specifications. From Table 1, it is apparent that so long as $R_{L} \leq 72 \mathrm{k} \Omega$, the desired settling time of $5 \mu \mathrm{~s}$ will be achieved.

OPEN SWITCH CAPACITANCE

CLOSED SWITCH CAPACITANCE

CLOSED SWITCH CONTAINING STRAY CAPACITANCE

Figure 13. Switch Settling Time Equivalent Circuits

Table 1

$\begin{gathered} R_{L} \\ (\kappa \Omega) \end{gathered}$	rDs (Ω)	$\begin{gathered} C_{L} \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \operatorname{toN}\left(\mathrm{V}_{2}\right)^{\star \star} \\ (0.1 \% \text { settling time }) \\ (\mathrm{ns}) \end{gathered}$	toff $\left(V_{2}\right)^{* *}$ (0.1% settling time) ($\mu \mathrm{s}$)
25	25	10	1.72	1.72
50	50	10	3.45	3.45
* 72	72	10	5.00	5.00
100	100	10	6.90	6.90
* Maximum R_{L} for $t_{\text {set }}=5 \mu \mathrm{~s}$ * Does not include delay times				

If cost is a design constraint, it is wise to make a close analysis of actual system switch requirements. Too often, designers buy unnecessary performance capability. In Table 1, the switch with $\mathrm{r}_{\mathrm{DS}}=25 \Omega$ costs nearly twice as much as does the switch with $r_{D S}=50 \Omega$, yet either switch will meet the $5 \mu \mathrm{~s}$ settling time specification.

Switch Capacitance

In general, the lower the switch capacitance the better the switching time and high-frequency isolation performance.

The simplified representation of switch capacitance shown in Figure 13 can be used to provide a very good estimate of what problems (if any) will be caused by switch capacitance in a given application.

In general, capacitance is proportional to the active area in a FET chip, prior to bonding onto a header. Additional stray capacitances are introduced when the leads are brought out through the device package. Thus, as lower $r_{D S}$ (higher $g_{D S}$) is required, the active area is generally increased to obtain that parameter. The increase in area leads to an increase in capacitance.

The foregoing statements are true so long as one is dealing with a given device type. However, in transition from a JFET to a PMOS device, a significant difference will be observed in the active areas required for a given rds. Figure 14 compares the area of a JFET (from the hybrid DG181 circuit) and the monolithic PMOS circuit. Note that the rDs for the JFET is approximately one-third that of the PMOS device,
while the active PMOS area is almost three times greater than that of the JFET. Yet the ratio of PMOS-to-JFET capacitance is almost $2: 1$.

MOS-FET (PMOS)

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{DS}}=42 \Omega \\
& \mathrm{AREA}=489.6 \mathrm{MIL}^{2} \\
& \mathrm{C}_{\mathrm{D}}=10 \mathrm{pF}
\end{aligned}
$$

$r_{D S}=15 \Omega$
AREA $=176.7 \mathrm{MIL}^{2}$
$C_{D}=6 \mathrm{pF}$

Figure 14. Active Area Comparison of PMOS and JFET Switches

Switch Comparison

A comparison between the characteristics of the three types of JFET switches is made in Table 2.

Table 2

Switch Type	Analog Signal Range	ros	$\Delta \mathrm{r} D \mathrm{~S}$	Leakage ID or Is
PMOS	$\left(V_{-}-V_{G S}(\right.$ th $\left.) ~\right)<V_{S I G}{ }^{*}$	High	High	Low
JFET	$\left(V_{-}-V_{G S}(\right.$ off $)$) $<V_{S I G}{ }^{*}$	Low	Low	Low
CMOS	$V_{-} \leq V_{\text {SIG }} \leq \mathrm{V}_{+}$	Med.	Med.	Low

[^57]This section of this Application Note has surveyed the characteristics of FET switches and their associated drivers. In considering the FET as an analog switch, discussion has largely centered on the devices themselves, including specific load problems and applicable driver circuits. Total switch performance is a function of the switch and the switch driver. Typically, high-performance switch drivers require numerous switching transistors. When discrete devices are considered, the total parts count will be high and the cost will be prohibitive. From the standpoint of cost, improved performance, and smaller size, the integrated circuit FET switch and driver is often the superior choice.

SECTION 2: DMOS FET ANALOG SWITCHES AND SWITCH ARRAYS

INTRODUCTION

This section of this Application Note describes in detail the principle of operation of the SD5000/210 series of high-speed analog switches, switch arrays, and drivers. It also contains an explanation of the most important switch characteristics. Application examples, test data, and other application hints are included.

Description

The Siliconix SD210 and SD5000 series are single and quad monolithic arrays, respectively, of single-pole single-throw analog switches. The switches are n channel enhancement-mode silicon field-effect transistors that are built using double-diffusion silicon-gate technology.

This family of devices is designed to handle a wide variety of video, fast ATE and telecom, analog switching applications. They are capable of ultrafast switching speeds ($t_{r}=1 \mathrm{~ns}, \mathrm{t}_{\mathrm{OFF}}=9 \mathrm{~ns}$) and excellent transient response. Thanks to the reduced parasitic capacitances, DMOS can handle wideband signals with high OFF-isolation and minimum crosstalk.

The SD210 series of single-channel FETs is available non-zenered to reduce leakage and in Zener protected versions to reduce electrostatic discharge hazards. The SD5000 series is presented in 16-lead dual in-line plastic or side braze ceramic packages,
as well as in 14-lead SOT plastic packages. Analog signal voltage ranges up to $\pm 10 \mathrm{~V}$ and frequencies up to 1 GHz can be controlled.

Applications

Thanks to the fast switching speeds, low ON-state resistance, high channel-to-channel isolation, low capacitance, and low charge injection, these DMOS devices are especially well suited for a variety of applications such as: high-speed video/audio switching, fast analog or digital signal multiplexing, sample and hold, choppers, etc.

A few of the many possible application areas for DMOS analog switches (and their improved characteristics) are listed below:

1. Video and RF switching (high speed, high off-isolation, low cross-talk):

- Multiple video distribution networks
- Sampling scanners for RF systems

2. Audio routing (glitch-and noise-free)

- High-speed switching
- Audio switching systems using digitized remote control

3. Data acquisition (high speed, low charge injection, low leakage):

- High-speed sample and hold
- Audio and communication analog-to-digital converters

4. Other:

- Digital switching
- PCM distribution networks
- UHF Amplifiers
- VHF Modulators and Double-Balanced Mixers
- High-speed inverters/drivers
- Switched capacitor filters
- Choppers

Principle Of Operation

The electrical symbol shown in Figure 15 provides several important bits of information: It depicts an n channel enhancement-mode device with an insulated gate and asymmetrical structure. The gate protection Zener is shown with broken lines to indicate that, although it is present on the chip, it is not a main constituent of the fundamental switch structure.

Figure 15. DMOS Electrical Symbol

Each switch is a DMOS n-channel field-effect transistor of the enhancement-mode type: that is, the device is normally OFF when gate-to-source voltage $\left.N_{G S}\right)$ is 0 V . The lateral double-diffused MOS (DMOS) transistor, shown in cross-section in Figure 16, has three terminals (source, gate, and drain) on the top surface and one (the body or substrate) on the bottom of the chip. A Zener diode with a breakdown voltage of approximately 40 V is added to protect the gate against overvoltage and electrostatic discharges.

The double-diffusion process creates a thin selfaligning region of p-type material, isolating the source from the drain region. The very short channel length that results between the two junction depths permit achieving extremely low source-to-drain and gate-to-drain capacitances at the same time that provides good breakdown voltages.

The silicon-gate process allows for high manufacturing repeatability and very stable performance without the instabilities associated with the metal-gate technique.

Figure 16. Cross-sectional View of the Idealized DMOS Structure

When the gate potential is equal to or negative with respect to the source, the switch is OFF. In this state, the p-type material in the channel forms two back-to-back diodes and prevents channel conduction (Figure 17a). If a voltage is applied between the S and D regions, only a small junction leakage current will flow.

(A) EQIUIVALENT "OFF" CIRCUIT

(B) EQUIVALENT "ON" CIRCUIT

Figure 17.

The oxide insulator present between gate and source forms a small capacitor that accumulates charge. If the gate-to-source potential (V_{GS}) is made positive, the capacitive effect attracts electrons to the channel area immediately adjacent to gate oxide. As $V_{G S}$ increases, the electron density in the channel will exceed the hole density, and the channel becomes an n-type region. As the channel conductivity is enhanced, the $n-n-n$ structure then becomes a simple silicon resistor through which current can easily flow in either direction. Figure 18 shows the normal mode of operation of a single switch for $\pm 10 \mathrm{~V}$ analog signal processing. Note that the source is recommended for the input since feedback or reverse transfer capacitance is lower when the drain is used as the output. In this case, the gate is driven by $+20,-10 \mathrm{~V}$ for which an SD5200, SD210, or D211 could be used.

Figure 18. Normal Switch Configuration for $\pm 10 \mathrm{~V}$ Analog Switch

As can be seen from Figures 17a and 17b, the bodysource and body-drain pn junction should be kept reverse biased at all times: otherwise, signal clipping and even device damage may occur if unlimited currents are allowed to flow. Body biasing is conveniently set, in most cases, by connecting the substrate to V -.

Main Switch Characteristics

r DS(on)

ON-channel resistance is controlled by the electric field present across and along the channel. Channel resistance is mainly determined by the gate-tosource voltage difference. When $V_{G S}$ exceeds the threshold voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$, the FET starts to turn on.

Numerous applications call for switching a point to ground. In these cases the source and substrate are connected to ground and a gate voltage of 3 to 4 V is sufficient to ensure switching action.

With a $V_{G S}$ in excess of +5 V , a low resistance path exists between the source and the drain. The circuit shown in Figure 18 exhibits the rDS(on) vs. analog signal voltage relationship shown in Figure 19.

Figure 19. ON-Resistance Characteristics
When the analog signal excursion is large (for example $\pm 10 \mathrm{~V}$) the ON-channel resistance changes as a function of signal level. To achieve minimum distortion, this ON-channel resistance modulation should be kept in mind, and the amount of resistance in series with the switch should be properly sized. For instance, if the switch resistance varies between 20Ω and 30Ω over the signal range and the switch is in series with a 200-load, the result will be a total $\Delta R=$ 4.5%. Whereas, if the load is $100 \mathrm{k} \Omega, \Delta R$ will only be 0.01\%.

Threshold Voltage

The threshold voltage (V_{T}) is a parameter used to describe how much voltage is needed to initiate channel conduction. Figure 20 shows the applicable test configuration. In this circuit, it is worth noting, for instance, that if the device has $\mathrm{V}_{\mathrm{T}}=0.5 \mathrm{~V}$, when $\mathrm{V}+=0.5 \mathrm{~V}$, the channel resistance will be:
$R_{\text {channel }}=\frac{0.5 \mathrm{~V}}{1 \mu \mathrm{~A}}=500 \mathrm{k} \Omega$

LPD-10

Figure 20. Threshold Voltage Test Configuration

Body Effect

For a MOSFET with a uniformly doped substrate, the threshold voltage is proportional to the square root of the applied source-to-body voltage. The SD5000 family has a non-uniform substrate, and the V_{T} behaves somewhat differently. Figure 21 shows the typical V_{T} variation as a function of the source-tobody voltage V_{SB}.

As the body voltage increases in the negative direction, the threshold goes up. In consequence, if V_{GS} is small, the ON-resistance of the channel can be very high. Figure 22 shows the effects of $V_{S B}$ and $V_{G S}$ on RON. Therefore, to maintain a low ON-resistance it is preferable to bias the body to a voltage close to the negative peaks of V_{S} and use a gate voltage as high as possible.

Charge Injection

Charge injection describes that phenomenon by which a voltage excursion of the gate produces an injection of electric charges via the gate-to-drain and the gate-to-source capacitances into the analog signal path. Another popular name for this phenomenon is "switching spikes."

Since these DMOS devices are asymmetrical ${ }^{1}$, the charge injected into the S and D terminals are different. Typical parasitic capacitances are on the order of 0.2 pF for C_{DG} and 1.5 pF for C_{SG}.

[^58]

Figure 21. Threshold vs Source-to-Body Voltage

Figure 22. ON-Resistance vs Source-to-Body and Gate-to-Source Voltages

Another factor that influences the amount of charge injected is the amplitude of the gate-voltage excursion. This is a directly proportional relationship: the larger the excursion, the larger the injected charge. This can be seen by comparing curves (a) and (c) in Figure 23. One other variable to consider is the rate of gate-voltage change: Large amounts of charge are injected when faster rise and fall times are present at the gate. This is shown by curves (a) and (b) in Figure 23.

Figure 23. SD5000 Charge Injection

Switching spikes occur at switch turn-on as well as turn-off time. When the switch turns on, the charge injection effect is minimized by the usually low signalsource impedance. This low impedance tends to produce a rapid decay of the extra charge introduced in the channel. At turn-off, however, the injected charge might become stored in a sampling capacitor and create offsets and errors. These errors will have a magnitude that is inversely proportional to the magnitude of the holding capacitance.

Figure 23 illustrates several typical charge injection characteristics. Figure 24 shows some of the corresponding waveforms. The DMOS devices, thanks to their inherent low parasitic capacitances, produce very low charge injection when compared to other analog switches, either PMOS, CMOS, JFET, BIFET etc. Still, when the offsets created are unacceptable, charge injection compensation techniques exist that eliminate or minimize them. The solution basically consists of injecting another charge of equal amplitude but opposite polarity at the time when the switch turns off.

Figure 24. Waveforms for points (1) and (2) of Figure 7

Off-isolation And Crosstalk

The dc ON-state resistance is typically 30Ω and the OFF-state resistance is typically $10^{10} \Omega$, which results in an OFF-state to ON-state resistance ratio in excess of 10^{8}. However, for video and VHF switching applications, the upper usable frequency limit is
determined by how much of the incoming signal is coupled through the parasitic capacitances and appears at the switch output when ideally no signal should appear there, in the OFF state.

Off-Isolation is defined by the formula:
Off-Isolation $(d B)=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
When several analog switches are simultaneously being used to control high frequency signals, crosstalk becomes a very important characteristic. For video applications, the stray signal coupled via parasitic capacitances to the signal of an adjacent channel can form ghosts and signal interference. To help obtain high degrees of isolation, it becomes necessary to exercise careful circuit layout, reducing parasitic capacitive and inductive couplings, and to use proper shielding and bypassing techniques. Figure 25 shows the excellent off-isolation and crosstalk performance typical of this family of DMOS analog switches.

Figure 25. SD5000 Crosstalk and OFFIsolation vs Frequency

Insertion Loss

At low frequencies, the attenuation caused by the switch is a function of its ON -state resistance and the load impedance. They form a simple series voltage divider network. As an example, for a 600Ω load impedance the insertion loss for voice signals ($1 \mathrm{~V}_{\mathrm{RMS}}$ at 3 kHz) is less than 0.3 dB . Thus, the SD5000 series make good telephone crosspoint switches.

Speed

Because the ON-state resistance and input capacitance are low, the DMOS switches are capable of subnanosecond switching speeds. At these speeds the external circuit rather than the FET itself is often responsible for the rise and fall times that can be obtained. Let's consider the switching test circuit of Figure 26. At turn-on, the fall time observed at the drain is a function of R_{G} and of the input pulse amplitude and rise time. The sooner C_{Gs} reaches V_{T}, the sooner turn-on will occur, and the lower the ros(on) reached, the faster $C_{D S}$ will be discharged.

Figure 26. Switching Test Circuit

The turn-off time (or the rise time of V_{D}) is not as much limited by the velocity at which C_{GS} can be discharged by the gate control pulse, as it is by the time it takes to charge up $C_{D S}$ and $C_{D G}$ via the load resistor R_{L}. Table 3 shows typical performance obtained. It is important to realize that stray capacitance and parasitic inductances as well as scope probe capacitance can seriously affect the rises and fall times (switching speed).

Table 3 Typical Switching Times

$V_{D D}$ (V)	R_{L} (Ω)	$t_{d}(o n)$ $(n s)$	t_{r} $(n s)$	${ }^{*} t_{\text {OFF }}$ $(n s)$		
5	680	0.6	0.7	9.0		
10	680	0.7	0.8	9.0		
15	1 K	0.9	1.0	14.0	${ }^{\text {*tofF is dependent on } R_{L} \text { and does not depend }}$	on the device characteristics
:---						

Drivers

The switch driver's function is to translate logic control levels, (either TTL, CMOS or ECL) into the appropriate voltages needed at the gate so that the switch can be turned ON or OFF.

The SD5200 operates as an inverter capable of driving up to 30 V . This high voltage rating, together with its high speed, make it an ideal driver for the other members of the SD5000 family. Figure 27 shows this and several other driving methods. The Siliconix D169 is a convenient TTL compatible driver.

Since switching times depend on the C_{GS} charge/discharge times, it is important to note that the driver's current source/sink capability plays a very important roll in the process.

(B)

* USED WITH OPEN COLLECTOR TTL (OPTIONAL)

Figure 27. Various DMOS Drivers

Figure 27. Various DMOS Drivers

Figure 28. 5 MHz Multiplexer and Sample-andHold Circuit

Design Idea

In a typical application, the circuit of Figure 28 is used to multiplex, sample, and hold two analog signals at a $5-\mathrm{MHz}$ rate. Two of the switches in an SD5000 are used as level shifter/drivers to provide the gate drive of the single-pole-double-throw arrangement formed by switches 3 and 4. Capacitors C1 and C2 provide charge injection compensation.

Signal 1 is a $6-\mathrm{V}, 156 \mathrm{kHz}$ square wave. Signal 2 is a $2-\mathrm{Vpp}, 78-\mathrm{kHz}$ alternating waveform with a dc offset of -3.4 V (Figure 29).

Figure 29. The Two Analog Signals to be Sampled

Figure 30. Composite Sample and Hold Output Along with Gate 3 Control Signal

Figure 30 illustrates the resulting composite waveform present at the holding capacitor along with the gate 3 control signal.

As can be seen, the switching times are about 15 ns , the acquisition time is 80 ns , and the holding time is about 90 ns . The total sample-and-hold cycle has taken 200 ns. Even though not maximized, this speed is faster than what any other presently available (50 ns) analog switch products can achieve.

Figure 31. Gate Control Signals for the SPDT Switch Configuration

The timing and amplitude of gate 3 and gate 4 con-trol-signals can be examined in Figure 31.

Figure 32 shows a single-pole-single-throw configuration used to select one of two AM modulated $10-\mathrm{MHz}$ signals. Figure 33 illustrates the two waveforms available at the output. Table 4 contains typical values of crosstalk and off-isolation attainable with this configuration.

Figure 32. High Frequency SPDT Switch

Table 4 SPDT Switch Performance

FREQ (Hz)	SIG LVL (dBm)	INS LOSS (dB)	OFF ISOL (dB)	XTALK (dB)
100 k	0	1.8	80	113
1 M	0	1.8	70	92
5 M	0	1.9	69	69
10 M	0	2.0	61	65
10 M	6	2.0	61	66
10 M	12	2.0	61	66

CH 2 ON

Figure 33. Two 10 MHz AM Modulated Outputs for the SPDT Switch of Figure 28

SUBNANOSECOND SWITCHING WITH DMOS FETS

Ed Oxner

Despite the popularity of gallium arsenide devices for high frequency applications, the silicon double-diffused MOSFET is easily capable of subnanosecond switching. This note describes ilmitations once attributed to high-speed DMOS switching and offers a novel driver that makes subnanosecond switching possible with Siliconix DMOS FETs.

All majority-carrier transistors have fast switching times, especially when their interelectrode (parasitic) capacitances are low. Both turn-on and turn-off times are controlled by the application or removal of gate charge. Knowing this, it seems small-signal DMOS FETs should switch off at a speed very nearly equal to turn-on. The fact is that they do, but only under the proper conditions.

Table 1. Small Signal Capacitances

	TYP $(p F)$	MAX $(p F)$
Gate Node C $(G S+G D+G B)$	2.5	3.5
Drain Node C $(G D+D B)$	1.1	1.5
Source Node $\left.\mathrm{C}_{(\mathrm{GS}}+\mathrm{SB}\right)$	3.7	5.5
Reverse Transfer $\mathrm{CDG}_{\mathrm{DG}}$	0.2	0.5

Table 1 shows capacitance characteristics for the SD210DE series from their data sheets. The characteristics of the SD211 and SD5000 are nearly identical.

The original data sheets also included the switching characteristics offered at various drain voltages
($V_{D D}$) and load resistances (R_{L}), as shown in Table 2.

The Probiem

The data sheet values for toff are much too high. If DMOS turn-off and turn-on times are essentially equal, the measured toff can only be a circuit problem.

Before this problem can be dealt with, switching parameters must be defined. This may be done using the switching waveform shown in Figure 1 as a guide. Notice that the turn-on time parameters are measured from the input's 50% point, similar to the definition in digital circuitry. However, the turn-off time parameters are measured from the input voltage's 90% point.

Figure 1. Typical Switching Waveform

Table 2. Switching Characteristics

$V_{D D}$	R_{L} (Ω)	$\mathbf{t}_{\mathrm{d}(\mathrm{ON})}$ (ns)	\mathbf{t}_{r} (ns)	$\mathbf{t}_{\mathrm{OFF}}{ }^{1}$ $(\mathrm{~ns})$
5	680	0.6	0.7	9.0
10	680	0.7	0.8	9.0
15	1 K	0.9	1.0	14.0

[^59]To confirm that toFF is a circuit-related problem, use the data sheet's test circuit (see Figure 2).

Figure 2. Switching Time Test Circuit

For $V_{D D}=10 \mathrm{~V}$; $R_{L}=680 \Omega$. Let t_{r} for the SD210DE be $\sim 0.8 \mathrm{~ns}$ and t_{f} for the circuit ${ }^{2}$ be $\sim 9.0 \mathrm{~ns}$. For the external circuit, t_{f} is merely the difference, $\sim 8.2 \mathrm{~ns}$.

The traditional time-constant equation is

$$
\begin{equation*}
\mathrm{t}=2.2 \times \mathrm{R} \times \mathrm{C} \tag{1}
\end{equation*}
$$

Substituting known quantities into this equation yields

$$
t=2.2 \times 680 \times C=8.2 \mathrm{E}-9
$$

Solving for C yields $\quad C=5.48 \mathrm{pF}$

To achieve a t_{f} of 8.2 ns requires approximately 5.48 pF of capacitance in the drain circuit.

First, consider stray and parasitic capacitances in the circuit layout and in the instrumentation. These can be itemized as

$$
\begin{aligned}
C \text { stray } & =0.5 \mathrm{pF} \\
C \text { of } R_{L} & =1.0 \mathrm{pF} \\
C \text { scope } & =2.0 \mathrm{pF} \\
& \sim 3.5 \mathrm{pF}
\end{aligned}
$$

Add the drain-node capacitance to the total capacitance, but do not use the value from the data sheet.

Drain-node capacitance is a complex function of both the reverse transfer characteristics of the $\operatorname{FET}\left(-\mathrm{b}_{21}\right)$ and the movement of the drain-depletion region. The drain-node capacitance is best defined using

$$
\begin{equation*}
C_{\text {drain-node }}=C_{D G}\left(A_{V}+1\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{V}=g_{f s} \times R_{L} \tag{3}
\end{equation*}
$$

The operating drain current is calculated from ohm's law:

$$
\begin{equation*}
I_{D}=\frac{V_{D D}}{R_{L}} \tag{4}
\end{equation*}
$$

For values offered in Table 2, $I_{D}=15 \mathrm{~mA}$, for $V_{D D}=$ 10 V (with $R_{L}=680 \Omega$) and $V_{D D}=15 \mathrm{~V}$ (with $R_{L}=$ $1 \mathrm{k} \Omega$).

At an I_{D} of 15 mA , the forward transconductance $\left(g_{f s}\right)$ has been determined, from Figure 3, to be nominally 10.8 mS . Knowing the transconductance and load resistance, the drain-node capacitance can be calculated using Equations (2) and (3).

Figure 3. Effect of Drain Current on Transconductance

Using Equations (2) and (3) as described, if $R_{L}=$ $680 \Omega, A_{V}=7.34$, and if $R_{L}=1 \mathrm{k} \Omega, A_{V}=10.8$. Assume, in this case, that $C_{D G}$ is 0.23 pF . The nominal contribution (for $R_{L}=680 \Omega$ and $A_{V}=7.34$) would be

[^60]Add this 1.92 pF to the calculated stray capacitances (3.5 pF) for a total of 5.42 pF . This agrees closely with the calculated value for drain-circuit capacitance (5.48 pF).

This analysis can now be applied to the $1-k \Omega$ load. From Table 2, for $R_{L}=1 \mathrm{k} \Omega$, tofF $-\mathrm{t}_{\mathrm{r}}=13.0 \mathrm{~ns}$.

The stray capacitances, aside from the drain-node capacitance, remain at 3.5 pF . The drain-node capacitance, as before, depends upon the reverse transfer characteristics.

To calculate the drain-node capacitance, use Equation (2), first calculating the voltage gain (Av) using Equation (3).

For $R_{L}=1 \mathrm{k} \Omega$ and $A_{V}=10.8$,

$$
\begin{aligned}
& \mathrm{C}_{\text {drain-node }}=(0.23 \mathrm{E}-12)(10.8+1) \\
& \text { Cdrain-node }^{\text {d }}=2.71 \mathrm{pF}
\end{aligned}
$$

The total drain capacitance is $3.5 \mathrm{pF}+2.71 \mathrm{pF}$ or 6.21 pF . Use this to calculate the switching time, t_{f}, from Equation (1).

$$
\begin{aligned}
& t=2.2 \times 1000 \times 6.21 \mathrm{E}-12 \\
& \mathrm{t}=13.7 \mathrm{~ns}
\end{aligned}
$$

This is reasonably close to 14 ns , the value shown in Table 2.

The Solution

First, the test circuit shown in Figure 2 was modified to remove the effects of scope-probe capacitance (see Figure 4 for the modified circuit). As R_{L} was varied and t_{f} was monitored, the equivalent external capacitance was calculated using Equation (1) and the t_{f} scope plots (Figures 5-8). Table 3 displays the results.

Figure 4. Switching Speed Test Monitor

Figure 7. Fall Time for $R_{L}=271 \Omega$

Using Table 3's data, compute the capacitance using Equations (2) and (3). The results, shown in Table 4, become the new drain-node capacitance, replacing that originally offered in Table 1.

Estimating stray drain-circuit capacitance for the modified switching-speed test monitor in Figure 4 yields 2.5 pF . Add the calculated drain-node capacitance ($C_{\text {DN }}$ from Table 4). This calculated value for total capacitance closely agrees with $C_{\text {(equiv) }}$ from Table 3; furthermore, t_{f} agrees remarkably well with that measured, as shown in Table 5.
(V)

Figure 8. Fall Time for $R_{L}=151 \Omega$

Table 4.
Switching Characteristics,
Featuring New Drain-Node Capacity

$V_{D D}$ $(\mathrm{~V})$	R_{L} (Ω)	$\mathrm{I}_{\mathrm{D}}{ }^{*}$ $(\mathrm{~mA})$	$\mathrm{g}_{\mathrm{ss}} * *$ $(\mathrm{~ms})$	C_{DN} (pF)
10	671	15	10.8	1.90
10	481	27	11.2	1.47
10	271	37	12.0	0.978
10	151	66	12.5	0.665

* pulsed drain current
** from Figure 3

Table 5.
Switching Characteristics, Featuring Calculated and Measured Times

$V_{D D}$ (V)	R_{L} (Ω)	C_{T} $(p F)$	t_{f} (calc) $(n s)$	t_{f} (meas) $(n s)$
10	671	4.4	6.5	6.5
10	481	3.97	4.2	4.32
10	271	3.48	2.07	2.11
10	151	3.16	1.05	1.04

These switching time data are graphed in Figure 9, extrapolated to show the switching time at a drain load of 51Ω.

Figure 9. Fall times, Calculated and Measured

These results make it clear that turn-off is affected principally by circuit-related parameters. DMOS itself switches extremely fast, but the driver's and the circuit's effectiveness slow it down.

Driving the DMOS FET Fast

DMOS properties suggest that its devices can switch fast, and the preceding analysis confirms that they can. However, the question of how to attain these speeds remains. The answer lies in controlling the circuit parameters that surround the DMOS FET. The small-signal DMOS FET has low interelectrode capacitances. Switching involves charge transfer; the lower the value of capacity, the lower the charge transferred. For example, the current required to charge a capacitor is

$$
i=C \frac{d V}{d t}
$$

where
$\mathrm{dV} \quad$ is the final voltage desired
dt is the switching time in seconds

Thus, to get the DMOS FET to switch fast, not only must the gate drive voltage have quick rise and fall times. but it must also have sufficient current drive to charge and discharge the gate.

Achieving a High-Speed Pulse

The step-recovery (or "snap") diode is a varactor diode with the normal ability to accumulate minority carriers during forward conduction, but with the unique ability of nearly instantaneous "snap," recovery. Under proper constraints this snap characteristic generates a very rapid, high-amplitude voltage spike. Selecting the snap-recovery diode involves two parameters: the minority carrier lifetime, which sets the lower input frequency, and the voltage breakdown of the diode, which must be sufficiently higher than the desired output pulse.

The simplest form of pulse shaping is shown in Figure 10. Capacitors C1 and C3 provide dc isolation. The snap-recovery diode (D1), in conjunction with L1, causes the rapid rise time. Current through the diode is derived from the bias supply (-V1) and R2. Figure 11 offers three views of the sequence of events that generates the fast voltage pulse. Region 1 is the charge-storage phase when the input signal current (the input of Figure 10) is zero. By virtue of the bias, the current through the diode stores charge in its junction. During this phase, the diode is a low-impedance shunt to ground. In Region 2, the input signal current is opposite in polarity and greater in magnitude than the bias current (limited by R2). This removes charge from the diode. Until all the charge is removed, the diode still appears as a low-impedance shunt. At the instant all charge is removed, the diode makes an almost instant transition (snaps) into Region 3. The abrupt cessation of signal current through L1 immediately results in a swift voltage spike. This spike becomes the leading edge of the output pulse.

$$
\begin{aligned}
& \mathrm{R} 1=51 \Omega \\
& \mathrm{R} 2=510 \Omega \\
& \mathrm{R} 3=510 \Omega \\
& \mathrm{R} 4=51 \Omega \\
& \mathrm{C} 1=0.1 \mu \mathrm{~F} \\
& \mathrm{C} 2=1.5-10 \mathrm{pF} \\
& \mathrm{C} 3=0.1 \mu \mathrm{~F} \\
& \mathrm{~L} 1=0.68 \mu \mathrm{H} \\
& \mathrm{D} 1=\mathrm{HP} 5082-0815 \\
& \mathrm{D} 2=\mathrm{HP} 5082-0815
\end{aligned}
$$

Figure 10. Nano-Second Pulser

Figure 11. Rise Times of Pulse Shaping Network

Similarly, D2 sharpens the trailing edge of the output pulse. Bias (-V2) maintains D2 in conduction--a lowresistance path to the output port. The voltage pulse, having a polarity opposite to the bias current and sufficient energy to overcome it, causes D2 to snap. This abrupt transition not only sharpens the fall time but also improves the rise time.

Selecting R2 and R3 dictates the shunting of the driving signal, based on the nominal $50-\Omega$ input impedance.

Capacitance C2, in shunt with L1, helps to improve the shape of the resulting output voltage pulse. Stray parasitic capacitances and inductances are critical aspects of any super-speed pulser. Leading-edge overshoot, shown in Figure 12, is generally attributed to series L di/dt effects, whereas rise time is often the result of shunting parasitic capacitance. Consequently, the pulser's design must maintain the characteristic impedance and must match to discrete components. For optimum performance, use leadless chip capacitors and resistors with minimal lead lengths. Likewise, the step-recovery diodes must have extremely small parasitic package inductance.

To achieve the $+10-V$ output pulse sufficient to drive DMOS fully on, the driving signal needs to source considerable current - far more than the typical function generator can produce. A suitable driver, shown schematically in Figure 13, provides the necessary current. Impedance mismatch between the driver and the pulser required an impedance-controlling resistor in the pulser's input stage (see Figure 10).

Figure 12. Effects of Parasitic Elements

Figure 13. Driver Circuit
>50 ns RISE \& FALL TIMES

Figure 14. Block Diagram of the High-Speed Switch

Figure 15.

Figure 14 is a block diagram of the complete highspeed switch capable of 1 -ns turn-on and turn-off speeds. The transition time (between the initiating pulse that triggers the pulser and the resulting switch action) is 30 ns .

Conclusions

Figure 15 shows that fast switching action is possible. Note the positive gating pulse from the step-recovery diode pulser and the resulting switching of the DMOS FET. For a $150-\Omega$ DMOS load resistor, the turn-off time ${ }^{3}$ nearly matches that derived earlier (see Figure 9): 1 ns.

[^61]
HIGH-SPEED DEPLETION-MODE DMOS FET FOR SMALL-SIGNAL APPLICATIONS

The SD2100 is an ultra high-speed n-channel depletion-mode lateral DMOS transistor geared for small-signal applications. This device boasts highperformance characteristics, produced by the Siliconix DMOS construction, which include:

- turn-on speeds of less than 1 ns
- low reverse-transfer capacitance of less than 2.5 pF
- high-frequency transconductance greater than 10 mS
- wide dynamic range
- low distortion

Figures 1 and 2 show idealized cross sections of the normally on depletion-mode and the normally off en-hancement-mode devices. Because these device
structures are similar, the device characteristics are also similar. In fact, the depletion-mode device may be thought of as an enhancement-mode device with a negative threshold voltage.

Unlike the enhancement-mode devices, such as the SD210DE whose drain current falls to zero when the gate-to-source voltage equals zero, the SD2100 has appreciable current at zero gate signal. In fact, the drain-to-source resistance is typically 100Ω when $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$. As shown in Figure 3, the on-resistance ($\mathrm{rDS}(\mathrm{on})$) versus analog signal range is an almost flat response. This characteristic coupled with the low capacitance values of the device make the SD2100 particularly suitable as an analog switch for audio and video switching applications.

Figure 1. Depletion-Mode Device Cross Section

Figure 2. Enhancement-Mode Device Cross Section

Figure 3. SD2100 On-Resistance vs. Analog Signal Range

The high-frequency gain of the device, along with its low capacitance values, produce a high figure of merit. An important factor in VHF and UHF amplification, figure of merit defines the gain bandwidth product (GBW) of the device, which may be expressed as
$\mathrm{GBW}=\frac{\mathrm{g}_{\text {fs }}}{2 \pi\left(\mathrm{C}_{\text {in }}+\mathrm{C}_{\text {out }}\right)}$

For a common-source configured amplifier, $\mathrm{C}_{\text {in }}$ is the short-circuit input (Miller) capacitance
$C_{\text {in }}=C_{g s}+C_{d g}\left(1+\left|A_{v}\right|\right)$
where
$\mathrm{C}_{\mathrm{gs}}=$ gate-source capacitance
$C_{d g}=$ feedback capacitance

It is evident that the gain-bandwidth product is largely dependent on the device gain and the feedback capacitance. If typical values for the SD2100 are substituted in Equation 1, including the low feedback capacitance of 2.5 pF , the gain bandwidth product is found to be greater than 400 MHz , a useful value in VHF and UHF operation.

The high figure of merit is also reflected in the nanosecond turn-on times which allow the SD2100 to be used in applications which are normally monopolized by gallium arsenide devices. Turn-on times are important in applications such as sync-pulse generation for high-definition video systems, signal routing for high-speed digital video recording where data rates of greater than 100M bits/s are possible, and outside broadcasting systems where signal switching is required during blanking periods. Figure 4 shows a high-performance video dc restorer. In these applications, the low distortion characteristics are important.

Figure 4. High-Performance Video dc Restorer

Additionally, the SD2100 is useful in applications which require both low charge injection and high switching speeds. For example, a deglitch circuit for the output of a high-speed digital-to-analog (D/A) converter, such as those found in video waveform generators, can take advantage of the SD2100's high speed, low capacitance, and low distortion.

Glitches at the D/A converter output, as shown in Figure 5 , are generated during the switching transition times when time skews allow incoming and previous data to overlap. The worst-case occurrence is at

MSB (most significant bit) switching (e.g., from 01111111 to 10000000).

A deglitch circuit effectively forms a sample-and-hold function which samples the output sometime after it has settled. As D/A converter performance improves, settling times approaching 10 ns have become possible; therefore, fast switching, low capacitance sample-and-hold circuits, such as the one shown in Figure 6 using the SD2100, are required.

Figure 5. The Effect of Time Skew Glitches at the D/A Converter Output

Charge injection is reduced by complementary drive to Q1 and to Q2 which acts as a "dummy" capacitor.

Figure 6. Deglitched D/A Converter Using $2 \times$ SD2100

Another advantage of the depletion-mode or normally on characteristic of this device makes the SD2100 useful for single-device current regulators. This type of circuit, usually associated with junction FETs, is shown in Figure 7. The value for R_{s} can be calculated from
$R_{S}=\frac{V_{G S(\text { off })}\left[1-\left(I_{D} / I_{D S S}\right)^{1 / 2}\right]}{I_{D}}$
Where I_{D} is the required value of regulated current.
The major advantage of depletion-mode MOSFETs in current-source circuits is their low drain capacitance, which makes them suitable for biasing applications in low-input-leakage, medium-speed ($>50 \mathrm{~V} / \mu \mathrm{s}$) circuits,

In general, each side of the M440 (high speed dual JFET) will be biased at $I_{D}=500 \mu \mathrm{~A}$. Thus, the current available for charge compensation and stray capacitances is limited to $2 \times I_{D}$ or, in this case, 1.0 mA . The M440 matching characteristics are production tested and guaranteed on the data sheet.

Cs represents output capacitance of the input stage "tail" current source. This capacitance is important in non-inverting amplifiers because the input stage undergoes considerable signal excursions in this connection, and the charging currents in C_{S} may be large. When using standard current sources, this tail capacitance may be responsible for marked slewrate degradation in non-inverting applications as opposed to inverting applications where the charging currents in C_{s} are very small.

C_{S} reduces the maximum current swing avallable to charge C_{C}, thus reducing the slew rate.

Figure 7. Low Bias Current Differential Front-End

The slew-rate reduction may be shown as

$$
\begin{equation*}
\frac{1}{1+\left(C_{s} / C_{c}\right)} \tag{4}
\end{equation*}
$$

As long as C_{s} is small compared to C_{c} (the compensation capacitor), little change in slew rate occurs. Using an SD2100, C_{s} is on the order of 2 pF . This approach yields a significant slew rate improvement.

Further applications result when currents greater than IDSS (1 to 5 mA) are required. The SD2100 may be biased into the enhancement mode to produce up to 20 mA for a V_{Gs} of +2.5 V maximum. Low output capacitance remains a major feature. Figure 8 shows a suitable enhancement-mode current source.

Figure 8. Enhancement-Mode Current Source

A final advantage of a normally on analog switch is that it may be constructed for applications where a default condition is required at supply failure, such as for automatic ranging of test equipment or for guaranteeing correct initialization of logic circuits at start up.

The low negative threshold voltage of the device gives simple drive requirements and allows low voltage operation. Figure 9 shows the typical bias conditions for a depletion-mode SD2100.

To turn the device off, a negative voltage is required on the gate. However, the on-resistance can be reduced if the device is further enhanced with a positive gate potential, allowing the SD2100 to be used in

Figure 9. Normally On Analog Switch
the enhancement-mode region as well as in the de-pletion-mode region. This effect is shown in Figure 10.

Figure 10. SD2100 Current vs. Drain-to-Source Voltage
The SD2100 is an easy-to-use, cost-effective device that is suitable for a wide range of high-speed applications. To improve the flexibility and high-frequency performance, Siliconix now offers the SST2100 which is housed in a SOT-143 surface-mount package.

DMOS - UNDERSTANDING THE BODY EFFECT

Ed Oxner

The body effect is a common problem with many DMOS components. To avoid the unexpected performance degradation it can cause, designers should be aware of this effect and its consequences.

DMOS, like all MOS products, and quite unlike the JFET, is a four-terminal structure. The terminals are the source, drain, gate, and the body or structure. Many MOSFETs, FETlingtons in particular, have the body electrically bridged to the source. In smallsignal DMOS components, however, the body is frequently available as a separate connection.

Often, the body is simply tied to the source. While this is a perfectly acceptable solution for many applications, there are exceptions. For example, consider a Zener-gate protected DMOS, such as the SD211DE, used as an analog switch. Under no circumstances may the Zener be forward-biased; consequently, the gate must never be more negative than the body/substrate. Yet, to ensure an off condition, the gate-to-source potential must be less than the threshold voltage. If the analog signal being switched swings negative, the gate must be more negative to maintain proper control. The body must, in turn, be more negative than the gate to prevent forward-biasing of the Zener.

Figure 1. Cross-Sectional View of Enhancement-mode DMOS

Examine the cross-sectional view of a DMOS FET offered in Figure 1. The substrate/body of this en-hancement-mode, n-channel DMOS is p-doped silicon, but a positive gate voltage inverts the p-region beneath the gate. The resulting channel, spanning the n-doped source and the n-doped drain, is bounded by oxide above and p-doped silicon below. During conduction, this n-enhanced channel bounded by the p-doped substrate resembles that of an n channel JFET. Figure 2 offers an idealized comparison.

Figure 2. Comparing the DMOS Channel to the JFET Channel

Together, the n-enhanced channel and the p-doped substrate/body form a diode; the p-substrate is the anode and the inverted region is the cathode. Diode conduction occurs whenever the forward bias exceeds the barrier potential, which for a silicon p-n junction is nominally 0.55 V .

Figure 3. Leakage current vs. voltage

This channel-substrate diode is the key to the body effect. Figure 3 identifies its reverse leakage. As with any diode, some nominal leakage occurs until reverse breakdown is reached and the current rises dramatically. Especially dramatic, though, is the apparent low breakdown voltage evident in Figure 3. When the nominal drain/body potential passes 10 V ,
an abrupt increase in body current results: the body effect.

Returning to the analog switch scenario: If the body is biased negatively to where the drain-body voltage approaches 10 V (as per Figure 3), substantial chan-nel-body current flow. Among other observable problems, this will strongly offset the analog voltage being switched (I Body $R_{\text {Load }}$).

This problem is not limited to the analog switch scenario. Any application (with or without a Zener gate diode) where the drain-to-substrate potential exceeds 10 V may result in undue drain-substrate current flow.

In addition to this current flow effect, there are other body-related phenomena to be considered. Threshold voltage and on resistance both rise quite dramatically as the source-body voltage increases. For more information on these effects, see Application Note LPD-10.

In conclusion, generally a good rule of thumb is to tie the substrate/body terminal to the most negative voltage that the DMOS will experience (including the gate potential). Under no circumstances should the substrate float as carrier-induced charges will lead to threshold and on-state instabilities.
\int Siliconix

DESIGNING FET BALANCED MIXERS FOR HIGH DYNAMIC RANGE

Ed Oxner

Central Applications

SECTION 1: FETS IN SINGLE BÁLÁNCED $\operatorname{IVIIXERS}$

INTRODUCTION

When high-performance, high-frequency junction field-effect transistors (JFETs) are used in the design of active balanced mixers, the resulting FET mixer circuit demonstrates clearly superior characteristics when compared to its popular passive counterpart employing hot-carrier diodes. Comparison of several types of mixers is made in Table I. The advantages and disadvantages of semiconductor devices currently used in various mixer circuits are shown in Table II.

Table 1

Characteristic	MIXER TYPE		
	Single-Ended	Single Balanced	Double Balanced
Bandwidth	Several decades possible	Decade	Decade
Relative 1M Density	1.0	0.5	0.25
Interport Isolation	Little	$10-20 \mathrm{~dB}$	$>30 \mathrm{~dB}$
Relative L. O. Power	0 dB	+3 dB	+6 dB

Why an Active Mixer?

Active mixing suggests high-level mixing capability. High level mixing in turn infers that active mixers outperform passive mixer circuits in terms of wide dynamic range and large-signal handling capability. Additionally, the active mixer offers improved conversion efficiency over the passive mixer, permitting relaxation of the IF amplifier gain requirements and even possible elimination of the customary RF amplifier front end.

Initial evaluation of the active FET mixer will imply a disadvantage because of local oscillator drive requirements; bipolar devices in low-level mixers require very little drive power. However, in high-level mixing this disadvantage is overcome in that drive requirements at such mixing levels are generally the same, no matter whether bipolar or FET devices are used.

Table 2

DEVICE	ADVANTAGES	DISADVANTAGES
Bipolar Transistor	Low Noise Figure High Gain Low D.C. Power	High IM Easy Overload Subject to Burnout
Diode	Low Noise Figure High Power Handling High Burn-out Level	High L. O. Drive Interface to I.F. Conversion Loss
JFET	Low Noise Figure Conversion Gain Excellent IM products Square Law Characteristic Excellent Overload High Burn-out Level	Optimum Conversion Gain Not Possible at Optumum Square Law Response High Lo Power
Dual-Gate	Low IM Distortion AGC Squre Law Characteristic	High Noise Figure Poor Burnout Level
MOS FET		

Why FETs for Balanced Mixers?

The performance priorities of modern communication systems have stringent requirements for wide dynamic range, suppression of intermodulation products, and the effects of cross-modulation. All of the foregoing parameters must be considered before noise figure and gain are taken into account.
Since FETs have inherent transfer characteristics approximating a square-law response, their thirdorder intermodulation distortion products are generally much smaller than those of bipolar transistors. Harmonic distortion and cross-modulation effects are third-order-dependent, and thus are greatly reduced when FETs are used in active balanced mixers.
A secondary advantage derives from available conversion gain, so that the FET mixer becomes simultaneously equivalent to both a demodulator and a preamplifier.

First Order Balanced Mixer Theory

Essential details of balanced mixer operation, including signal conversion and local oscillator noise rejection, are best illustrated by signal flow vector diagrams (Figure 1).

Figure 1. Signal and Noise Vectors

Energy conversion into the intermediate frequency (IF) pass-band is the major concern in mixer operation. In the following analysis, both the signal and noise vectors are shown progressing (rotating) at the IF rate (ω ift); the resulting wave occurs through vector addition.

The analysis of local oscillator noise rejection (Figure 1) assumes, for simplicity of explanation, that noise is coherent. Thus at some point in time (t_{1}) the noise component (e_{n}) is "in phase" with the local oscillator vector ($e_{\text {lo }}$) and FET "A" (the rectifying element) is ON; the JFET mixer acts as a switch, with the local oscillator acting as the switch drive signal. One-half cycle later, at time t_{2}, the signal flow is reversed for
both the local oscillator vector and the noise component, FET " A " is OFF and FET " B " is ON. Moving ahead an additional one-half of the IF cycle, FET " A " is again ON, but the noise component has advanced 180° ($\omega \mathrm{ift}$) through the coupling structure, and is now "out of phase". The process continually repeats itself.

The end result of this averaging (detection) is the cancellation of the noise which originated in the local oscillator, providing that the mixer balance is precise ${ }^{1}$.

The analysis of the conversion of the signal to the IF pass-band is similar, but the signal is injected into the coupling structure at the equipotential tap. Thus at time t_{2}, the signal vector (e_{s}) is "out of phase" with the local oscillator vector, $e_{l o}$. The resulting envelope develops a cyclic progression at the IF rate, since the signal is "demodulated" by the mixing action of the FETs.

A schematic of a prototype balanced mixer is shown in Figure 2. Design criteria, in order of priority, include the following:

1. Intermodulation and Cross-Modulation
2. Conversion Gain
3. Noise Figure
4. Selecting the Proper FET
5. Local Oscillator Injection
6. Designing the Input Transformer

7. Designing the IF Network

Intermodulation and Cross-Modulation

A basic aim in mixer design is to avoid the effects of intermodulation product distortion and cross-modulation. Part of the problem may be resolved by using a balanced mixer circuit.

The active transfer function of the FET is represented by a voltage-controlled current source. For both cross-modulation and intermodulation, the amount of distortion is proportional to the amplitude of the gatesource voltage. Since input power is proportional to input voltage, and inversely proportional to input impedance, the best FET IM and cross-modulation performance is obtained in the common-gate configuration where the impedance is lowest ${ }^{2}$.

Figure 2. Prototype Active Balanced Mixer

When JFETs are used as active mixer elements, it is important that the devices be operated in their square-law region. Operation in the FET square-law region will occur with the device in the depletion mode. Considerable distortion will result if the FET is operated in the enhancement mode (positive, for an n-channel FET); by analogy, the problems encountered are similar to those which arise when positive drive is placed on the grid of a vacuum tube.

Square-law region operation emphasizes the importance of establishing proper drive levels for both quiescent bias and the local oscillator. The maximum conversion transconductance, g_{c}, is achieved at about 80% of the FET gate cutoff voltage, $\mathrm{V}_{\mathrm{GS} \text { (off) }}$, and amounts to about 25% of the forward transconductance, g_{fs}, of the FET when used as an amplifier. Since conversion gain (or loss) must be considered, it is common to equate voltage gain $A V$, as:
$A_{V}=g_{C} R_{L}$
where g_{c} is the conversion transconductance and R_{L} is the FET drain load.

An attempt to achieve maximum conversion gain by indiscriminately increasing the drain load resistance will adversely affect any design priority concerning distortion - particularly intermodulation product distortion.

Distortion takes different forms in mixers. Most obvious is that distortion which will occur if the FET is driven into the enhancement mode, as noted earlier.

A more pernicious form is drain load distortion. And finally, there is the so-called "varactor effect."

The most frequent cause of poor mixer performance stems from signal overloading in the drain circuit. Excessive drain load impedance degrades the intermodulation characteristics and produces unwanted cross-modulation signals ${ }^{3}$. A characteristic of the FET balanced mixer is that the correct drain load impedance is inversely proportional to the value of the conversion transconductance. Figure 3 shows the improvement in the IM characteristics obtained in the prototype mixer with the drain load impedance reduced to 1700Ω from 5000Ω. Specifically, the dynamic load line must be plotted so that the signal peaks of the instantaneous peak-to-peak output voltage are not permitted to enter into the non-saturated ("triode") region of the FET. Suitable and unsuitable drain load lines are shown in Figure 4. Load impedance selection is quantified in Equations 21 through 23.

Distortion from the "varactor effect" is of secondary importance, and arises from an excessive peak voltage signal swing, where the changing drain-tosource voltage can cause a change in parasitic capacitance, $\mathrm{C}_{\text {rss }}$, and give rise to harmonics ${ }^{4}$. A FET tends to be voltage-dependent when the drain voltage falls appreciable below 6 volts. If the source voltage (from the power supply) is also low and the drain load impedance in high, then distortion will develop. However, if proper steps are taken to prevent drain load distortion, the varactor effect will also be inhibited.

Figure 3. Comparison of Mixer IM Characteristics

Figure 4. Plotting Drain Load Lines

Conversion Gain

In a FET, forward transconductance is defined as
$g_{f s}=\frac{d l_{D}}{d V_{g s}}$
and conversion transconductance is defined as
$g_{c}=\frac{d l_{D}(\omega \mathrm{i})}{d V_{g s}(\omega r)}$
where $\omega i=$ the intermediate frequency and $\omega r=$ the signal frequency.
The effects of time-varying local oscillator voltage, V_{2}, and the much smaller signal voltage, V_{1}, must be considered:
$V_{g s}=V_{1} \cos \omega_{1} t+V_{2} \cos \omega_{2} t$
For square law operation
$\mathrm{V}_{2}+\mathrm{V}_{\mathrm{GS}} \leq \mathrm{V}_{\mathrm{GS} \text { (off) }}$
Drain current is approximately defined by
$I_{D}=I_{D S S}\left[1-\frac{V_{G S}}{V_{G S(O f f)}}\right]^{2}$
or
$I_{D} \approx \frac{g_{f s o} V_{G S \text { (off) }}}{2}\left[1-\frac{V_{g s}}{V_{G S(o f f)}}\right]^{2}$
$I_{D} \approx \frac{g_{f s o}}{2 V_{G S(\text { off })}}\left[V_{G S(\text { off })}-V_{g s}\right]^{2}$
then
$I_{D} \approx \frac{g_{f s o}}{2 V_{G S(\text { off })}}$ (complex Taylor expansion)
which can be reduced
$I_{D(I F)} \approx \frac{g_{f s o}}{2 V_{G S(\text { off })}} V_{1} V_{2} \cos \left(\omega 1-\omega_{2}\right) t$
and the conversion transductance is
$g_{c}=\frac{g_{\text {fso }}}{2 V_{G S(\text { off })}}\left|V_{2}\right|$

Equation 11 suggests that g_{c} increases without limit as V_{2} increases without limit. However, to avoid operation of the FET in the "triode" region, the peak-topeak swing of V_{2} should not exceed $V_{G S \text { (off) }}$.
Thus
$2 V_{2}$ peak $\leq V_{\text {GS(off) }}$
or
V_{2} peak $\leq \frac{V_{\text {GS(off) }}}{2}$

Figure 5. Normalized $g_{c} / g_{f} v s . V_{G S} / V_{G S(o f f)}$ (from "FET RF Mixer Design Technique", S.P. Kwok, WESCON Convention Record (1970) 8/1, p.2.) Used with Permission

Figure 5 shows plots of normalized conversion transconductance, $g_{c} / g_{\text {fs }}$ versus normalized quiescent bias, $V_{G S} / V_{G S \text { (off) }}$, for different oscillator injections.

Noise Figure

Like the common-gate FET amplifier, the commongate FET balanced mixer is sensitive to generator resistance, $R_{g}{ }^{5}$. A change of a decade in R_{g} can produce a noise figure variation of as much as 3 dB .

Generator Resistance (Ω)

Figure 6. Power Gain and Noise Matching

In the design of the prototype FET active balanced mixer, the generator resistance of the FETs is established by the hybrid coupling transformer. Two important criteria for the FETs in the circuit are high forward transconductance, and a value of
power-match source admittance, $\mathrm{g}_{\text {Igs, }}$ which closely matches the output admittance of the coupling transformer. In the common-gate configuration, match points for optimum power gain and noise do not occur at the same value of generator resistance (Figure 6). Optimum noise match can only be achieved at the sacrifice of bandwidth.

How to Select the Proper FET

Conversion efficiency is determined by conversion transconductance, g_{c}, which in turn is directly related to such FET parameters are zero-bias saturation current, IDSS, and the gate cutoff voltage, $\mathrm{V}_{\mathrm{GS}(\text { off })}$):

$$
\begin{equation*}
g_{c}=\frac{\mid \text { DSS }}{2 V_{G S(\text { off })^{2}}^{2}}\left|V_{2}\right| \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\approx \frac{g_{\mathrm{fso}}}{2 V_{\mathrm{GS}(\mathrm{off})}}\left|V_{2}\right| \tag{15}
\end{equation*}
$$

Equation 14 appears to indicate that FETs with high IDSS are to be preferred. However, IDSS and $V_{G S}$ (off) are related, and Figures 7 a and 7 b show that devices from a family selected for high IDSS do not provide high conversion transconductance, but actually produce a lower value of g_{c}.

Figure 7. Relationship of $I_{\text {DSS }}$ and $\mathrm{V}_{\mathrm{GS} \text { (off) }}$

Best mixer performance is achieved with "matched pairs" of JFETs. Basic considerations in selecting FETs for this application are gate cutoff voltage, $V_{G S(\text { off })}$, for good conversion transconductance, and zero-bias saturation current, IDSS, for dynamic range. A match to 10% is generally adequate. Among currently available devices, the Siliconix U310 and the dual U431 offer excellent performance in both categories; common-gate forward transconductance is 14,000 mmhos typical at $V_{D S}=10 \mathrm{~V}$, $I_{D}=10 \mathrm{~mA}$, and $f=1 \mathrm{kHz}$.

Criteria for FET Selection

In balanced mixers using FETs, conversion efficiency of the devices is determined by conversion transconductance, g_{c}, which in turn is directly related to such FET operating parameters as zero-bias drain current, $I_{\text {DSS }}$, and gate cutoff voltage, V_{GS} (off).
It can be shown that
$\frac{l_{\text {DSS }}}{2 V_{\mathrm{GS}(\mathrm{off})^{2}}}\left|V_{2}\right| \approx \frac{g_{\text {fso }}}{2 V_{\mathrm{GS} \text { (off) }}}\left|V_{2}\right|$
where V_{2} is the time-varying local oscillator voltage. To maintain operation in the square-law region, we repeat Equation 13,
V_{2} (peak) $\leq \frac{V_{G S \text { (off) }}}{2}$
where now, under optimum performance conditions, we merge Equation 11 with Equation 13 to find
$g_{c} \approx \frac{g_{\text {fso }}}{2 V_{G S \text { (off) }}} \frac{V_{G S \text { (off) }}}{2}=\frac{g_{\text {fso }}}{4}$
which agrees with Equation 15.

For the highest level of conversion transconductance, it would appear initially that for any given FET geometry, units with high IDSS are to be preferred. But as we saw in Figure 7, since loss and $V_{G S \text { (off) }}$ are related, a performance tradeoff is necessary; however, an increased value of loss provides
increased dynamic range. Since balanced mixer design involves many tradeoffs for best performance, this IDSS vs. $V_{G S}$ (off) problem is generally inconsequential.

There is, of course, the possibility that FET cost is a major consideration in evaluating the active balançed mixer approach - the familiar price/performance tradeoff. If this is the case, there are a number of other Siliconix FETs which will provide suitable alternatives to the U310 (Table 3). Remember, however, that conversion transconductance, g_{c}, can never be more than 25% of forward transconductance. Thus as tradeoff considerations begin, the first sacrifice to be made will be the degree of achievable conversion gain. Intermodulation performance will follow with the third tradeoff being available noise figure.

Table 3

Typical Characteristics	DEVICE TYPE			
	U310*	2N5912	2N4416*	2N3823
g_{m}	15 K	6 K	5 K	3.5 K
$\mathrm{I}_{\text {Dss }}$	40 mA	15 mA	10 m	10 mA

*Similiar products are available in TO-92:
U310 (J310)
2N4416 (2N5486)

Local Oscillator Injection

Low IM distortion products and noise figure, plus best conversion gain, will be achieved if the voltage swing of the local oscillator across the gate-to-source junction is held to the values presented in Figure 5. V_{LO} is expressed in terms of peak-to-peak voltage, while $V_{G S(o f f)}$ is a d.c. voltage.
Local oscillator injection can be made either through a brute-force drive into the JFET source through the hybrid input transformer, or through a direct-coupled circuit to the JFET gates where less drive will be required for the desired voltage swing. Two circuits to obtain direct gate coupling are suggested in Figure 8.

Figure 8. Alternate Forms of L.O. Injection

The source-injection method is used in the design of the present mixer to maintain the inherent stability of a common-gate circuit. A minor disadvantage with the direct-drive method is that the required gate-tosource voltage swing requires considerable local oscillator input power. For source injection through the transformer, best mixer performance is obtained with a local oscillator drive level of +12 to +17 dBm across a $50-\Omega$ load.

Conversely, direct coupling to the FET gates occurs at a higher impedance level and less local oscillator drive power is required. The functional tradeoff resulting when the gates are tied together is that shunt susceptance requires some form of conjugate matching, and thus brings about an undesirable reduction of instantaneous mixer bandwidth.

Designing the Input Transformer

Five criteria are important to the design of the hybrid input coupling transformer for best mixer performance. The impedance transformer must

1. Consist of four single-ended terminals, for the local oscillator, the input signal and FETs A and B
2. Offer a match between either input to a symmetrical balanced load
3. Provide as much isolation as possible between the signal and local oscillator ports (Figure 9)
4. Maintain a differential phase of 180° across the symmetrical balanced loads
5. Introduce the least possible amount of loss

Figure 9. 4-Port Hybrid with Phase and Isolation

A transformer using ferrite cores and meeting these five requirements is derived from elementary trans-mission-line theory (Figure 10). Transmission line transformers have a low-frequency cutoff determined by the falloff of primary reactance as frequency is decreased. This reactance is determined by the series inductance of the transmission line conductors. On the other hand, high-frequency performance is enhanced by minimizing the physical length of the transmission line. Minimizing overall line length while maintaining suitable reactance can be accomplished by using a high-permeability core material such as a ferrite. The transformer constructed for the balanced FET mixer closely resembles the balanced 4-port unsymmetrical 180° hybrid device described by Ruthroff 6 .

Although Ruthroff does not discuss the method of determining the winding length of bifilar wire, a solution is offered by Pitzalis ${ }^{7}$. The Pitzalis definitions for wire length are as follows (Figure 11):
max length $=\frac{7200 n}{f_{\text {upper }}}$ (inches)
min length $=\frac{20 R_{L}}{\left(1+\mu / \mu_{O}\right) f \text { lower }} \quad$ (inches)

Figure 10. Hybrid Input Coupling Transformer
where $R_{L}=$ the load impedance, $\mu / \mu o=$ the relative permeability of the ferrite at the lower frequency, and $\mathrm{n}=\mathrm{a}$ fractional wavelength determined by the amount of allowable phase error.
Selection of the ferrite core material is determined mainly by performance requirements. A prime consideration for wideband performance is the temperature coefficient of the ferrite, which must have a low loss tangent over the required temperature range, i.e., high Q.

In addition, an important design factor involves the relative permeability of the core, since inductance of a conductor is proportional to the permeability of the surrounding medium. A high permeability material placed close to the transmission line conductors acts upon the external fringe field present, appreciably magnifying the inductance and providing a lower cutoff frequency. Power transferred from input to
output is coupled directly through the dielectric medium separating the transmission line conductors; thus a relatively small cross-section of ferrite material can operate in an unsaturated state at impressively high power levels. For the FET balanced mixer, ferrite core material with a permeability of 40 provides satisfactory operation from 50 to 250 MHz . Figure 11 also demonstrates that a lower transmission line impedance, Z_{0}, is to be preferred over a higher Z_{0}. Both $50-\Omega$ and $100-\Omega$ transmission lines are required for the mixer transformer; twisted pairs will provide satisfactory results. A characteristic impedance of 45 Ω is obtained from 3 turns-per-inch of Belden No. 24 AWG enamel wire, while $31 / 2$ turns-per-inch of No. 24 (7X32) Belden plastic covered wire provide $Z_{0}=100 \Omega$. Each core is wound with 2 inches of proper twisted pair, with $\mathrm{min} / \mathrm{max}$ lengths calculated from Pitzalis' data (Formulae 19,20).

Figure 11. Toroid Coil Winding Data

As with all broadband transformers, the coil has an inherent parasitic inductance which must be capaci-tor-compensated ($\mathrm{C}_{2}, \mathrm{C}_{4}$, Figure 2). A trim capacitor is required at the two input terminals, and is adjusted only once to optimize the differential phase shift across the symmetrical balanced FETs. Phase match of the hybrid structure may be tracked to within ± 2 degrees (about 180°) to 250 MHz . Effective resistance transformation is useful from 50 to 550 MHz (Figure 12) - but phase track beyond 250 MHz may show too much deterioration.

Figure 12. $50 \Omega-200 \Omega$ Balun

Designing the IF Network for Single-Balanced Mixers

The IF network performs two important functions in the FET balanced mixer circuit. It provides for optimum match between the FETs and the IF amplifier, and it effectively bypasses the circuit RF components (signal and local oscillator).

In network design, it is essential that the RF and local oscillator signals be sufficiently isolated from the intermediate frequency signal to maintain rejection levels of at least 20 dB . If this isolation is not maintained, conversion gain and noise figure are degraded.

The simplest technique for design of the IF network is to use the well-known pi (π) match structure from each FET drain to a common balanced output transformer network. This pi match technique is especially suitable for a narrow-band intermediate frequency
output, serving three useful functions. First, it serves to achieve the proper drain load match between the FETs and the IF structure. Second, it provides the very necessary isolation of the intermediate frequency signal. And third, it serves as a simple filter to provide a monotonic decrease in impedance as frequency departs from the IF center frequency, $f_{0}{ }^{8}$. This third function, shown in Figure 13, prevents the drain ioad impedance from skyrocketing out of control and giving rise to distortion products.

Figure 13. Pi (π) Match Filter Function

Selection of the dynamic drain impedance value in the IF network is a critical point in design of the structure. Intermodulation product distortion and crossmodulation will be both affected by the instantaneous peak-to-peak output voltage of the FETs, if the value of the dynamic drain impedance allows these signal peaks to enter either the pinch-off voltage or breakdown voltage regions of the transistors. If the impedance is too high, the dynamic range of the mixer will be severely limited; if the impedance is too low, useful conversion gain will be sacrificed.

A first-order approximation to establish the proper load impedance may be obtained when
$R_{L}=\frac{V_{D D}-2 V_{G S \text { (off) }}}{i_{d}}$
where
$i_{d}=I_{D S S}\left[1-\frac{V_{g s}}{V_{G S \text { (off) }}}\right]^{2}$
and
$V_{g s}=V_{G S}+V_{1} \sin \omega_{1} t$

For the U310 FET, the optimum drainload impedance is established at slightly less than 2000Ω, with sufficient local oscillator drive and gate bias determined from the conversion transconductance curve in Figure 5.

The output IF coupling structure is an $800-\Omega$ CT to $50-\Omega$ trifilar-wound transformer (Relcom BT-9 or equivalent). The pi (π) match into this transformer provided a dynamic drain load impedance of 1700Ω on each FET; excellent IM performance was obtained. Value of operating Q was established at 10 as the best compromise to insure that the tolerance of the pi match components would permit the IF output to peak within the allowable bandwidth at the associated IF amplifier. A Q of more than 10 would result in a greatly restricted bandwidth, while a Q of less than 10 would result in excessively high capacitance, excessively low inductance, and unsatisfactory filter performance.

Single-Balanced Mixer Performance

Tests of the operational prototype FET singlebalanced mixer demonstrated that the active mixer has several characteristics superior to those of passive mixer counterparts. These comparisons are made in Table 4 (measurements of all three mixers were made under laboratory conditions).

Insertion loss measurements on the IF network amounted to 3 dB in the center of the passband, while insertion loss on the hybrid assembly measured 1.2 dB . The network exhibited a Q of 10 . Gain and noise figures were measured over the full $50-250 \mathrm{MHz}$ bandwidth, with a single-sideband noise figure ranging from 7.2 dB at 50 MHz to 8.6 dB at 250 MHz . Conversion gain was a flat +2.5 dB .

Two-tone third-order intermodulation is expressed in terms of the intercept point ${ }^{9}$. With two signals

300 kHz apart, the balanced mixer suppressed thirdorder products -89 dB with both signals at -10 dB , representing an intercept point of +32 dBm .

Table 4
$50-150 \mathrm{MHz}$ Mixer Performance Comparison

Characteristic	JFET	Schottky	Bipolar
Intermodulation Intercept Point	+32 dB	+28 dBm	$+12 \mathrm{dBm}^{\dagger}$
Dynamic Range	100 dB	100 dB	$80 \mathrm{~dB}^{\dagger}$
Desensitization Level (the level for an unwanted signal when the desired signal first experiences compression)	+8.5 dBm	+3 dBm	$+1 \mathrm{dBm}^{\dagger}$
Conversion Gain	$+2.5 \mathrm{~dB} *$	-6 dB	+18 dB
Single-sideband Noise Figure @ 50 MHz	7.2 dB	6.5 dB	6.0 dB

Figure 14 shows a comparison of third-order IM products emanating from both the JFET balanced mixer and a typical low-level double-balanced diode mixer, under similar operating conditions. Noise figure and intercept point are shown at various bias and local oscillator drive levels in Figure 15.
The performance of the active mixer is clearly superior to that of the diode mixers, contributing overall system gain in areas critical to telecommunications practice, and reducing associated amplifier requirements.

CONCLUSION

The reason for using the three-core bifilar transformer (Figure 11A) in this tutorial article stemmed

Figure 15. Noise Figure and Intercept Point Performance
Single-Balanced Mixer
from the relative analytical simplicity of such a design. An alternative transformer is the single-core trifilar-wound design. The definitions for wire lengths (Equations 19 and 20) are equally applicable to trifilar as they are for bifilar.

SECTION 2: JUNCTION FETS IN DOUBLE-BALANCED MIXERS

INTRODUCTION

Dynamic range is probably the most important consideration in modern receiver design. Table 1 provides a comparison between the harmonic distortion characteristics of a simple mixer, a single-balanced mixer, and a double-balanced mixer. The comparison clearly shows those performance characteristics of the double-balanced mixer which have made it one of the most popular of all mixer types. Among these attributes are greatly improved interport isolation and a significant degree of rejection of local oscillator carrier amplitude modulation.
When used in double-balanced mixers, however, passive devices such as Schottky-barrier (hot carrier) diodes have certain fundamental shortcomings, such as high conversion loss and high local os-
cillator drive requirements. Thus the active balanced mixer which employs field-effect transistors is a welcome innovation: conversion gain and improved intermodulation distortion characteristics alone place the FET double-balanced mixer far ahead of its passive counterparts. The high saturation levels possible with modest local oscillator power make such a mixer useful for mixing both small and large signals.

First Order Double-Balanced Mixer Theory

In either single or double-balanced mixer design, the prime requirement is that when the mixer is excited by the local oscillator carrier, the circuit must be capable of rejecting the amplitude-modulated wave which exists about the L.O. Also, the mixer must reject any AM signal entering from the local oscillator port. (This signal rejection is usually known as AM local oscillator noise cancellation).

A second requirement for balanced mixers is the establishment of interport isolation between the signal, local oscillator, and IF ports. A third desirable characteristic is the reduction of intermodulation distortion products.

Careful attention to design of double-balanced mixers will satisfy the foregoing criteria.

Figure 16. Double-Balanced Mixer

The schematic of a prototype double-balanced mixer (Figure 16) employs four high-performance junction FETs chosen for closely matched characteristics. (The significance of the quad-FET configuration will be dealt with later).

If the schematic in Figure 16 is reduced to show only the local oscillator circuit (Figure 17a), the rejection mechanism of AM signals, either on the L.O. carrier on entering through the local oscillator port, is readily understood.

a.

b.

c.

Figure 17.

Likewise, the equivalent circuit in Figure 17b demonstrates how the signal is enhanced at the IF output. Both local oscillator AM cancellation, as well as signal enhancement, are dependent upon the precise balance of the IF transformer, as well as on the match of the four FETs which make up the quad network. In Figure 17c, the schematic has been rearranged to show both the local oscillator and the signal input transformers; the mechanics of interport isolation may be easily visualized. Signal excitation provides an equipotential at the junctions of the local oscillator transformer and FET pairs $A B$ and CD; in the same manner, excitation of the local oscillator produced an equipotential balance at the junctions of the signal transformer and FET pairs AC and BD.
Harmonic distortion products are reduced by the balance between the signal and local oscillator (inputs) and the IF (output), where even-integer harmonics of the signal and local oscillator frequencies are effectively canceled. A sixth-order summary of such products in both single- and double-balanced mixers is shown in Table 5. Note how the relative densities agree with Table 1. The effects of harmonic distortion can be reduced by a judicious selection of the IF passband response ${ }^{10}$. Third-order IMD (Intermodulation Distortion) products are reduced by virtue of the characteristics of junction FETs, which approximate a square-law response. Care must be taken in FET operation, however, to avoid driving the device into forward conduction by the application of too much local oscillator power.

Table 5

Comparison of Modulation Products in Single and Dougle Balanced Mixers to 6th Order	
Single-Balanced	Double-Balanced
$\mathrm{f}_{\text {s }}$	
$3 \mathrm{fs}_{s}$	
$5 \mathrm{f}_{s}$	
$\mathrm{f}_{\mathrm{o}} \pm \mathrm{f}_{\mathrm{s}}$	$f_{0} \pm f_{s}$
$\mathrm{fo}^{ \pm} \pm 3 \mathrm{f}_{\mathrm{s}}$	$\mathrm{f}_{0} \pm 3 \mathrm{f}_{\mathrm{s}}$
$\mathrm{fo}_{\mathrm{L}} \pm 5 \mathrm{f}_{\mathrm{s}}$	$\mathrm{fo}^{ \pm} 5 \mathrm{ff}_{\text {s }}$
$2 \mathrm{f}_{\mathrm{o}} \pm \mathrm{f}_{\mathrm{s}}$	
$2 f_{0} \pm 3 f_{s}$	
$3 \mathrm{f}_{\mathrm{o}} \pm \mathrm{f}_{\mathrm{s}}$	$3 f_{0} \pm f_{s}$
$3 \mathrm{f}_{\mathrm{O}} \pm 3 \mathrm{fs}$	$3 \mathrm{fo} \pm 3 \mathrm{fs}$
$4 \mathrm{f}_{0} \pm \mathrm{f}_{\text {s }}$	
$5 f_{0} \pm f_{s}$	$5 f_{0} \pm f_{s}$

Harmonic Distortion, Intermodulation Products, and Cross-Modulation

Spurious output signals in mixers fall into three categories:

1. Spurious mixer products derived from harmonic mixing of the signal and local oscillator frequencies;
2. Two-tone, odd-order intermodulation products;
3. "Chirping" which arises from undesired mixing frequencies falling in the IF passband.

The harmonics of a single-signal frequency, when mixed with the harmonics of the local oscillator, produce spurious outputs which are level-dependent on the signal amplitude. These products are greatly reduced by the double-balanced mixer, where the even harmonics are effectively canceled; when FETs are used, the Taylor-series power expansion falls quickly to zero above the second order.

However, modulation products of a similar nature will arise if the broadband down-converting mixer is not preceded by signal preselection, because of the mixer's equal response to the "image" frequency. Here, perfectly valid signals will mix with the local oscillator producing interfering i-f signals whose only difference, when compared to the desired i-f signal, is that it moves counter to the desired i-f signal when the local oscillator is shifted.

Two-tone, odd-order IM products differ markedly from other spurious signals. This form of harmonic distortion consists of interactions between two or more input signals and their respective harmonics. In turn, these products are mixed with the fundamental and harmonics of the local oscillator, generating spurious products which may fall within the IF passband, on or very near to the desired signal.

Cross-modulation in the active JFET balanced mixer does not pose a serious problem, provided the signal input is maintained at a high conductance, which will occur with source injection. Cross-modulation is very dependent on and directly related to the impedance across which the signal is impressed. In the active JFET double-balanced mixer this impedance is very low, typical 35Ω. Consequently, the effects of cross-modulation may be disregarded.

In the mixing process of any active device, the value of the FET drain current may be derived from a knowledge of the transconductance of the device, and the impressed signal voltage, eg. This is obtained from the Taylor-series power expansion:
$i_{d}=g_{m} e_{g}+\frac{1}{2!} \frac{\delta g_{m}}{\delta V_{G}} e_{g}{ }^{2}+$
$\frac{1}{3!} \frac{\delta^{2} g_{m}}{\delta V_{G}{ }^{2}} e_{g}{ }^{3} \cdot \cdots \frac{1}{n!} \frac{\delta^{n-1} g_{m}}{\delta V_{G}{ }^{n-1}} e_{g}{ }^{n}$
which can be reduced to the terms in Table 6.

Table 6

Term	Output	Transfer Characteristic		
$\mathrm{gm}_{\mathrm{m}} \mathrm{e}_{\mathrm{g}}$	$\mathrm{F} 1, \mathrm{~F} 2$	Linear		
$\frac{1}{2!} \frac{\delta \mathrm{gm}_{\mathrm{m}}}{\delta \mathrm{V}_{\mathrm{G}}} \mathrm{eg}^{2}$	$2 \mathrm{~F} 1,2 \mathrm{~F} 2$	Second-order		
		$\mathrm{F} 1 \pm \mathrm{F} 2$		Square-law
:---:				
$\frac{1}{3!} \frac{\delta \mathrm{gm}_{\mathrm{m}}}{\delta \mathrm{V}_{\mathrm{G}}{ }^{2}} \mathrm{eg}^{3}$				

In FET theory, the second and higher-order derivatives of gm_{m} are absent, and the device thus offers a considerable reduction of both intermodulation products and higher-order harmonics. In the double-balanced mixer, where F1 = F2 is the desired result, it is well to manipulate mixer design and bias conditions to render $\frac{\delta 9_{m}}{\delta \mathrm{~V}_{\mathrm{G}}}$ as large as possible, simultaneously reducing all other terms.

Criteria for FET Selection

For best performance in the single-balanced mixer, matched FET pairs were used. A 10% match in gate cutoff voltage, $V_{G S(o f f)}$, saturated drain current,

IDSS, and forward transconductance was sufficient; a wide selection of junction FET pairs is available for single-balanced mixer applications. However, in a double-balanced mixer using a ring-style (quad) demodulator, the match must be extended to four discrete devices. Although high forward transconductance remains desirable, the selection of FETs becomes sharply limited for most users.
Early in the development of the prototype double-balanced mixer, evaluation was made of the potential effect of physical FET packaging on mixer performance. Four selected discrete JFETs were arranged in a matrix which was electrically and schematically identical to the circuit shown in Figure 16. At the same time, four FET chips were mounted in a TO-116 dual in-line package, with the lead bonds arranged to form the ring demodulator. Comparison of the two quad-FET configurations at operating frequencies through 100 MHz indicated that the single-package arrangement had definitely superior characteristics. Physical assembly into the mixer circuit is easier, and less PC board space is required. Improved performance was noted on the following parameters:

- Lower lead inductance
- Lower distributed capacitance
- Better isolation
- Better rejection of AM noise

All of the mixer performance achievements discussed in this presentation have been made with the single-package quad-FET matrix; it behooves the user to follow this design philosophy, and to limit JFET candidates for selection to those high-performance (high transconductance, low capacitance) devices which are available packaged as matched ring-quad demodulators.

The FET chips used in the single-package configuration were Siliconix U310s, which offer saturated drain current, IDSS, of 20 to 60 mA , and a typical forward transconductance of 14 mmho at $\mathrm{V}_{\mathrm{GS}}=0$. Parasitic chip capacitance averages about 4 pF ($\mathrm{C}_{\text {iss }}$), which allows for operation well into the UHF region. Table 7 shows the performance match achieved when adjacent chips were selected from the same wafer.

Table 7

Quad-FET Chip Matching			
Quad S/N	$V_{\text {GS (off) }}$ (V)	I DSs (ma)	$\mathrm{g}_{\text {fs }}$ (mV)
	3.39	29.2	13.1
	3.54	31.0	12.8
	3.53	30.8	13.0
	3.43	29.4	13.1
04724	3.78	35.6	12.8
	3.74	35.3	12.6
	3.84	35.7	12.7
	3.83	37.2	12.6
04728	5.23	53.4	11.6
	5.14	53.3	11.7
	5.03	51.1	11.5
	5.19	53.3	11.8

All of the quad arrays shown were tested in the mixer assembly, and all provided a maximum dynamic unbalance of only 0.17 dB , ample proof that the practice of adjacent chip selection is valid for close matching.
The pin assignments of four JFETs in the 14-pin TO-116 dual in-line carrier were arranged to avoid crossovers and maintain sufficient separation between the signal and local oscillator ports to keep stray coupling leakage to a minimum. Siliconix offers the U350, a quad-ring demodulator consisting of matched U310 JFETs.

Local Oscillator Injection

Local oscillator drive for active FET mixers, either balanced or unbalanced, differs from the drive characteristics of passive diode mixers. For best IMD performance, the gate of the FET must never be driven positive with respect to the source - - a case equivalent to the hard ON condition of the diode. Consequently, local oscillator drive for the balanced mixer is less than that required for a passive balanced mixer with comparable performance characteristics.

The double-balanced mixer relies on balanced drive from both the local oscillator and the signal source. Since conversion efficiency, optimum noise figure, and good cross-modulation effects can best be served with the signal entering through the common
quad JFET source, the local oscillator excitation may be applied directly at the gates of the FET array.
A balanced trifilar-wound toroidal-coil broadband transformer, exhibiting high even-mode rejection, provides the balanced drive for the local oscillator excitation of the quad FET gates. The gates of the quad array have very low conductance; hence there will be some degree of mismatch to the local oscillator, which normally could not be tolerated for the signal port. The high gate impedance, however, allows a moderate level of local oscillator power to bring about the necessary gate voltage swing.

Transformer Design

The design problems encountered in a singlebalanced mixer are compounded in the doublebalanced mixer: the full-wave JFET quad differs markedly from the half-wave single-balance JFET pair, in that the quad is represented as a 4-terminal input structure, while the JFET pair is represented as a 2-terminal structure. Consequently, the doublebalanced mixer transformer design requires two separate solutions, each offering entirely different structures. While each transformer design will be treated separately, it is important to note the design goals which are common to both.
The transformers must:

1. Consist of three single-ended terminal pairs, an input and a balanced output;
2. Offer a broadband match between the unbalanced input and a symmetrical balanced load;
3. Maintain (over a wide bandwidth) a differential phase of 180° across the symmetrical balanced loads; and
4. Introduce a minimum of insertion loss.

Signal Input Transformer Design

In general, design and fabrication of broadband transformers has been limited to the popular ferrite-core varieties derived from transmission-line theory ${ }^{11}$, where exceptional bandwidths are possible. The more popular transformer designs frequently result in a 4:1 impedance transformation, as in the single-balanced mixer or in most trifilar designs. Other popular transformers offer either simple constant-impedance phase inversion or unbalanced-to-balanced configurations.

Figure 18. Signal Input Transformer
The JFET quad signal input terminals consists of shunt pairs of JFET source terminals which offer a combined load impedance of about 35Ω as contrasted to a 100Ω impedance value which would have suited a $4: 1$ transformer. It was thus necessary to design a broadband unbalanced-to-split-balance transformer which produced, in effect, a 50Ω asymmetrical input to a $25-0-25 \Omega$ output.
Such a transformer would require an unbalanced 50Ω input and a symmetrically-balanced output having near-perfect 180° phase differential and an equipotential, (even-mode) center tap. Consequetly, a two-step design procedure was indicated.
The first step was to design a transformer which would provide the unbalanced-to-balanced transition while maintaining a constant impedance of 50Ω and a 180° phase differential across the balanced output, over a $50-250 \mathrm{MHz}$ band. The design was straightforward, and is shown schematically in Figure 18. The extra winding was required to complete the necessary magnetization current path.
Design of the core windings required selection of the proper ferrite, and establishment of the actual winding length. The latter was resolved to a first-order
approximation by the formulas of Pitzalis (Equations 19 and 20).
Having established the approximate length limits, the final solution came by experiment. A Hewlett-Packard 8405A vector voltmeter was invaluable during this phase of the work.
According to Ruthroff the simple balun, to which the signal input transformer can be most readily compared, is equivalent to "an ideal reversing transformer plus a length of transmission line. If the characteristic impedance of the line is equal to the terminating impedance, the transformer is inherently broadband." The true equivalent of the simple Ruthroff balun is shown in Figure 19, where the "length of transmission line" is in effect a shunt element of characteristic admittance, Y_{S}. If $Y_{0}=Y_{\text {in }}=Y_{A}$, then it can be shown that $Y_{S}=Y_{A}$, thus providing a flat admittance transfer through the transformer ${ }^{12}$. Construction of the "ideal reversing transformer" required three turns-per-inch of Belden \#24 enamel wire for a characteristic admittance of 0.22 v .

Core permeability was established by selection from three possible choices of Indiana General ferrite (Q1 for a permeability, μ / μ_{0} of 125 ; Q2 for $\mu / \mu_{0}=40$; and Q3 for $\mu / \mu_{O}=16$). Figure 20a provides a performance comparison between identically-wound transformers with different core permeabilities; Figure 20b shows the effects of winding length on the selected core, Q2. (Core material Q3 might have offered a better permeability, but its cost was prohibitive). A winding length of 1.5 inches was used for this first-stage transformer design. An identical length of single conductor was wound about the core in the

Figure 19. Equivalence of Simple Balun

Figure 20. Differences in Core Permeability
same winding direction for the magnetization requirements.

The second phase of the signal input transformer design is to provide a circuit that maintains the precise impedance and phase balance of the reversing transformer, while offering in combination a center-tapped junction with high even-mode rejection. The transformer was wound after the fashion of Ruthroff's 4:1 ratio impedance design, with 2 inches of twisted pair wire on a Q2 core. The resulting transformer, in combination with the reversing transformer discussed earlier, provided the degree of phase balance shown in Figure 21.

The center tap is typically decoupled in excess of 50 dB . The completed signal input transformer is shown in Figure 22. If the design offers the assurance

Figure 21. Input Transformer Phase Balance

Figure 22. Completed Signal Input Transformer
that the center tap will be grounded, then the magnetization winding may be omitted.

Local Oscillator Input Transformer

Design of the local oscillator transformer is somewhat simpler than that of the signal input transformer, because two design rules may be relaxed. First, the gates operate at a higher impedance than that imposed on the sources; thus it is only necessary to insure that the peak-to-peak voltage swing at the gates is sufficient for proper FET operation. Second, close impedance match is not so critical as in the signal input transformer, since the local oscillator excitation is generally derived directly from a nearby source.

In those situations where the existence of a mismatched load is bothersome (as in high-frequency operation, where a long coaxial feed will tend to exhibit a "long lines effect" and produce erratic mixer performance) a simple precaution will avoid the problem. If the FET gates are clamped with fixed noninductive resistors (value approximately 200Ω) to ground, such loading of the LO transformer secondary will insure a reasonable input match.

In the design shown in Figure 23, a simple trifilarwound toroidal-core transformer produced excellent results. The transformer was constructed from three strands of Belden \#24 enamel wire, twisted to 3 turns per inch. The trifilar winding, 2 inches long, was wrapped around an Indiana General F625-9 (CF102) Q2 toroidal core. Care must be taken when winding multifilar transformers with heavy wire, to insure that the wire is wrapped tightly around the ferrite for good even-mode isolation and balance.

Simplicity of design of the combined transformers made detailed analysis of performance unnecessary; indicators such as isolation and dynamic unbalance are sufficient to show symmetry for both transformers and the FET quad.

Figure 23. Local Oscillator Input Transformer
(For the prototype mixer feasibility study, relatively large ferrite cores were used, as a matter of winding convenience. The practice of using large cores, however, can lead to excessive transformer losses, resulting in degraded mixer efficiency, high noise figures, high LO drive requirements and reduced gain. For best results, cores no larger than those commonly used in the CATV industry should be chosen).

AM Local Oscillator Noise Rejection

Originally, balanced mixers were used for the specific purpose of canceling spurious AM signals existing on or about the local oscillator carrier (the function of the mixer in establishing good inter-port isolation was a side-effect). These signals could be either spurious AM signals generated on or about the carrier (Figure 24) or actual signals existing at the signal frequency. In the latter case, the signals enter the mixer through the local oscillator, having found their way in through some leakage coupling phenomenon.

Regardless of the type or source of AM signals entering through the local oscillator port, the balanced mixer should effectively reject these signals so that

Figure 24. Generation of Spurious AM Signals
their products do not occur at the intermediate frequency. In the early days of balanced mixers, a 20 dB rejection of $A M$ noise was considered good; today's sophisticated techniques for selection of dynamically-matched semiconductors can provide ultimate AM rejection in excess of 30 dB . Figure 25 provides an insight into the degree of AM noise rejection available in the double-balanced mixer.

Figure 25. AM Noise Rejection in Double-Balance Mixer
(Insofar as FM noise is concerned, it should be noted that no mixer is capable of rejecting frequencymodulated signals entering through the local oscillator).
An interesting point not generally considered in discussions of balanced mixers is that the dynamic range of the mixer can be limited by the conversion of local oscillator noise into the intermediate frequency, which tends to blank out a weak signal and place a bottom on sensitivity.

Interport Isolation

Like AM noise rejection and dynamic unbalance, interport isolation is very dependent on mixer balance (symmetry). Matching aspects of the JFET quad array and the phase/amplitude balance of the signal input and local oscillator input transformers play important roles in achieving interport isolation. Capacitive and magnetic coupling between the transformers add to problems of interport isolation in balanced mixers.
(In the prototype mixer, the JFET quad was packaged in a 14-pin dual in-line housing, as a matter of construction convenience.) The U350 is recommended for double-balanced mixer designs.

Interport isolation was also enhanced in the prototype mixer through careful parts layout. As a measure of the overall effects of unbalance, a quantitative measurement of interport isolation vs dynamic unbalance is made in Figure 26.

In Figure 27, the interport isolation between the local oscillator and signal input ports is shown to be 35 dB typically.

Dynamic Unbalance

Dynamic unbalance may be regarded as another expression for AM noise rejection, except that the latter does not provide a ready insight into the effects of symmetry, balance, and quad matching.

Dynamic unbalance also affects the intermodulation distortion performance of the mixer. As the unbalance approaches a degree of true balance, the IMD tends to optimize; conversely, when unbalance is excessive the IMD approaches an asymptotic state. This effect is shown in Figure 28.

Designing the IF Network

The IF network performs three important functions in the FET double-balanced mixer. As with the singlebalanced mixer, it provides for best match between the quad FETs and the intermediate frequency amplifier; it effectively bypasses the RF components (signal and local oscillator); and unique to the double-balanced mixer, it provides a reduction of simple harmonic distortion, by virtue of its balance.

Figure 26. AM Noise Rejection in Double-Balance Mixer

Figure 27. Interport Isolation

Figure 28. Dynamic Unbalance vs. Incremental Decay

Selection of the dynamic drain impedance value in the IF network is a critical point in the design of the structure. Both $I M$ product distortion and crossmodulation will be affected by the instantaneous peak-to-peak voltage of the FETs if the dynamic drain impedance allows the signal peaks to enter either the pinchoff or breakdown voltage regions of the transistors. Here another design tradeoff must be considered. If the impedance is too high, the dynamic range of the mixer will be limited; if the impedance is too low, useful conversion gain will be sacrificed, as shown in Figure 29.

Figure 29. Gain and IMD vs. Local Oscillator Drive

Mixer Performance

Quad FET arrays with both high and low pinchoff voltage levels were used in evaluation of the active dou-ble-balanced mixer; the prototype mixer exhibited clearly superior characteristics, compared to equivalent small-signal passive double-balanced mixers. The low- to medium-level pinchoff voltage quad FET array performed slightly better than the high-level pinchoff devices (5.5 V), solely because of a limitation in available local oscillator power. Performance of several types of mixers is made in Table 8.

Conclusion

It may be concluded that performance of the active double-balanced mixer contributes overall system gain in areas critical to telecommunications practice, and reduces associated amplifier requirements.

SECTION 3: A COMMUTATION DOU-BLE-BALANCED MOSFET MIXER OF HIGH DYNAMIC RANGE

INTRODUCTION

Heretofore, most mixers sporting a high dynamic range have been either the passive diode-ring variety - available from numerous vendors - or the active FET mixer. The latter is often implemented, using either the Siliconix U310 or the Siliconix U350, as described in Sections 1 and 2.

Common to both the diode and FET is their squarelaw characteristic so important in maintaining low distortion during mixing. However, equally important for high dynamic range is the ability to withstand overload that has been identified as a principle cause of distortion in mixing ${ }^{13}$. Some passive diode-ring mixer designs have resorted to paralleling of diodes to effect greater current handling, yet the penalty for this apparent improvement is the need for a massive increase in local-oscillator power.

Here we examine a new FET mixer where communication achieves high dynamic range without exacting the anticipated penalty of increased local-oscillator drive. Using the Siliconix Si8901 monolithic quad-ring small-signal double-diffused MOSFET, third-order intercept points upward of +39 dBm (input) have been achieved with only +17 dBm of local-oscillator drive. A comparison between the Si8901 double-balanced mixer and the conventional diode ring doublebalanced mixer is offered in Figure 30 where we see an order-of-magnitude improvement in performance at local-oscillator power levels substantially lower than heretofore possible with the conventional mixer.

Conversion Efficiency Of The Commutation Mixer

Unlike either the conventional diode-ring mixer or the active FET mixer, the commutation mixer relies on the switching action of the quad-FET elements to effect mixing action. Consequently, the commutation mixer is, in effect, no more than a pair of switches reversing the phase of the signal carrier at a rate determined by the local-oscillator frequency. Ideally, we would anticipate little noise contribution, and

Table 8
Comparison Between Active, Passive, and MOSFET Double-Balanced Mixers

Characteristic	Active FET	Passive Low-Level	Passive High-Level	MOSFET Switch
Frequency Range (MHz)	$50-250$	$0.5-500$	$0.5-500$	$0.2-100$
AM Local Oscillator Noise Rejection (dB)	45	Unknown	Unknown	Unknown
Dynamic Unbalance (dB)	0.15	Unknown	Unknown	Unknown
Isolation RF-Local Oscillator (dB)	35	35	40	30
Isolation Local Oscillator - RF (dB)	60	25	30	25
Overall Noise Figure (SSB) (dB)	8.0	8.5	8.5	9.0
Local Oscillator Drive Level (dBm)	+15	+7	+17	+30
Two-Tone IMD Intercept Point* (dBm)	+34	+15	-8	35
Conversion Gain (db)	+4	-8	+8	-8
1 dB Compression (dBm)	+13	+1	+8	+29
Desensitization Level** (dBm)	+13	+1	+29	

* Output - measured at recommended LO drive level.
** The level for a nearby unwanted signal (separated 200 kHz) to compress a desired signal of -15 dBm by 1 dB .
since the switching mixer - consisting of four MOSFET "switches" - has finite ON-state resistance, performance is similar to that of a switching attenuator. As a result, the conversion efficiency of the commutation mixer may be expressed as a loss.

Figure 30. Performance Comparison of Double Balanced Mixers

This loss results from two related factors. First, is the rDS of the MOSFET relative to the signal impedance $\left(R_{g}\right)$ and intermediate frequency (IF) impedance $\left(R_{L}\right)$; second - and a more common and expected factor - is the loss attributed to signal conversion to undesired frequencies. The latter signal conversion involves the image and harmonic frequencies. There
are, however, ways to reduce the effects of undesired frequency generation by filtering.
The effect of $r_{D S}$ of the MOSFETs may be determined from the analysis of the equivalent circuit shown in Figure 31, assuming that our local oscillator wave form is an idealized square wave. It is not, but if we assume that it is, our analysis is greatly simplified; and for a commutation mixer, a high local-oscillator voltage begins to approach the ideal waveform of a square wave.

Figure 31. Equivalent Circuit of Communication Mixer

Figure 31, showing switches rather than MOSFETs, also identifies the ON-state resistance, rDs, as well as the OFF-state resistance, roff. The latter can be disregarded in this analysis as it is generally extremely high ($2 \cdot 10^{9} \Omega$). On the other hand, the ONstate resistance, rds, together with the source and load impedances (i.e. signal and intermediate-frequence impedances) directly affects the conversion efficiency.

If we assume that our local-oscillator excitation is an idealized square wave, the switching action may be represented by the Fourier series as,
$f(x)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) \omega t}{(2 n-1)}$

The switching function, $\epsilon(\mathrm{t})$, shown in the derivative equivalent circuit of Figure 32, is derived from the magnitude of this Fourier series expansion as a power function by squaring the first term, i.e. $(2 / \pi)^{2}$.

Figure 32. Derivative Equivalent Circuit

The available power that can be delivered from a generator of RMS open-circuit terminal voltage, V_{IN}, and internal resistance, R_{g}, is
$P_{a v}=\frac{V_{I N}{ }^{2}}{4 R_{g}}$
or, in terms shown in Figure 33
$P_{a v}=\frac{V_{I N}{ }^{2}}{\pi^{2} R_{g}}$
the output power, deliverable to the intermediatefrequency port, is
$P_{\text {out }}=\frac{V_{O}{ }^{2}}{R_{L}}$

Figure 33. The Power-Loop Circuit with All Elements Equivalent Based on the Transfer Function, $\epsilon(t)=\frac{4}{\pi^{2}}$

To arrive at V_{0}, we first need to obtain the loop current, i_{L}, which from Figure 33 offers

$$
\begin{equation*}
i_{L}=\frac{V_{\text {in }}}{\frac{\pi^{2}}{4}\left(R_{g}+r_{D S}\right)+R_{L}+r_{D S}} \tag{29}
\end{equation*}
$$

then
$V_{O}=\frac{V_{\text {in }} R_{L}}{\frac{\pi^{2}}{4}\left(R_{g}+r_{D S}\right)+R_{L}+r_{D S}}$

Combining Equations 28 and 30,

$$
\begin{equation*}
P_{\text {out }}=\frac{V_{\text {in }}{ }^{2} R_{L}}{\left[\frac{\pi^{2}}{4}\left(R_{g}+r_{D S}\right)+R_{L}+r_{D S}\right]^{2}} \tag{31}
\end{equation*}
$$

Conversion efficiency - in the case for the commutation mixer, a loss - may be calculated from the ratio of $P_{\text {av }}$ and $P_{\text {out }}$
$L_{C}=10 \log \frac{P_{\text {av }}}{P_{\text {out }}} d B$

Substituting Equation 27 for P_{av}, and Equation 31 for Pout, we obtain
$L_{C}=10 \log \frac{\left[\frac{\pi^{2}}{4}\left(R_{g}+r_{D S}\right)+R_{L}+r_{D S}\right]^{2}}{\pi^{2} R_{L} R_{g}} d B$

The conversion loss represented by Equation 33 is for a broadband double-balanced mixer with the image and sum frequency (RF + LO) ports shorted and the signal frequency (RF) matched to the characteristic line impedance. The ideal commutating mixer operating with resistive source and load impedances will result in having the image and all harmonic frequencies dissipated. For this case, the optimum conversion loss reduces to
$L_{C}=10 \log \frac{\pi^{2}}{4} d B$
or -3.92 dB

However, a truly optimum mixer also demands that the MOSFETs exhibit an ON-state resistance of zero ohms and, of course, an ideal square-wave excitation. Neither is possible in a practical sense.

Equation 33 can be examined for various values of source and load impedances as well as $r_{D S}$ by graphical representation, as shown in Figure 34, remembering that a nominal 3.92 dB must be added to the values obtained from the graph.

Figure 34. Insertion Loss As A Function of $r_{D S}, R_{L} \& R_{g}$

To illustrate how seriously the ON-state resistance of the MOSFETs affects performance, we need only to consider the Si8901 with a nominal rDS (at $V_{G S}=15 \mathrm{~V}$) of 23Ω. With a $1: 1$ signal transformer (50 to 25-0-25 Ω), $\mathrm{R}_{\mathrm{g}} / \mathrm{r}_{\mathrm{DS}}=1.1$. Allowing a $4: 1 \mathrm{IF}$ output transformer to a $50-\Omega$ preamplifier, the ratio $R_{L} / r_{D S}$ approximates 4. From Figure 34 we read a conversion loss, Lc, of approximately 3.7 dB , to which we add 3.92 dB for a total loss of 7.62 dB . Additionally, we must also include the losses incurred by both the signal and IF transformers. The result compares favorably with measured data.

A careful study of Figure 34 reveals what appears as an anomalous characteristic. If we were to raise $\mathrm{R}_{\mathrm{g}} / \mathrm{r}_{\mathrm{DS}}$ from 1.1 to 4.3 (by replacing 1:1 transformer with a $1: 4$ to effect a signal-source impedance of 100-0-100 Ω), we would see a dramatic improvement in conversion efficiency. The anomaly is that this suggests that a mismatched signal-input port improves performance.

Caruthers ${ }^{14}$ first suggested that reactively terminating all harmonic and parasitic frequencies would reduce the conversion loss of a ring demodulator to zero. This, of course, would also require that the active mixing elements (MOSFETs in this case) have zero ros, in keeping with the data of Figure 34.
A double-balanced mixer is a 4-port - consisting of a signal, image, IF, and a local-oscillator port. Of these, the most difficult to terminate is the image frequency port simply because, in theory, it exists as a separate port, but in practice it shares the signal port. Any reactive termination would, therefore, be narrow-band irrespective of its proximity to the active mixing elements.

The performance of an image-termination filter offering a true reactance to the image frequency (100\% reflective) may be deduced to a reasonable degree from Figure 34, if we first presume that the conversion loss between signal and IF compares with that between signal and image. The relationship is displayed in Figure 35 where we see the expected variation in amplitude proportional to conversion efficiency (inversely proportional to conversion loss).

Image-frequency filtering affects more than conversion efficiency. As the phase of the detuned-short position of the image-frequency filter is varied, we are able to witness a cyclical variation in the intermodulation distortion as has been confirmed by measurement, shown in Figure 36. By comparing Figure 35 with Figure 36, we see that any improvement in conversion loss appears to offer a corresponding degradation in intermodulation distortion!

Figure 35. Effect of Image Termination on Conversion Loss

Figure 36. Effect of Image Termination on 3rd-Order Distortion

Unbalanced, single-balanced, and double-balanced mixers are distinguished by their ability to selectively reject spurious frequency components, as defined in Table 5. The double-balanced mixer, by virtue of its symmetry, suppresses twice the number of spurious frequencies as the single-balanced mixer suppresses.

In the ideal mixer, the input signal is translated to an intermediate frequency without distortion, that is without imparing any of the contained information. Regrettably, the ideal mixer does not occur in practice. Because of certain non-linearities within the switching elements (MOSFETs in this case) as well as imperfect switching resulting in phase modulation, distortion results.

Identifying Intermodulation Distortion Products

The most damaging intermodulation distortion (IMD) products in receiver design are generally those attributed to odd-order and, in particular, those identified as the third-order IMD.

Earlier, in Equation 24, we saw that any non-linear device may be represented as a power series which can be reduced to the terms shown in Table 6.

The second-order term is the desired intermediate frequency we seek, all other higher-orders are undesirable but, unfortunately, are present to a varying degree.

There are both fixed-level IMD products and leveldependent IMD products. The former are produced by the interaction between a fixed-level signal, such as the local oscillator and the variable-amplitude signal. The resulting frequencies may be identified by
$n f_{1} \pm f_{2}$
where, n is an integer greater than 1.
Level-dependent IMD products result from the interaction of the harmonics of the local oscillator and those of the signal. The resulting frequencies may be identified by
$n f_{1} \pm m f_{2}$
where, m and n are integers greater than 1 .

For a mixer to generate IMD products at the intermediate frequency, we must account for at least a twostep process. First, the generation of the harmonics of the signal and local oscillator; and second, the mixing or conversion of these frequencies to the intermediate frequency. Consequently, the mixer may be modeled as a series connection of two non-linear impedances, the first to generate the harmonic products and the second to mix or convert to the intermediate frequency. Although many harmonically-related products are possible, we will focus principally on the odd-order IMD products.
If we allow two interfering signals, $f 1$ and $f 2$, to impinge upon the first non-linear element of our mixer model, the result will be $2 f 1-f 2$ and $2 f 2-f 1$. These are identified as third-order intermodulation products $\left(\mathrm{IMD}_{3}\right)$. Other products are also generated taking the form 3f1-2f2 and 3f2-2f1, called fifth-order IMD products $\left(\mathrm{MD}_{5}\right)$. Unlike the even-order products, odd order products lie close the the fundamental signals and, as a consequence, are most susceptible to falling within the passband of the intermediate frequency and thus degrading the performance of the mixer.

A qualitative definition of linearity based upon intermodulation distortion performance is called the intercept point. Convergence occurs when

- the fundamental output (IF) response is directly proportional to the signal input level;
- the second-order output response is proportional to the square of the signal input level; and,
- the third-order output response is proportional to the cube of the signal input level.

The point of convergence is termed the intercept point. The higher the value of this intercept point, the better the dynamic range.

Intermodulation Distortion in the Commutation Mixer

Although the double-balanced mixer outperforms the single-balanced mixer as we saw in Table 5, a more serious source of intermodulation products results when the local-oscillator excitation departs from the idealized square wave ${ }^{15,16}$. This phenomena is easily recognized by a careful examination of Figure 37, where a sinusoidal local-oscillator voltage reacts not only upon a varying transfer characteristic but also
on a varying non-linear, voltage-dependent capacitance (not shown in Figure 37). Although the effects of this sinusoidal transition are not easily derived, Ward ${ }^{17}$ and Rafuse ${ }^{18}$ have concluded that lowering R_{g} will provide improved intermodulation performance! This conflicts with low conversion loss, as we saw in Figure 34, but agrees with Equation 37.
$20 \log \left(\frac{\operatorname{tr} \omega \operatorname{LO} \frac{v_{S}}{V_{C}}}{8}\right)^{2} d B$
where,
V_{C} is the peak-to-peak local-oscillator voltage,
V_{S} is the peak signal voltage,
t_{r} is the rise and fall time of V_{C},
ω LO is the local-oscillator frequency.

Further examination of Figure 37 reveals that the sinusoidal local-oscillator excitation results in phase modulation. That is, as the sinusoidal wave goes through a complete cycle, the resulting gate voltage, acting upon the MOSFET's tranfer characteristic, produces a resulting non-linear waveform. Since all FETs have some offset - a JFET has cut-off voltage, and a MOSFET has threshold voltage - it is important,

Figure 37. Effect of Sinusoidal L.O. Waveform on I-F Linearity
both for symmetry as well as for balance, to offer some dc offset voltage to the gates. Optimum IMD performance demands that the switches operate in a 50% duty cycle; that is, the switches must be fully ON and fully OFF for equal time. Without some form of offset bias, this would be extremely difficult unless we were to implement an idealized square-wave drive.
Walker ${ }^{19}$ has derived an expression showing the predicted improvement in the relative level of two-tone third-order intermodulation products $\left(\mathrm{MD}_{3}\right)$ as a function of the rise and fall times of the local-oscillator waveform.
Equation 37 offers us several interesting aspects on performance. Since any reduction in the magnitude of V_{S} improves the IMD, we again discover that by lowering R_{g} (which, in turn, decreases the magnitude of V_{S}) appears to benefit performance. Second, the higher the local-oscillator voltage, the better the IMD performance. Third, if we can provide the idealized square-wave drive, we achieve an infinite improvement in IMD performance!
An additional fault of sinusoidal local-oscilaltor excitation results whenever the wave approaches the zerocrossing at half-period intervals. As the voltage decays, we find that any signal voltage may overload the MOSFETs causing intermodulation and crossmodulation distortion ${ }^{20}$. This can be easily visualized from Figure 38 where we see the classic i-e characteristics of the MOSFET at varying gate voltages. Only at substantial gate voltage do we witness reasonable linearity and, consequently, good dynamic range.

Figure 38. First \& Third Quadrant I-E Characteristics Showing Effect of Gate Voltage Leading to Large-Signal Overload Distortion

Dynamic Range Of The Commutation Mixer

As the two-tone intercept point increases in magnitude, we generally expect a like improvement in dynamic range results. Yet, as we have concluded from earlier study, the intermodulation products appear to be a function of both the generator or source impedance as well as ratio $R_{g} / r_{D S}$ and $R_{L} / r_{D S}$ (Figure 34).

In any receiver, performance can be quantified by the term dynamic range. Dynamic range can be extended by improving the sensitivity to low-level signals and by increasing the power handling ability without being overcome by interfering intermodulation products or the effects caused from desensitization.

There are rules to follow if we are to improve the lowlevel signal sensitivity. Ideally we would like a mixer to be transparent, acting only to manipulate the incoming signals for easy processing by subsequent equipment. The perfect mixer would have no conversion loss and a low noise figure. However, in the preceding analysis we discovered that optimum intermodulation performance occurred when the signal input port is mismatched to the quad MOSFETs (Figure 34). It now becomes clear that a performance trade-off appears necessary. Either we seek low conversion loss and with it a higher noise figure, or we aim for the highest two-tone third-order intercept point. Fortunately, as we seek the latter, our dynamic range will actually improve since a mismatched signal port has less effect upon the signal-to-noise performance of the mixer than does a matched signal port have upon intermodulation distortion.

Convention has identified minimum sensitivity to be the weaker signal which will produce an output signal that is 10 dB over that of the noise in a prescribed bandwidth (usually 1 kHz), or

$$
\begin{equation*}
\text { Sens. }=20 \log \frac{V_{S}+V_{N}}{V_{N}}+d B \tag{38}
\end{equation*}
$$

Desensitization occurs whenever a nearby unwanted signal causes the compression of the desired signal. The effect appears as an increase in the mixer's conversion loss.

The Si8901 As A Commutation Mixer

Because of package and parasitic constraints, the Si8901 is best suited for performance in the HF to low VHF region. A surface-mount version may extend performance to somewhat higher frequencies.

In our review of intermodulation distortion, we recognized that to achieve a high intercept point the localoscillator drive must

- approach the ideal square-wave,
- ensure a 50% duty cycle,
- offer sufficient amplitude to ensure a full ON and OFF switching condition, as well as to offer reduced ros when ON.

Furthermore, to maintain superior overall performance - both in conversion loss, dynamic range (noise figure) and intercept point - some form of image-frequency termination would be highly desirable even though, understandably, the mixer's bandwidth would be restricted.

Consequently, the principal effort in the design of a high dynamic range commutation mixer is two-fold. First, and most crucial, is to achieve a gating or control voltage sufficient to ensure a positive and hard turn-ON as well as a complete turn-OFF of the mixing elements (MOSFETs). Second, and of lesser
importance, is to properly terminate the parasitic and harmonic frequencies developed by the mixer.

Establishing the Gating Voltage

Local oscillator injection to the conventional diode ring, FET, or MOSFET double-balanced mixer is by the use of the broadband, transmission-line transformer, as shown in Figure 39. For the diode-ring mixer where switching is a function of loop current, or for active FET mixers that operate on the principle of transconductance and thus need little gate voltage, the broadband transformer is adequate. If this approach is used for the commutation mixer, we would need extraordinarily high local-oscillator drive to ensure positive turn-ON. Rafuse and Ward used a minimum of 2 W to ensure mixing action; Lewis and Palmer achieved high dynamic range using 5 Watts! The MOSFETs used in these early designs were pchannel, enhancement-mode (2N4268 devices with moderately high threshold (6 V maximum) and high input capacity (6 pF maximum). All of these early MOSFET double-balanced mixers relied on the conventional 50 to 100-0-100 Ω transformer for local-oscillator injection to the gates.
A major goal is the conservation of power. This goal cannot be achieved using the conventional design. Simply increasing the turns ratio of the coupling transformer is thwarted by the reactive load presented by the gates.

Figure 39. Local Oscillator Drive Using Conventional Broadband Transformers

The obvious solution is to use a resonant gate drive. The voltage appearing across the resonant task - and thus on the gates - may easily be calculated.

$$
\begin{equation*}
V=(P \cdot Q \cdot X)^{1 / 2} \tag{39}
\end{equation*}
$$

Where, P is the power delivered to the resonant tank circuit,
Q is the loaded Q of the tank circuit, and X is the reactance of the gate capacity.

Since the gate capacitance of the MOSFET is voltage dependent, the reactance of the gate becomes dependent upon the impressed excitation voltage. To allow this would severely degrade the IMD performance of the mixer. However, we can minimize the change in gate capacitance and remove its detrimental influence using a combination of substrate and gate bias, as shown in Figure 40. Not only does this show itself beneficial in this regard, but as we saw in Figure 37, a gate bias is necessary to ensure the required 50% duty cycle. Furthermore, a negative substrate voltage ensures that each MOSFET on the monolithic substrate is electrically isolated and that each source-/drain-to-body diode is sufficiently reverse biased to prevent half-wave conduction.

Figure 40. Effect of Bias on Gate Reactance

Implementing the resonant gate drive may take any of several forms. The resonant tank circuit may be merged with the oscillator, or it can be varactortuned Class B stage, or as in the present design, an independent resonant tank, shown in Figure 41.

Figure 41. Resonant - Gate Drive. T2 is Tuned to Resonate with C_{gs} of Si 8901

To ensure symmetrical gate voltage in 180-degree anti-phase, if the local-oscillator drive is asymmetrical, i.e., fed by unbalanced coax, an unbalanced-tobalanced balun must be used (T 1 in Figure 41); otherwise, capacitive unbalance results with an attendant loss in mixer performance.

Table 9 offers an interesting comparison between a resonant-gate drive with a loaded tank Q of 14 and a conventional gate drive using a 50 to 100-0-100 Ω transformer. The importance of a high tank Q is graphically portrayed in Figure 42. The full impact of a high gate voltage swing can be appreciated by using Equation 37. Here, as V_{C} (gate voltage) increases the intermodulation performance (IMD) also improves, as we might intuitively expect. Calculated and measured results are shown in Figure 43 and demonstrate reasonable agreement. The difference may reflect problems encountered in measuring V_{C} as any probe will inadvertently load, or detune, the resonant tank even with the special care that was taken to compensate.

Table 9

Power in (mW)	NR Gate Voltage (V)	Res Gate Voltage (V)
10	0.20	5.4
20	0.29	7.7
30	0.33	9.4
60	0.44	13.3

Comparison of a-c gate voltage versus local-
oscillator drive between a non-resonant (NR) and resonant (Res) tank with a loaded Q of 14
(Freq. 150 MHz)

If we have the option to choose "high side" or "low side" injection - i.e., having the local-oscillator frequency above (high) or below (low) the signal frequency - a closer inspection of Equation 37 should convince us to choose low-side injection.

Figure 42. Influence of Loaded Q on Gate Voltage vs. L.O. Power

Figure 43. Effect of Gate Voltage on IMD Performance

Terminating Unwanted Frequencies

If our mixer is to be operated over a restricted frequency range where the local oscillator and signal frequencies can be manipulated, image-frequency filtering may be possible. Image-frequency filtering
does affect performance - for high-side local-oscillator injection, an elliptic-function low-pass filter, or for low-side injection, a high-pass filter might offer worthwhile improvement. In either case, the filter offers a short-circuit reactance to the image frequency forcing the image to return once again for demodulation. The results of using a low-pass filter with the prototype commutation mixer are known from our eariier examination of Figures 35 and 36 .

Figure 44. Mask Layout PCM Prototype Commutation Mixer

The resonant-gate drive consisting of a high-Q tank offers adequate bypassing of the intermediate frequency and image frequency.
If the IF port is narrow band, filtering may be possible by simply using a resonant L-C network across the primary of the transformer.

Design Techniques in Building the Mixer

The mixer was fabricated on a high-quality doublecopper clad board shown in Figure 44. An improvised socket held the Si8901.

The signal and IF ports used Mini-Circuits, Inc., plastic T-case RF transformers. For the intermediate frequency, the Mini-Circuits T4-1 (1:4) was used; for the signal, the Mini-Circuits T1-1T (1:1) was used. The resonant tank was wound on a one-quarter-inch-diameter ceramic form with no slug. The unbalanced-to-balanced resonant tank drive used a T4-1. The schematic diagram, Figure 45 , is for a commutation mixer, operating with an IF of 60 MHz .

The principle effort involved the design of the reso-nant-gate drive. This necessitated an accurate knowledge of the gate's total capacitive loading effect. To accomplish this, a precision fixed capacitor $(5 \mathrm{pF})$ was substituted for the Si8901, and at resonance, it was a simple matter to calculate the inductance of the resonant tank. Substituting the Si8901 made it again a simple task to determine the capacitive effects of the Si8901. Once known, a high-Q resonant tank can be quickly designed and implemented. To ensure good interport isolation, symmetry is important, so care is necessary in assembly to maintain mechanical symmetry, especially with the primary winding.

Performance of the Si8901 Prototype Commutation Mixer

The primary goal in developing a commutation dou-ble-balanced mixer is to achieve a wide dynamic range. If this task can be accomplished with an attendant savings in power consumption, then the resulting mixer design should find wide application in HF receiver design.
The following tests were performed.

- conversion efficiency (loss)
- two-tone, 3rd order intercept point
- compression level
- desensitization level
- noise figure

Conversion loss and the intercept point are directly dependent upon the magnitude of the local-oscillator power. The prototype mixer's performance is offered in Figure 46, where the input intercept and conversion loss are plotted.

Both the compression and desensitization levels may appear to contradict reason. Heretofore, conventional diode-ring demodulators exhibited compression and desensitization levels an order of magnitude below the local-oscillator power level. However, with a commutation MOSFET mixer, switching is not accomplished by the injection of loop current but by the application of gate voltage. At a local-oscillator power level of $+17 \mathrm{dBm}(50 \mathrm{~mW})$, the $2-\mathrm{dB}$ compression level and desensitization level were +30 dBm !

The single-sideband HF noise figure of 7.95 dB was measured at a local oscillator power level of +17 dBm .

Figure 45. Prototype Commutation Double-Balanced Mixer

CONCLUSION

Achieving a high gate voltage to effect high-level switching by means of a resonant tank is not a handicap. Although one might, at first, label the mixer as narrow-band, in truth the mixer is wide-band. For the majority of applications, the intermediate frequency is fixed, that is, narrow band. Consequently, to receive a wide range of signal frequencies, the local oscillator is tuned across a similar band. In modern
technology the tuning can be accomplished by numerous methods, not the least of which might be electronically using varactors. The resonant tank also may take several forms. It can be part of the oscillator, it can be varactor-tuned driver electronically tracking the local oscillator ${ }^{21}$.
If the local-oscillator drive was processed to offer a more rectangular waveform, approaching the idealized square wave, we might then anticipate even greater dynamic range as predicted by Equation 37.

Figure 46. Intercept Point \& Conversion Loss

References

1. Pound, R. V., Microwave Mixers (1948) MIT Rad. Lab. Series, Vol. 16, Fig. 6.14.
2. Compton, J. B., "High Frequency JFET Characterization and Applications," Design Electronics, March, 1970.
3. Sabin, Wm., "The Solid State Receiver," QST, July 1970.
4. Penfield, P. and R. Rafuse, Varactor Applications (1962) MIT Press, pp. 73ff.
5. Vogel, J. S., "Non-Linear Distortion and Mixing Processes in FETs," Proc. IEEE, Vol. 55, No. 12 (1967).
6. Ruthroff, C. L., "Some Broadband Transformers," Proc. IRE, Vol. 47, No. 8 (1969).
7. "UHF FET Mixer of High Dynamic Range," ECOM-0503-P005-G821 (1969).
8. Will, Peter, "Reactive Loads - The Big Mixer Menace," Microwaves, April 1971.
9. McVay, F. C., "Don't Guess the Spurious Level," Electronic Design, Feb. 1, 1967.
10. Hoigaard, J. C., "Spurious Frequency Generation in Frequency Converters," Microwave Journal, July/August 1967.
11. Pitzalis, O. and T. Couse, "Broadband Transformer Design for RF Power Transistor Amplifiers," Proceedings Electronic Components Conference, 1968.
12. Mattaei, G. L., Young, L., and E. M. T. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures (1964) McGraw-Hill.
13. Walker, H. P., "Sources of Intermodulation in Diode-Ring Mixers," The Radio and Electronic Engineer, Vol. 46, No. 5 (1967).
14. Caruthers, R. S., "Copper Oxide Modulators in Carrier Telephone Repeaters," Bell System Technical Journal, Vol. 18, No. 2 (1939).
15. Lewis, H. D. and F. I. Palmer, "A High Performance HF Receiver," R.C.A. Missiles \& Surface Radar Div. Report (Nov. 1968).
16. Walker, H. P., op. cit.
17. Ward, Michael John, "A Wide Dynamic Range Single-Sideband Receiver,' MIT'MS Thesis (Dec. 1968).
18. Rafuse, R. P., "Symmetric MOSFET Mixers of High Dynamic Range," Digest of Technical Papers, 1968 Int'I. Solid-State Circuits Conference.
19. Walker, H. P. op. cit.
20. Gardiner, John G., "The Relationship Between Cross-Modulation and Intermodulation Distortions in the Double-Balanced Modulator," Proc. IEEE Letters (Nov. 1968).
21. "Electronically Controlled High Dynamic Range Tuner," Final Report (June 1971) ECOM-0104-4 R\&D Tech. Report, AD887063L.

THE FET CONSTANT-CURRENT SOURCE

INTRODUCTION

The combination of low associated operating voltage and high output impedance make the FET attractive as a constant-current source. An adjustable-current source (Figure 1) may be built with a FET, a variable resistor and a small battery. For good thermal stability, the FET should be biased near the zero temperature coefficient point.

Figure 1. Field-Effect Transistor Current Source

Whenever the FET is operated in the saturated region, its output conductance is very low. This occurs whenever the drain-source voltage $V_{D S}$ is significantly greater than the cut-off voltage V_{GS} (off). The FET may be biased to operate as a constant-current source at any current below its saturation current IDSs.

For a given device where IDSs and V_{GS} (off) are known, the approximate $V_{G S}$ required for a given I_{D} is
$V_{G S}=V_{G S(\text { off })}\left[1-\left(\frac{I_{D}}{I_{D S S}}\right)^{1 / k}\right]$
where k can vary from 1.7 to 2.0 , depending upon device geometry. The series resistor R_{s} required between source and gate is
$R_{S}=\frac{V_{G S}}{I_{D}}$

A change in supply voltage or a change in load impedance, will change I_{D} by only a small factor because of the low output conductance $\mathrm{g}_{\text {oss }}$.
$\Delta I_{D}=\left(\Delta V_{D S}\right)\left(g_{\text {oss }}\right)$

The value of $g_{\text {oss }}$ is an important consideration in the accuracy of a constant-current source. As goss may range from less than $1 \mu \mathrm{~S}$ to more than $50 \mu \mathrm{~S}$ according to the FET type, the dynamic impedance can be greater than $1 \mathrm{M} \Omega$ to less than $20 \mathrm{k} \Omega$. This corresponds to a current stability range of $1 \mu \mathrm{~A}$ to $50 \mu \mathrm{~A}$ per. volt. The value of g oss depends also on the operating point. Output conductance goss decrease approximately linearly with I_{D}, becoming less as the FET is biased toward cut-off. The relationship is

$$
\begin{equation*}
\frac{I_{D}}{I_{\text {DSS }}}=\frac{g_{\text {oss }}}{g_{\text {oss }}^{\prime}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{\text {oss }}=g^{\prime} \text { oss } \tag{5}
\end{equation*}
$$

when

$$
\begin{equation*}
V_{G S}=0 \tag{6}
\end{equation*}
$$

So as $V_{G S} \longrightarrow V_{G S(\text { off })}$, goss \longrightarrow Zero. For best regulation, I_{D} must be considerably less than $I_{D S S}$.

It is possible to achieve much lower $g_{\text {oss }}$ per unit I_{D} by cascading two FETs, as shown in Figure 2.

Figure 2. Cascade FET Current Source

Now, I_{D} is regulated by Q_{1} and $V_{D S 1}=-V_{G S 2}$. The dc value of I_{D} is controlled by R_{S} and Q_{1}. However, Q_{1} and Q_{2} both affect current stability. The circuit output conductance is derived as follows:

Figure 2 is redrawn in Figure 3 for the condition $\mathrm{V}_{\mathrm{GS} 1}$ $=0$.

(A)

(B)

Figure 3.
$i_{0}=i_{2}+v_{G s 2} g_{f s 2}=v_{d s 2} g_{o s s 2}-i_{o} \frac{g_{f s 2}}{g_{o s s} 1}$
$i_{0}=\frac{v_{d s 2} g_{o s s 2} g_{o s s 1}}{g_{o s s 1}+g_{f s 2}}$

$$
\begin{align*}
& v_{0}=v_{d s 1}+v_{d s 2}=v_{d s 2}+\frac{i_{0}}{g_{o s s 1}} \tag{9}\\
& v_{0}=v_{d s 2} \frac{g_{o s s 1}+g_{o s s 2}+g_{f s 2}}{g_{o s s 1}+g_{f s 2}} \tag{10}
\end{align*}
$$

$$
\begin{align*}
& g_{o}=\frac{i_{o}}{v_{0}}=\frac{g_{o s s 1} g_{o s s 2}}{g_{o s s 1}+g_{o s s 2}+g_{f s 2}} \tag{11}\\
& \text { If } g_{o s s 1}=g_{o s s 2} \tag{12}\\
& g_{o}=\frac{g_{o s s}}{2+g_{f s} / g_{o s s}} \tag{13}
\end{align*}
$$

when $R_{S} \neq 0$ as in Figure 2

$$
\begin{equation*}
g_{o}=\frac{g_{o s s}^{2}}{2 g_{o s s}+g_{f s}+R_{s}\left(g_{f s}^{2}+g_{o s s} g_{f s}+g_{o s s}^{2}\right)} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\approx \frac{g_{\mathrm{oss}}{ }^{2}}{g_{\mathrm{fs}}\left(1+R_{\mathrm{s}} g_{\mathrm{fs}}\right)} \tag{15}
\end{equation*}
$$

In either case ($R_{S}=0$ or $R_{S} \neq 0$), the circuit output conductance is considerably less than the g oss of a single FET.

In designing any cascaded FET current source, both FETs must be operated with adequate drain-gate voltage $V_{D G}$. That is,
$V_{D G}>V_{G S}$ (off), preferably $V_{D G}>2 V_{G S \text { (off) }}$

If $\mathrm{V}_{D G}<2 \mathrm{~V}_{\mathrm{GS} \text { (off) }}$, the $\mathrm{g}_{\text {oss }}$ will be significantly increased, and circuit g_{0} will deteriorate. For example: A JFET may have a typical $\mathrm{goss}=4 \mu \mathrm{~S}$ at $\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{~V}$ and $V_{G S}=0$. At $V_{D S} \sim-V_{G S}$ (off) $=2 \mathrm{~V}$, goss \sim $100 \mu \mathrm{~S}$.

The best FETs for current sources are those having long gates and consequently very low goss. The Siliconix 2N4869 exhibits typical $\mathrm{g}_{\text {oss }}=1 \mu \mathrm{~S}$ at $\mathrm{V}_{\mathrm{DS}}=$ 20 V . A single 2 N 4869 in th circuit of Figure 4 will yield a current source adjustable from $5 \mu \mathrm{~A}$ to 1 mA with internal impedance greater than $2 \mathrm{M} \Omega$.

Figure 4. Adjustable Current Source $R_{S}=1 \mathrm{M} \Omega, 2 \mathrm{~W}$
$Q_{1}=2 N 4340$
$Q_{2}=2 N 4341$
$R_{S}=1 \mathrm{M} \Omega, 2 \mathrm{~W}$

Figure 5. Cascade FET Current Source

The cascade circuit of Figure 5 provides a current adjustable from $2 \mu \mathrm{~A}$ to 1 mA with internal resistance greater than $10 \mathrm{M} \Omega$.

Siliconix also offers a line of JFETs with a resistor fabricated on the device, thus creating a 10% current range. The series is called the CRO22 (0.22 mA range) through the CR530 (5.3 mA range). See the data sheet section for specific part types. The devices allow precision designs using a single device versus the typical approach using several components.

LOW-POWER MOSFETS FOR "SMART" TELEPHONES

Deregulation of the telephone industry has brought fierce competition among electronic telephone manufacturers. "Smart" phones now provide special services, such as automatic re-dial, elapsed time indicators, repertory dialing, visual display, and many other attractive consumer aids. One circuit described in this article uses low-power MOSFETs to provide all the basic high-voltage switching functions needed in an electronic telephone set.

This article also describes a basic remote-isolation device or RID* circuit implemented using low-power MOSFETs. RIDs are used to identify telephone link problems that result from faults in customer's equipment rather than faults in the phone company system. A RID is placed on the telephone line at the interface between the telephone line and the cus-tomer-owned wiring. When the telephone company tests the line, a standard test signal activates the RID, momentarily disconnecting the customer-owned equipment and leaving a standard termination connected. If the problem is isolated to the customerowned equipment, the telephone company can save from $\$ 50$ to $\$ 80$ for an unnecessary service call. This savings easily justifies the modest cost of the RID, and recent legislation encourages their installation on all new central office lines in the U.S.

Electronic Telephone Handset

Figure 1 shows a block diagram of the essential functions of a telephone set. On the left side, the telephone lines (known as tip and ring in the U.S. or as A and B in Europe) enter the handset (known as a station set in the U.S.). In Europe, there may also be a third line which allows one to signal the operator by momentarily connecting this line to the B conductor. On the right side of the diagram, separate pairs of wires go to the microphone and earpiece. These transmit and receive functions are separated by circuitry known as a hybrid. On the two-wire (left) side of the hybrid, tip and ring carry both incoming and outgoing signals. However, on the four-wire (right) side, incoming and outgoing signals are separated. This prevents speech signals generated by the microphone from being repeated with deafening force into the ear of the person speaking. Traditionally, the
hybrid function was provided with a transformer circuit; however, in recent times, electronic circuits have been contrived to perform the same function.

A pair of buttons on the top of most handsets operate a simple closure switch known as the hookswitch. (Named from early telephones that switched when the earpiece was hung on a hook.) The hookswitch can also be used for pulse dialing. In pulse dialing, the loop is repeatedly opened and closed to signal dialing instructions to the exchange. Traditionally, this is done at a rate of 10 pulses per second. In tone dialing, special oscillators (known as dual-tone multifrequency generators) generate tones representing the dialing instructions. These tones are normally applied across the loop without interruption.

The bridge circuit shown in Figure 1 is a polarity guard that protects the telephone circuitry against accidental polarity inversion of the linefeed voltage or accidental crossing and substitution of the telephone lines. Since this is normally done with pn diodes, the 1.5 V dropped across these diodes can limit telephone circuits designed to operate on long loops where only a few volts are available at the end of the loop to run the handset.

The surge protection block prevents the telephone circuitry from being damaged by high-voltage surges. Telephone lines are typically routed in bundles with a metallic grounded shield around the bundle. If the metallic shield is struck by lightning, a highvoltage surge is produced on all of the lines in the bundle. This surge may run to tens of thousands of volts. The most important feature of the protector circuit is a carbon block spark gap, which arcs over at about 400 V to 800 V . When electronic components are used in the telephone set, this surge needs to be further reduced by a circuit comprising resistors and a metal oxide varistor which breaks over at 200 V.

The ring detection circuit is designed to recognize the $20-\mathrm{Hz}$ waveform of an incoming ring signal and thus produce a ringing tone or a logical output which operates a separate ringing-tone generator. In an electronic phone, it is often desirable to disable the

[^62]

Figure 1. Electronic Telephone with Solid-State High-Voltage Switching Elements
ring detection circuit when the handset is picked up, thus preventing accidental triggering of the ring detection circuit. If the station set is used in a handsfree telephone application, an off-hook condition must be generated to draw current from the line while the handpiece is resting on the hookswitch. This function, the "forced off hook" capability, along with the generation of dial pulse or dial tone signals, is initiated by the microprocessor controller, the hallmark of a smart phone.

In Figure 1, a number of telephone handset functions associated with high-voltage switching are illustrated. These switching functions are ideally provided using low-power MOSFETs, regardless of how the controller, DTMF generator, hybrid, and other components are implemented. Inside this box, a 5-V power supply draws a small amount of power from the telephone line and generates the 5 V of power needed to run the low-power CMOS logic in the handset. The polar-ity-guard diode bridge is synthesized from low-cost power MOSFETs which provide the same protection
as the diode bridge without interposing a fixed $1.5-\mathrm{V}$ drop into the telephone loop. A switch provides the hookswitch function, and when pulsed on and off, it can also be used for dial pulse signaling. A ring disconnect switch disconnects the ring detector when the handpiece is picked up, and a recall switch momentarily connects the recall line to the more negative of the two telephone conductors when a $5-\mathrm{V}$ signal is applied to the recall input. Logic signals tell the microprocessor when its power supply has reached full voltage so the microprocessor functions can begin.

Figure 2 shows the detailed implementation of the handset switching circuit. At all times, the intrinsic diodes of the MOSFET bridge, consisting of transistors Q1 through Q4, bleed through small amounts of current of the correct polarity. This current passes through the $10-\mathrm{M} \Omega$ resistor, R1, to the $10-\mathrm{V}$ zener diode, Z 1 , connected by a $100-\mathrm{k} \Omega$ resistor to the gate of Q9. Thus the $10-\mathrm{M} \Omega$ resistor is permanently

Figure 2. High-Voltage Switching Circuit for Telephone Handset
connected across the telephone loop. The $4.8 \mu \mathrm{~A}$ drawn from the $-48-\mathrm{V}$ central office battery is acceptable in most telephone systems; however, if necessary, a $50-\mathrm{M} \Omega$ resistor may be substituted for the $10-\mathrm{M} \Omega$ resistor without any significant deleterious effect. Normally, when the handpiece is on the hook, Z1 is shorted to ground by the hookswitch. This hookswitch, by the way, carries only this extremely small current and thus can be a very low-cost item without any of the mechanical precautions needed for switching telephone loop currents. When the hookswitch is opened, 10 V from Z 1 is applied to the gate of transistor Q9, turning it on. Q9 provides two functions. First, it allows sufficient current to be drawn through the $4.7-\mathrm{k} \Omega$ resistor, R4, to tell the telephone exchange that the receiver is off the hook, thus stopping the ring and providing a dial tone. Second, Q9 causes current to be pulled through Z2 and

R3, turning on the p-channel transistor, Q11. When turned on, Q11 allows the telephone loop current to pass through the $3.9-\mathrm{k} \Omega$ resistor, R5, and into the $5-\mathrm{V}$ zener diode, providing a $5-\mathrm{V}$ power supply for all the parts of the handset circuit that require it. If this is primarily low-current-drain CMOS logic, adequate current should be available, although a more elaborate voltage regulator could be provided.

The $5-\mathrm{V}$ supply powers the two CMOS inverters, 11 and I , which act as a 2 MHz oscillator. (This oscillator will work only with the exact components called out; different resistors or capacitors might be needed with substitute parts.) The outputs from this oscillator power the four resistor diode networks that produce approximately 8 V to drive the gates of Q2, Q4, Q5, Q6, and Q7. The nand gates in front of the networks driving Q2 and Q4 are gated by sensing
signals obtained from the polarity of the incoming telephone lines, so Q4 and Q2 act as highly efficient rectifier diodes. Q5 and Q6 are depletion-mode or normally-on transistors which allow ring signals to come through the ring signal detector. (Capacitive coupling is used to the ring detector.) When the power supply is brought up, Q5 \& Q6 are turned off, and from then on, the ring detector is disconnected. Transistor Q7 serves the function which most nearly replaces the original switch hook function. When the power supply comes up, it turns on, connecting the speech circuit (another name for the hybrid) to the telephone lines. Finally, when the 5-V power supply comes up, Q12 turns on, giving a low output to the microprocessor start pin and telling the microprocessor that it can safely commence functioning.

One of the first controller functions is to initiate dialing. This can be done using tone dialing, using a DTMF generator placed across the telephone lines (as shown in Figure1), or by using pulse dialing in which case logic signals are applied to the dial pulse input pin. This turns off the current to the power supply, causing the current from the loop to be low enough to register as a dial pulse at the exchange. To keep the power rail from dropping to zero, Q13 is used to shut down the oscillator temporarily so that it does not drain more current from the $10-\mu \mathrm{F}$ power supply capacitor. Meanwhile Q2, Q4, Q5, and Q6 are maintained in their states for the $100-\mathrm{ms}$ pulse by the $0.1-\mu \mathrm{F}$ capacitors placed between gate and source. Thus, the immediate effect of a dial pulse input is to turn off Q7 and Q9, so that no more current is drawn from the loop while the rectifier bridge and ringer disconnect switches are unaffected. The application of a logic signal to the forced off-hook terminal when the hookswitch is closed turns on Q9 and the 5-V power supply regardless of the state of the hookswitch.

Application of a $5-V$ signal to the recall pin simply turns on the recall switch, Q8, regardless of the state of the rest of the circuit.

The switching circuit closely mimics the functioning of the mechanical switches in a traditional telephone. When an off-hook condition is detected from the hookswitch or commanded by the controller, current is drawn from the loop and the speech circuit is connected to the telephone loop. Application of dial pulses to the dial pulse input causes momentary current cessations to simulate pulse dialing. The polarity guard rectifies the incoming signal with no voltage
drop, producing an output with constant polarity, regardless of misconnections. The circuit produces a $5-\mathrm{V}$ power rail for operation of the entire system, and sends a low signal to the microprocessor when this has been achieved.

The Remote Isolation Device (RID)

A remote disconnect circuit is shown in Figure 3. Several types of remote disconnect circuits are employed internationally. In the U.S., the Bell System uses a device called a maintenance termination unit or MTU, which uses TRIACS to momentarily disconnect the customer during line testing. In Europe, a remote disconnect circuit is planned to both disconnect the customer and send a standard-test tone on the line to the exchange. Independent telephone companies in the U.S. call their circuit a remote isolation device.

Each of these circuits has slightly different triggering conventions. It is critical to avoid accidental triggering, so these circuits use a sustained positive voltage that is larger than normally encountered in regular telephone service. The circuit described here uses a $1-\mathrm{s},+130-\mathrm{V}$ signal to either tip or ring to activate the device. The circuit must not be triggered by brief transient voltages above this level, like those associated with longitudinal pickup or ringing signals. In addition, it must be essentially transparent to all the normal telephone signals.

Figure 3 shows that when a positive voltage above ground potential is applied to either tip or ring, it is steered by the diodes to the top end of capacitor C1, charging it up to the line potential. If the voltage exceeds $90 \vee$ for more than a second, Q1 turns on, which, in turn, turns on Q3. If the voltage is then reduced, diode D1 will reverse bias as the line voltage decreases below the voltage on C 1 . When the reverse bias exceeds 2 V , Q1, a p-channel device, is biased on. When this happens, the potential of the node at the top end of C1 is abruptly pulled down to either the new line potential or ground, whichever is more positive. The potential on the lower side of C 1 , which is now large and negative, is then applied through Q4 to the gates of Q5, Q6, Q7, and Q8, turning off these depletion-mode transistors. Q4 ensures that there is no path to ground from tip and ring through D2 when the switching mechanism has not been triggered. The resistor diode network associated with the sources and gates of Q5, Q6, Q7, and Q8 ensures that charging the $1-\mu \mathrm{F}$ capacitors is not prematurely terminated by turning off the switches.

All Diodes have $>300 \mathrm{~V}$ Breakdown

Figure 3. Remote Isolation Device Circuit

The circuit will respond to a $1-\mathrm{s},+100-\mathrm{V}$ or greater potential on tip or ring by turning off both switches for approximately 10 s . It is not triggered by transient pulses above 100 V , nor by sharp pulses or noise on the line, and it is not affected by the normal negative voltages used in telephone service. When the $+135-\mathrm{V}$ signal is applied, the disconnect does not occur until the voltage is reduced below the original level. Once triggered, the disconnect cannot be negated by the application of other potentials, even if they are greater than 130 V . The functioning is not affected if tip and ring are interchanged.

Conventionally, telephone companies place a recognizable impedance across the line in front of the remote isolation device. This is frequently a diode in series with a $400-\mathrm{k} \Omega$ resistor, so the variation of im pedance with polarity can be observed when the customer has been disconnected.

Those who plan to build a remote isolation device should consult the detailed network requirements of the telephone companies involved to make sure that all applicable regulatory requirements, such as those imposed by the FCC, are met. The circuit shown here requires a resistor and varistor protector to protect it against overvoltages in excess of 240 V , such as those associated with a power cross where a power line touches the telephone line.

The low-power MOSFETs that provide all the basic high-voltage switching functions for the telephone set and the RID circuits presented in this article are available from Siliconix. In addition to standard enhance-ment-mode MOSFETs, we also offer depletion-mode options that provide a convenient interface with the economical gate-drive circuits used in many telephone systems. Siliconix has a well-established history as a supplier of rugged, high-voltage MOSFETs for the worldwide telecommunications industry.

P-CHANNEL MOSFETS THE BEST CHOICE FOR HIGH-SIDE SWITCHING

Ed Oxner

Central Applications

Historically, p-channel FETs were not considered as usefui as their n-channei counterparts. The higher resistivity of p-type silicon resulting from its lower carrier mobility put it at a disadvantage compared to n-type silicon.

Getting n-type performance out of p-type FETs has meant larger area geometries with correspondingly higher inter-electrode capacitances. Consequently, a truly complementary pair - a p-channel and an n-channel device that match in all parameters - is impossible.

Another obvious shortcoming is that, despite the availability of low-threshold devices, no p-channel MOSFET is "logic compatible."

Yet, despite its shortcomings, the p-channel MOSFET performs a vital "high-side" switch task that the nchannel simply cannot equal.

Used as a high-side switch, a p-channel MOSFET in a totem-pole arrangement with an n-channel MOSFET will simulate a high-current, high-power CMOS (complementary MOS) arrangement. Although the p-channel MOSFET cannot complement the n-chan-
nel in both on-resistance and capacitance simultaneousiy, such combinations as the low-threstoid pchannel TP0610 and the n-channel 2N7000 together offer outstanding performance as a complementary pair.

CIRCUIT APPLICATIONS

Switching Ground-Return Loads

The principal application of the p-channel, enhance-ment-mode MOSPOWER FET is in switching power (or voltage) to grounded (ground return) loads.

To drive the FET properly, the gate voltage must be referenced to its source. For enhancement-mode MOSFETs, this gate potential is of the same polarity as the MOSFET's drain voltage. To turn on, the n channel MOSFET requires a positive gate-source voltage, whereas the p-channel MOSFET requires a negative gate-source potential.

During switching, a MOSFET's source voltage must remain fixed, as any variation will modulate the gate and thus adversely affect performance. Figure 1 shows this degradation by comparing n-channel and p-channel MOSFET high-side switching.

Figure 1. Comparing the Performance Between N-Channel and P-Channel Grounded-Load Switching

If an n-channel, enhancement-mode MOSFET were switching a positive-polarity voltage to a grounded load, the output would be limited to $V_{G G}-V_{\text {th }}$.

The equations describing performance of the n-channel ground-switching MOSFET with a ground-reference gate drive are based on the relationship between $V_{D D}$ and $V_{G G}$:

$$
\begin{aligned}
& \text { If } V_{D D} \geq V_{G G}, \text { then } V_{O}=V_{G G}-V_{t h} ; \\
& \text { If } V_{D D}<V_{G G}, \text { then } V_{O}=V_{D D}-I_{L} r_{D S(o n)} .
\end{aligned}
$$

Sustaining a more acceptable gain with an output in direct relation to $V_{D D}$ would require an isolated gate drive referenced to the source, as shown in Figure 2.

Figure 2. Floating Gate Drive

Bootstrapping the n-channel MOSFET (see Figure 3) is quite satisfactory for short turn-on times of a few milliseconds. In this arrangement, both MOSFETs must have breakdown voltage specifications that match or exceed the rail voltage.

Using a p-channel MOSFET in the configuration shown in Figure 1 (b) may place some severe restraints upon the gate drive, since the gate must be close to $V_{D D}$. To return gate control to a more acceptable logic format, add an n-channel MOSFET as shown in Figure 4.

Using an n-channel MOSFET in this way simplifies the gate drive for a high-voltage, high-side, p-channel MOSFET. Placing a Zener diode between the gate
and rail ensures that $V_{(B R)}$ Gss will not be exceeded. Again, both MOSFETs must withstand the full rail voltage.

Figure 3. Bootstrapping for N -Channel Ground-Loaded Switching

Figure 4. Using an N -Channel Level-Shifter Simplifies Driving from Logic

Half-Bridge (Totem Pole)

The high-side p-channel MOSFET coupled to a lowside n-channel MOSFET with common drains (shown in Figure 5) makes a superb high-current "CMOS equivalent" switch. One fault common to such circuits has been the excessive crossover current during switching that may occur if the gate drive allows both MOSFETs to be on simultaneously.

Figure 5. Low-Voltage Complementary MOSPOWER Array

At high rail voltages (both $+V_{D D}$ and $-V_{D D}$), properly driving the MOSFET gates can minimize unwanted
crossover current, as Figure 6 shows. When the output stage uses high-power MOSFETs, a resistivelycoupled lower-power complementary pair offers extremely low crossover current. The Zener, Z1, and resistors, R1 and R3, act as a level shifter, properly driving the low-power MOSFETs. The Zener may be selected according to the equation

$$
\begin{aligned}
V_{\mathrm{ZENER}} & =2 \mathrm{~V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{th}}\right| \\
+\mathrm{V}_{\mathrm{DD}} & =-\mathrm{V}_{\mathrm{DD}}
\end{aligned}
$$

Whatever crossover current that might occur in the low-power drivers is dramatically reduced by the series resistor, R4. Additionally, driving the high-power complementary pair using this resistor divider scheme all but eliminates crossover current in this critical output driver. This increases both the driver's efficiency and its reliability.

Figure 6. High-Voltage Complementary Pair Driven by Logic-Compatible MOSFET

DEPLETION-MODE MOSFETS EXPAND CIRCUIT OPPORTUNITIES

Ed Oxner \& Richard Bonkowski

INTRODUCTION

A principal advantage of the depletion-mode MOSFET is its ability to perform at higher operating voltages than its JFET counterpart. As a depletion-mode structure, the MOSFET permits the added flexibility of allowing the gate potential not only to be higher but to be of either polarity. Earlier, small-signal MOSFETs were classed as being quite sensitive to ESD. With the introduction of the ND2020 and ND2410 series, sensitivity to ESD has been greatly reduced.

Perhaps the only short coming for the depletionmode MOSFET is its higher-than-JFET noise performance. Where the JFET has been perceived as a "noiseless" transistor, the MOSFET does not share that renown.

Depletion-Mode vs. Enhancement-Mode

Three Classes of FETs

There are three classes of FETs, both n - and p-channel, that are identified by the mnemo A, B and C. Class A encompasses the whole field of junction FETs (JFETs). Class B includes those that are identified as depletion-mode MOSFETs, and Class C includes those recognized as enhancement-mode MOSFETs. Figure 1 illustrates the basic differences that distinguish the various classes and also demonstrates how these classes differ with respect to biasing.

In the symbols used in Figure 1, the solid bar identifies a depletion-mode FET (current conduction at zero bias); the broken bar identifies an enhance-ment-mode MOSFET (zero conduction at zero bias).

Note that although Class A and B are both classified as depletion-mode, Class B radically differs in that depletion-mode MOSFETs are also capable of performance in the enhancement-mode region. This distinction is only achievable for Class B. Although neither Class A (JFETs) nor Class C (MOSFETs) can perform beyond their respective mode, Class B - the
depletion-mode MOSFET - is capable of operation in both modes!

Perhaps the simplest definition of depletion-mode operation is shown by the transfer characteristic (biasing) curves offered in Figure 1 (b). Drain current is reduced to zero when the gate voltage reaches a critical cutoff voltage, opposite in polarity to that of the drain voltage. The n-channel JFET (or Class B MOSFET) has a positive-polarity drain voltage and is controlled by a negative-polarity gate voltage. Why the Class B MOSFET may also perform in the enhancement-mode is made clear by study of the structure.

The Structure of MOSFETs

All MOSFETs are classified as either depletion-mode or enhancement-mode. Although they can be fabricated as n - or p-channel, generally we find n-channel MOSFETs in either mode and p-channel MOSFETs available only as enhancement-mode devices.

There are, however, three fundamental styles of MOSFETs regardless of mode. The classic planar MOSFET, shown in cross-section in Figure 2, the short-channel double-diffused MOSFET (DMOS FET), shown in Figure 3, and the vertical power MOSFET, shown in Figure 4. The features of each style are distinguished by performance.

When viewing the cross section, the distinguishing feature that quickly identifies the mode is whether a diffused channel spans the gap from source to drain. No visible channel (Figure 2a, 3a, and 4a) identifies the enhancement-mode MOSFET.

The Performance of a Depletion-Mode MOSFET

Regardless if the MOSFET is n - or p-channel, the fundamental difference in performance focuses on whether the MOSFET is a depletion-mode or an en-hancement-mode device. An important, but secondary difference lies in the style of MOSFET: planar, DMOS, or vertical. The principal differences are clarified as we study the transfer characteristics (biasing), shown in Figure 1.
N-CHANNEL

(b)

CLASS C
(ENHANCEMENT MODE)

(c)

Figure 1. Classification of FETs

The transfer characteristics of the n-channel, deple-tion- mode MOSFET are shown in Figure 1 (b). Because the gate is isolated (see Figure $2 b$), V_{GS} can be reversed without creating a gate current. The gate may be made either positive or negative with respect to the source. By allowing the gate-to-source poten-
tial to go positive and increasing the magnitude of gate voltage, additional free electrons will be attracted beneath the gate oxide further enhancing the diffused channel and allowing I_{D} to become greater than IDSS!

(a) Enhancement-mode

(b) Depletion-mode

Figure 4. Vertical Power MOSFET

This mode of operation results in a unique series of output characteristics where, for the n-channel de-pletion-mode MOSFET, we see near-linear performance in what appears as the enhancement region. This performance is shown in Figure 5. The foregoing
establishes that the depletion-mode MOSFET is a "normally on" device; that is, when $V_{G S}=0, I_{D}=$ IDSS. When a normally off device is needed, the en-hancement-mode MOSFET is selected.

Applications For Depletion-Mode MOSFETs

As a Current Regulator

The ideal current source supplies a fixed current to a load independent of the impressed voltage. Such a source would exhibit zero output conductance. Aside from the fact that depletion-mode MOSFETs can handle higher voltages and greater currents than most JFETs, they exhibit two characteristics which provide near-ideal performance as a current regulator. First, when the impressed voltage exceeds pinchoff, V_{P}, the saturation characteristics exhibit near-constant current (low output conductance) over a wide voltage range (see Figure 5). Second, performance as a depletion-mode transistor allows for simplified biasing to achieve the desired results.

Figure 5. Output Characteristics N-Channel Depletion-Mode MOSFET

Basic Regulator Circuit

For a given device where $I_{\text {DSS }}$ and $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ are both known, the value of bias required to establish the regulating current may be approximated by
$V_{G S}=V_{G S \text { (off) }}\left(1-\frac{I_{D}}{I_{D S S}}\right)^{1 / 2}$

The biasing resistor, R_{S}, required in the source of the MOSFET is
$R_{S}=\frac{V_{G S}}{I_{D}}$
A change in either supply voltage or load impedance will change the regulating current in proportion to the
magnitude of the output conductance of the MOSFET.

$$
\begin{equation*}
d l_{D}=d v_{D S} g_{O S} \tag{3}
\end{equation*}
$$

Figure 6. Basic Regulator CIrcult
A typical constant-current regulator circuit that employs a depletion-mode MOSFET is shown in Figure 6. As with any depletion-mode FET, the lower the ratio between I_{D} and $I_{D S S}$ the better the regulation, as shown in Figure 7 and Table 1.

Figure 7. Output Characteristics of a depletion-mode MOSFET

Table 1

$\frac{I_{D}}{I_{D S S}}$	\% Regulation
0.02	0.5
0.05	1.0
0.10	1.5
0.20	2.5
0.30	3.5

Extending Power Level Using MOSPOWER

The n-channel, depletion-mode MOSFET can be used in conjunction with an enhancement-mode power device to give an appreciable boost to the power handling capability of a current regulator. Such a power regulator circuit is shown in Figure 8, where both the operating voltage and regulating current are set by the selection of the MOSPOWER FET, Q2. Regulation may suffer somewhat when using large MOSPOWER FETs due to the higher gos typical of large power FETs. Q2, operating in the linear mode, will, in all likelihood, require a heatsink. The basic regulator circuit, $Q 1$ and R_{S}, is used to establish a small bias current that, in conjunction with R1, sets the bias level for the enhancement-mode MOSPOWER FET.

Figure 8. Extended-Range Current Limiter -

A Simple Regulator for Telecom

Modern telephone handsets are steadily increasing their electronic content. Useful features, such as a memory to retain the last number dialed, require constant voltage to retain the information in memory. Typically, small memory ICs require only a few microamperes at 3 to 4 V to perform. This sustaining voltage must be available at all times, even when the phone is inactive or "on hook." Some handsets use a small battery cell to fill this need, while other designs use the -48 V which is available from the telephone line.

To utilize the incoming line, one needs to reduce the voltage and loosely regulate it, without consuming
much power. In most systems, current drain in excess of 10 to $15 \mu \mathrm{~A}$ will alert the central office to an "off hook" condition and the subscriber's phone is presumed "busy." A simple depletion-mode regulator using the ND2410 can satisfy these requirements very economically. As shown in Figure 9, the deple-tion-mode MOSFET is used in a current-regulator mode to supply $10 \mu \mathrm{~A}$ to a $500-\mathrm{k} \Omega$ load. This establishes a voltage of $5-\mathrm{V}$ to power the memory circuit. If the memory requires 2 microamperes, only $8 \mu \mathrm{~A}$ will flow through the resistor, and the voltage drops to 4 V , which is sufficient to sustain the memory. Should the telecom line rise to 60 volts, the current regulator continues to supply a fixed $10 \mu \mathrm{~A}$ to the load; the surplus voltage is dropped by the MOSFET. The regulation is not precise, but more than sufficient to provide a simple and reliable solution. Alternatives such as 3-terminal bipolar regulators require high bias currents (over 1 mA) and are not readily available to sustain the high voltages necessary for use on telephone lines.

Figure 9. Telecom Voltage Regulator for Memory - Resident Redialing

As a Switch

When considering a switch, we usually select one whose natural, quiescent state is either normally-on or normally-off. With no applied power (or voltage), the depletion-mode MOSFET is normally-on.

Improving the $\mathrm{dV} / \mathrm{dt}$ of Thyristors

The ND2410 can be used very effectively in power SCR circuits to improve the critical dV/dt rating. Spurious turn-ON of an SCR caused by dV/dt can result in permanent damage to an SCR or an out-of-sequence turn-ON that can have disastrous effects in high-powered phase-control equipment.

Figure 10. $\mathrm{dV} / \mathrm{dt}$ Triggering of SCRs

Traditionally, SCRs fired by pulse transformers have used a resistor from gate to cathode to shunt false gate signals caused by $\mathrm{dV} / \mathrm{dt}$ as shown in Figure 10. This method requires a large wattage resistor, since the normal gate trigger signal is also applied across the resistor. The resistor, therefore, shunts part of the normal gate current, thus reducing the signal available for adequate turn-on of the SCR. The ideal solution would be a shunting resistor that seems to disappear when a normal gate signal is applied.

Just such an effect can be achieved using the normally on feature of the ND2410 as shown in Figure 11. With no gate pulse applied, the depletion-mode transistor is "on" with an equivalent resistance of about 10Ω. When the gate current is applied, the voltage drop across R_{GS} turns the transistor off, allowing all of the gate current to flow through the SCR gate.

Figure 11. Depletion Mode Active Shunt

Since the MOSFET turns off in a few nanoseconds, it has very little effect on normal SCR operation. In an actual experiment, the $\mathrm{dV} / \mathrm{dt}$ of a 25-A SCR (similar to a 2N692) was improved from $300 \mathrm{~V} / \mu \mathrm{s}$ (with no gate shunt network) to $2000 \mathrm{~V} / \mu \mathrm{s}$ with the depletionmode shunt.

Some suggestions for effective operation:

1. Use a fast-rising gate pulse: $I_{G}>3 \times I_{g t}$
2. The shunt should be located as physically close to the SCR gate terminal as possible to reduce the winding inductance and noise pick-up from long gate wires.
3. $R_{G S} \geq \frac{V_{G S \text { (off) }}}{I_{G}}$
4. Do not use with non-isolated gate drive circuits; a pulse transformer should be used.

LPD-19

APPLYING MOSFETS IN LOW VOLTAGE CIRCUITS

Richard L. Bonkowski

INTRODUCTION

The application possibilities for low-power MOSFETs are so numerous that they often are suitable for use in low-voltage circuits (5 to 15 V) as replacements for bipolars or as switches driven by digital integrated circuits. Lamp and relay drivers, small motor controls, and stand-by power-transfer switches are just a few of these popular low-voltage circuits. These applications deserve special consideration as they highlight one of the important differences between MOS and bipolar technology: MOS is voltage controlled, while bipolar devices are current controlled. Applying MOSFETs in these low-voltage circuits is greatly simplified by the availability of low-threshold MOSFETs from Siliconix.

Transfer Characteristics

To better understand the performance of MOSFETs in low gate voltage applications, one can examine the transfer characteristics of a typical device shown in Figure 1.

Figure 1. Normalized Transfer Characteristics 2N6786

To realize the full rated I_{D} current, a gate drive of approximately 7 volts is required. At the typical
"high" state output of a TTL gate (3 to 4.5 V), this transistor could be completely "off" or, at best, conducting only 10 or 20% of rated current. A curve for a Siliconix low-threshold transistor, the 2N7000 FETlington, is shown in Figure 2.

Figure 2. Normalized Transfer Characteristics 2N7000

At TTL drive levels, this device can conduct 40 to 100% of its rated current. It should be noted that TTL is normally considered to be " $5-\mathrm{V}$ logic," but practical available gate drive is generally to 4.5 V . If the transfer characteristic of a small bipolar transistor was shown on the same scale as the 2 N 7000 , one could see the relative independence of collector current once a base voltage level greater than 0.7 V is applied.

Benefits of Low V_{T}

Siliconix low-threshold MOSFETs offer the user a real advantage in applying the benefits of low losses and high switching speed to low-voltage circuits. At low switching frequencies, the gate drive power required by MOSFETs is virtually nil, compared to the 1 mW or more required by comparable bipolars. Because MOSFETs are essentially resistive in the "on" state, conduction losses can be significantly less for MOS than for bipolar devices.

Logic-Level Applications

TTL Gate Drives

While TTL gates operate from 5 V , the typical voltage available at a gate output is 3.5 V . This is clearly insufficient to drive a normal MOSFET whose threshold voltage can be 4.0 V . Low V_{T} MOSFETs can sometimes be used in such applications, if only a small fraction of their rated current is needed or a higher ros(on) can be tolerated. A a better solution is to use open-collector TTL and a pull-up resistor to the 5-V bus, as shown in Figure 3a.

Figure 3. Open Collector TTL Gate Drive

This technique will provide a greater drive voltage, and the designer can use the data from Siliconix data sheets showing the $\mathrm{rDS}(\mathrm{on})$ for $4.5-\mathrm{V}$ gate drive. Of course, open collector TTL, connected to a 10 - or $15-\mathrm{V}$ supply (Figure 3 b) is an even better solution,
allowing the designer to achiever even greater turnon of Siliconix low V_{T} MOSFETs or use of our normal threshold MOSFETs.

The designer should also bear in mind that the switching speed of the MOSFET is dependent on the gate driver's ability to source and sink peak current to charge and discharge the input capacitance of the FET. Typical TTL can source about 1.0 mA per gate and sink about 10 mA . For very high-speed applications or to drive large MOSFETs, an intermediate buffer may be needed. For a more complete discussion of gate drive requirements, see the Siliconix MOSPOWER Data Book (1988), page 9-18.

CMOS Gate-Drives

Because CMOS logic can operate from 10- or $15-\mathrm{V}$ supplies, it seems more naturally compatible with MOSFET transistors. While this solves the $V_{\text {GS }}$ problem, speed can still be an issue as CMOS gates usually switch slower than TTL. CMOS gates are also limited in source and sink current, but may be paralleled if additional drive is needed. External buffers may be used with CMOS, as previously suggested for bipolar TTL.

Low-Voltage Circuits

Circuits powered by batteries are of particular interest for MOSFET applications. Because MOSFETs can be more power efficient than bipolars, they can be used to great advantage in battery powered applications.

In 12-V circuits, conventional MOSFETs are readily applicable. At lower voltages (eg. a 6-V Ni-Cad source) or at low temperatures in automobiles (coldcranking can drop the battery voltage to 5 V), the designer must be aware of gate drive conditions. For the $12-\mathrm{V}$ "cold cranking" situation or a $6-\mathrm{V} \mathrm{Ni} \mathrm{Cad}$ near discharge (5 V), the $I_{D(O N)}$ and $\mathrm{rDS}_{\mathrm{D}}(\mathrm{on})$ data at 4.5 V is particularly important.

Figure 4 shows a typical automotive application for a "high-side switch" or solid-state relay. The gate voltage for the high current MOSPOWER switch is supplied from a voltage doubler IC (Si7661). To prevent activation of a load under low battery conditions, Q2, a low-threshold 2N7000 prevents Q1 from turning on, even if only 4.5 V of gate control is available from a cold battery. If Q1 could not be held off, control of a non-essential load (lights, radio, etc.) might be lost, further burdening the battery during starting.

Figure 4. Automotive High-Side Switch

Low-Threshold P-Channel MOSFETs

Most of this discussion has focussed on n-channel transistors because of their wide selection, low cost, and better availability. High-side switches, as shown in Figure 5, can be easily implemented with p-channel MOSFETs and open-collector or open-drain logic at low-voltage levels.

Figure 5 High-Side P-Channel Switch

The threshold of the p-channel is not usually critical unless the supply voltage is very low. With a $12-\mathrm{V}$ supply and a $4-\mathrm{V}$ threshold, 8 V are available to enhance conduction of the FET. If The supply were only 5 V , the enhancement would be minimal and $\mathrm{r}_{\text {DS }}(o n)$ would be very high. A low- V_{T} transistor, such as TP0610, should be used in this case.

Figure 5. High-Side p-Channel Switch

Design Considerations

When using low-threshold MOSFETs, one should be aware of the changes in V_{T} due to environmental conditions. At high temperatures, V_{T} decreases. A device with a $1.0-\mathrm{V}$ threshold at $25^{\circ} \mathrm{C}$ might drop to 0.5 or 0.6 V at $150{ }^{\circ} \mathrm{C}$. Under these conditions, the MOSFET could gate-on due to electrical noise or fail to switch off if the pull-down circuit cannot $\operatorname{drop} V_{g s}$ to a low enough value. Operation in an environment susceptible to radiation (e.g., x-rays) can permanently depress V_{T}, resulting in false turn-on due to noise or depletion-mode operation, that is, a nor-mally-on state requiring a negative gate voltage for turn-off.

When comparing MOSFETs, be aware that some manufacturers achieve low V_{T} through the use of thinner gate oxides. This lowers the maximum gate voltage rating of the transistor (Siliconix parts are all rated for at least $\pm 20 \mathrm{~V}$ and makes them more susceptible to ESD (electrostatic discharge) damage. Transistors rated at $\pm 15 \mathrm{~V}$ maximum gate voltage should be used and handled with proper caution.

CONCLUSIONS

Understanding and attention to proper gate drive is essential for successful application of MOSFETs. In many instances, low V_{T} Siliconix MOSFETs are a ready solution to achieve economical circuit design where limited gate drive is available. The following table shows some of the more popular Siliconix lowthreshold parts and their performance with gate signals of 5 V or less.

Table 1 Siliconix Low Threshold MOSFETs

Part Number*	$V_{(B R) D S S}$	$V_{T}(M A X)$ (V)	Low $V_{G S}$ Performance $r_{\text {DS }}(O N)$ (Ω)	$V_{G S}$ (V)
VN0300	30	2.5	3.3	5
VN0610	60	2.5	7.5	5
VN10	2.5	7.5	5	
ViN22222	60	2.5	5.5	5
VN66	60	2.5	5	5
VN67	60	2.5	5	5
VN80	80	2.5	10	5
2N6661	90	2.0	10	2.5
VN1206	120	10	2.5	
VN1210	120	2.0	10	2.5
VN1706	170	2.0		
VN2406	240	2.0		

*Note: Only the first few significant digits are given for some part numbers. Each family consists of a variety of package options indicated by suffix letters. Package style deter-
mines the thermal performance of the product which, in turn, determines current and power capabilities. See the individual data sheets for complete performance data.

AN ULTRA-BROADBAND ANALOG SWITCH

Many TTL and CMOS-compatible analog switches are commercially available, but none operate usefully into the UHF region. The following instructions describe how to make one that does.

The heart of the ultra-wideband analog switch is the Siliconix SD210DE series of small-signal enhance-ment-mode double-diffused MOS (DMOS) FETs. This series features low on-resistance and low interelectrode capacitances--an unusual combination. In either a 50 - or a $72-\Omega$ system, the SD210DE DMOS FET provides reasonably low insertion loss when on and excellent off-isolation when off.

In this design, the " T " configuration (see Figure 1) was chosen for its optimum off-state performance over a wide dynamic and frequency range. The configuration uses a pair of DMOS transistors tied back-to-back; that is, with sources in common and the drains acting as the input and output. The shunting DMOS transistor contributes to the high off-isolation when the switch is off. The body terminal of each SD210DE is electrically tied to its respective source. As with any DMOS FET, tying the body to the source forms a body-drain diode across the MOSFET. In the SD210DE, body-drain diode conduction occurs at close to 0.5 V .

Figure 1. Electrical Schematic of Broadband Switch

A high dynamic signal (in this case, +10 dBm) across 50Ω results in an rms signal voltage of 0.707 V . This
would be sufficient to cause forward conduction through the body-drain diode irrespective of gate control, resulting in an off-isolation loss. Using a pair of DMOS FETs in the " T " configuration places one of the two diodes in opposition (i.e., in reverse conduction). As a consequence, the off-isolation remains unaffected. However, because of the body-drain diode's low forward conduction (approximately 350Ω), in a 50 - or $72-\Omega$ system, the shunt arm of the " T " requires only one DMOS FET. This 350Ω shunt has little effect on insertion loss.

Other options for limited dynamic range switching (besides the "T" configuration) include the popular "L" configuration and possibly a single DMOS transistor with the body terminal clamped to a negative supply.

Varying the gate voltage makes the DMOS transistor act as a wideband variable attenuator as well as an analog switch.

The switch's layout and assembly begins by selecting for the substrate a low-loss double copper-clad PCB (RT/Duroid 5870). Next, a $50-\Omega$ (or $72-\Omega$) transmission line is etched onto this substrate, as Figure 2 shows. This line is suitably configured to accept the SD210DE.

Figure 2. Circuit Board Mask (Top View) Showing Placement of SD210DE

Finally, each DMOS gate is bypassed and isolated using a combination of shunt capacitors and series RFCs (radio-frequency chokes). The shunting capacitors are chip capacitors (Varadyne $3 \mathrm{BX050S393K}$-- 3.9 nF) and the RFCs are 10 selfsupporting turns of \#26AWG enamel magnet wire, each turn measuring 4.7 mm in diameter.

Figure 3. Insertion Loss for a SD210DE "T" Switch with a 50- Ω Input/Output and 5-V Logic

Figure 5. Insertion Loss for a SD210DE "T" Switch with a $50-\Omega$ Input/Output and +15-V Logic

To drive the analog switch, simultaneously apply a logic HIGH (for turn-on) to the series DMOS gates and a logic LOW to the shunt DMOS gate. As the logic HIGH increases in potential, the rDS of the DMOS transistor improves, resulting in a progressively improved insertion loss. Consequently, performance improves with 15-V logic as compared with $5-\mathrm{V}$ logic, as Figures 3 through 6 show.

Figure 4. Off-Isolation for a SD210DE " T " Switch with a $50-\Omega$ Input/Output and 5-V Logic

Figure 6. Off-Isolation for a SD210DE "T" Switch with a $50-\Omega$ Input/Output and +15-V Logic

Because of the high gate impedance, the switch will remain in either state (on or off) when the logic is removed, provided that the gate-driving impedance is also extremely high. Performance decays with time, of course, depending upon cleanliness of the circuit board, and humidity.

The performance of this analog switch was measured using the Hewlett-Packard vector voltmeter, Model HP8405A, with its accompanying $50-\Omega$ accessory kit, the HP11570A. The off-isolation tests were limited by the HP11570A's dynamic range and interchannel isolation. At signal levels of 0 dBm an +10 dBm ,
measurements to 70 dB were possible, but at lower signal levels the dynamic range was less. As a result of this dynamic range limit, the measured off-isolation was limited to -52 dB at a signal level of -30 dBm .

The apparent lack of off-isolation at high signal levels may partly be due to the layout. No shielding was attempted, even between the DMOS transistor's source and drain.

The performance curves in Figures 3 to 6 are, with these explanations, self-evident. The analog switch rolls off -3 dB at about 500 MHz .

A HIGH QUALITY AUDIO CROSSPOINT SWITCH

Bob Zavrel
Revised January 1988

INTRODUCTION

Recent advances in analog switch integrated circuits have made superior audio switch specifications possible. A crosspoint switch for the most demanding audio applications is described here. Although this switch may be used in recording studio and radio broadcast mixers where little compromise is acceptable, the low cost and small size makes this switch ideal for a diverse range of applications. Such applications can include audio crosspoint switches found in video systems, audio synthesizers, high quality multiplexers, and home entertainment systems.

A high quality audio frequency switch should have the following features:

1. Reasonable cost
2. Unity or variable gain
3. Very low harmonic distortion (<0.01\%)
4. Flat response ($D C$ to $>1 \mathrm{MHz}$)
5. Low crosstalk
6. High OFF Isolation
7. Excellent phase linearity
8. High speed switching
9. Freedom from switch "popping"
10. Small size
11. Use of $D C$ coupling only

The size of a complex audio switching array can be greatly reduced by using IC analog switches. The prototype array is an 8×2 stereo crosspoint switch mounted on a 4×7 inch board. Other switch configurations may be fabricated with little effect on the switch characteristics. This single board can replace a score of rotary switches and the bundles of audio cable often found in audio mixers. Furthermore, ground loop problems are reduced by eliminating the cable bundles.

Siliconix SD5002s were chosen because of low ON resistance, low switch capacitance, and very fast switching times. The LF347 quad op amp was chosen for its excellent audio characteristics in a quad package. Two LF347s are used in this switch providing a summing and output amplifier for each of four channels. Since the SD5002s switch into virtual grounds, they are held "normally open" by applying

Figure 1.
-15 V to the switch gates. To turn them on it is sufficient to apply a $V+$ level to the gates. For any switch configuration, the appropriate switch(es) are closed by biasing the appropriate gate(s) to the positive voltage supply. In this circuit, pairs of switches are controlled together to affect the left and right channels of a stereo input simultaneously. This is accomplished simply by tying the applicable switch gates together and using a common bias.

Figure 1 shows how a single SD5002 is configured as a 2×1 stereo switch. Figure 2 shows how the circuit can be expanded into a switch matrix. Eight SD5002s are required to construct the 8×2 stereo matrix array. One R_{L} is required for each channel input for termination while four Rs's are employed to feed the signal from the swiitches to the amplifiers. Input buses are consequently formed in front of these resistors.

Figure 2. A High Quality 8×2 Stereo Crosspoint Switch

The SD5002 drains are connected to these input buses. A larger array will cause reduced system performance due to longer lead lengths and increased circuit capacitance. Nevertheless, large matrices can be configured with little performance compromise because of the low initial switch capacitance. R R_{L} 's value should reflect the value of the source impedance. Deletion of R_{L} will seriously degrade crosstalk and off isolation performance while lower values of R_{L} will improve these specifications. R R_{C} may be adjusted for a wide range of system gain while a value of about $150 \mathrm{k} \Omega$ will set the circuit to unity gain. R_{D} sets the value of the output impedance and if the switch is to feed a high impedance load, R_{0} should be included to maintain system performance.

Electrolytic and mica capacitors are used on the cir-
cuit board for bypassing the two power supply voltages. Supply voltage bypassing will reduce both high and low frequency noise and help stabilize the system. The entire circuit should be well shielded particularly if it will be exposed to strong rf or power line fields. Conductors carrying high current should be kept away from the circuit. Double sided PC board should be used creating a ground plane on the component side as an additional precautionary measure.

Table 1 shows the switch performance of the 8×2 crosspoint configuration. R_{L} was set to $10 \mathrm{k} \Omega$, reflecting the high impedance of the test oscillator's output. Regulated power supply voltages of plus and minus 9 to 15 volts may be used. The signal voltages should be kept under about $3.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ to maintain switch performance.

TABLE 1

Frequency (Hz)	Crosstalk (dB)	"Off" Isolation (dB)	THD
50	-74	-75	0.006
100	-74	-75	0.005
200	-74	-75	0.004
500	-74	-75	0.003
1	-74	-75	0.003
2	-73	-74	0.003
5	-70	-71	0.003
10	-67	-68	0.004
20	-62	-62	0.006
50	-55	-55	0.020
100	-50	-49	0.045

Signal voltages: 3 Vp-p
Supply voltages: ± 12 volts

General Information Cross Reference

 Selector Guide JFETs DMOSLow Power MOS Performance Curves

Package Outlines
Applications
Worldwide Sales Offices and Distributors
10

U.S. Sales Representatives

ALABAMA	ILLINOIS (Southern)	
Huntsville (35815)	Seo Kansas	
P. ${ }^{\text {P. }}$. Box 4889	ILLINOIS (Northern)	
(205) 881-9270	Des Plaines (60018) Electron Marketing Corp. 3158 Des Plaines Avenue Suite 109 (312) 298-2330 FAX: 312-298-0650	
FAX: 205-882-6692		
ALASKA		
See Washington		
ARIZONA	INDIANA	
Tempe (85282)	Indianapolis (46268) Wilson Technical Sales, Inc. P. O. Box 681038 8752 Robbins Rd. (317) 872-2513 FAX: 317-872-0664	
Quatra Associates, Inc.		
4645 S. Lakeshore Drive		
(602) 820-7050		
FAX: 602-820-7054		
ARKANSAS	IOWA	
See Texas CALIFORNIA (Southern)	Cedar Rapids (52403)	
	Electromec Sales, Inc. 1500 2nd Avenue S.E.	
Irvine (92714)	$\begin{aligned} & \text { Suite } \\ & \text { (319) } 362-6413 \\ & \text { EAX } \end{aligned}$	
Siliconlx, Inc. ${ }^{\text {a }} 7500$ Redhli Ave.	FAX: 319-362-6535	
Sulte 270		
FAXX: 714-752-0987	KANSAS	
CALIFORNIA (Northern)	Lenexa (66219)	
Siliconix, inc.		
(408) 252-4620	Wichita (67052) Midwest Technical Sales 21901 La Vista	
FAX: 408-255-7682		
COLORADO (316) 794-8565		
Englewood (80111) Siliconix, inc. 6355 S. Pontiac Ct. (303) 771-6886 FAX: 303-771-6887	KENTUCKY	
	See Indiana	
	LOUISIANA	
CONNECTICUT	See Texas	
Cheshire (06410) Conneciicut Applied Technology 399 Beacon Hill Drive (203) 272-6564 FAX: 203-271-3670	MAINE	
	See Massachusetts	
	MARYLAND	
DELAWARE	Columbla (21046) Third Wave Solutions 8310 Guilford Road (301) 290-5990	
See New Jersey (Southern)		
FLORIDA TWX: 710-862-0862		
Altamonte Springs (32701) FAX: 301-381-5846		
(407) 831-8233	MASSACHUSETTS	
TWX: 810-854-0321	Tewksbury (01876) Pro Comp Assoclates, Inc.	
FAX: 407-831-2844		
Ft. Lauderdale (33309) Semtronic Assoclates, Inc.	$\begin{aligned} & \text { Fromp Assocl } \\ & 1049 \text { East Street } \\ & (508) 8580100 \\ & \hline \end{aligned}$	
3471 Northwest 55th Street (305) 731-2484	FAX: 508-858-0110	
Clearwater (34616) MICHIGAN		
Semtronic Assoclates, Inc.	Brighton (48116)	
	A.P. Associates	
FAX: 813-442-2234	${ }^{810} \mathrm{E}$. Grand River	
	TLX: 287310 (APAIUR)	
GEORGIA FAX: 313-229-9356		
Tucker (30084)		
Rep inc.	MINNESOTA	
Sulte 1	Eden Prairie (55344) High Technology Sales Assoclates 11415 Valley View Road (612) 944-7274 FAX: 612-944-3229	
(404) 938-4358		
FAX: 404-938-0194		
HAWAll		
See Californla (Northern)		
	MISSISSIPPI	
IDAHO	See Alabama	
See Washington		

MISSOURI
St. Charles (63303)
Midwest Technical Sales
1314 Robertridge
(314) 441-1012
FAX: 314-447-3657

MONTANA
See Washington
NEBRASKA
See Missourl
NEVADA (Northern)
See Callfornla (Northern)
NEVADA (Clark County)
See Arizona
NEW HAMPSHIRE
See Massachusetts
NEW JERSEY (Northern)
Falrfield (07006)
Astrorep Incorporated
271 Route 46, Suite 210A
(201)
FAX: $201-808-9616$

NEW JERSEY (Southern)
Marlton (08053)
B.G.R. Assoclates

Evesham Commons
525 Route 7
(609) 983-1020

TWX: 710-940-1358
Easylink: 62541350
NEW MEXICO
Albuquerque (87111)
Quatra Assoclates, Inc
9704 Admiral Dewey NE
FAX: 602-820-7054
NEW YORK (Upstate)
Endwell (13760)
Tri-Tech Electronics, Inc.
3215 E. Main Street
(607) 754-1094

Easylink: 62953445
Fayetteville (13066)
Tri-Tech Electronics, Inc.
6836 E. Genesee Street
(315) $446-2881$

TWX: $710-541-0604$
FAX: $315-446-3047$
Flshkill (12524)
Tri-Tech Electronics, Inc.
14 Westview Drive
(914) 897-5611
(914) 897-5611
Easylink: 62906505

FAX: 914-897-5611 (Manual Receive)
E. Rochester (14445)

Tri-Tech Electronics, Inc.
(716) 385-6500

Easylink: 62934993
FAX: 716-385-7655

NEW YORK (Metro/L.L)
Babyion (11702)
Astrorep incorporated
103 Cooper Street
(516) 422-2500

FAX: 516-422-2504

NORTH CAROLINA
Charlotte (28212)
Rep, Inc.
Independence Office Park
6407 Idlewild Road, Ste. 425
FAX: 704 ($704353-7507$
Morrisville (27560)
Rep. Inc.
2500 Gateway Centre Blvd., Ste. 400
(919) $469-9997$
FAX: 919-481-3879
NORTH DAKOTA
See Minnesota

OHIO

Cleveland (44143)
Arthur H. Baler Company
6690 Beta Drive, Ste. 106
(216) 461-6161

FAX: 216-461-9091
Dayton (45414)
Arthur H . Baler Company
(513) $276-4128$

FAX: 513-276-5486
OKLAHOMA
See Texas (Grand Pralrie)
OREGON
Portland (97224)
17020 S . W, Upper Boones Ferry Rd.
(503) 620-8320

PENNSYLVANIA (Eastern)
See New Jersey (Southern)
PENNSYLVANIA (Western)
See Ohio
PUERTO RICO
Hato Rey (00918)
Semtronic Associates, Inc Mercantil Plaza Bldg.
Sulte 816
(809) 766-0700/0701

FAX: 809-763-8071
RHODE ISLAND
See Massachusetts
SOUTH CAROLINA
See North Carolina
SOUTH DAKOTA
See Minnesota

TENNESSEE

Jefferson Clty (37760)
R.ep. inc. Box 728

13 So Branner Avenue
(615) ${ }^{475(5-9012 / 3}$

IEXAS
Austin (78750)
Aon Associates, Inc.
9811 Anderson Mili. Rd.
Sulte 200 A
FAX: $512-331-7254$

U.S. Sales Representatives (Cont'd)

Canadian Sales Representatives

Islington, Ontario (M9B6E3) Plpe Thompson, Ltd. 6468 Dundas Street W.
Suite 206
(416) 236-2355
FAX: 416-236-3387

UTAH
Salt Lake City (84115)
Sage Sales
3349 South Main Street
(801) $467-5451$
FAX: $801-467-5452$
VERMONT
See Massachusetts
VIRGINIA
See Maryland

WASHINGTON
Bellevue (98007) Crown Electronic Sales 14400 Bel-Red Road, Ste. 108 (206) $643-8100$ FAX: 206-747-6861
WEST VIRGINIA
See Ohio
WEST WISCONSIN
Seo Minnesota

WISCONSIN
Wauwatosa (53226) Larsen Assoclates, Inc. (414) ${ }^{258-0529}$
wYoming
See Colorado
DISTRICT OF COLUMBIA
See Maryland

North Gower, Ontario (M9B6E3)
Pipe Thompson, Ltd.
(613) 258-4067

Chip Distributor

ELORIDA

Orlando (32810)
Chip Supply, Inc
7725 N. Orannge. Blossom Trall
(407) $298-7100$
TWX: 810-850-0103
FAX: $407-290-0164$

U.S. Distributors

ALABAMA
Huntsville (35805) 4940 Rosearch brive (205): 205-721-0356
Muntsville (35801) 333 Memorlal Parkway FAX: 205-881-1490
$\begin{aligned} & (205) \\ & \text { FAX: 205-837-9358 } \end{aligned}$
ARIZONA
Phoenix 185040 Wyle Laboratorles-EMG (602) $437-2088$ St., Sulte 1 (602): ${ }^{4371-2051-4282}$

U.S. Distributors (Continued)

Minnetonka (55343)
12400 Whitewater Dr.
(6AX) $612-932-0600$
Plymouth (55441)
Marshall industries
3800 Annapolls Lane (612) 559-2211
FAX: 612-559-8321

MISSOURI

Bridgeton (63043)
Marshall Industrles
12774 Boenker
(314) 291-4650
FAX: 314-291-5391

FAX: 314-291-5391
Earth City (63045)
Hamilton/Avnet,
13743 Shorelline Court
(314) 344-1200
FAX: $314-291-8889$

NEW HAMPSHIRE
Manchester (03103) 444 E. Industrlal Park Drive
(603) 624-9400

TWX: 710-474-3255
FAX: 603-624-2402
NEW JERSEY
Cherry HIII (08003)
Hamilon/Avnet, \#14
One Keystone Avenue
(609) 424-0100

TWX: 710-940-0262
FAX: 609-751-8624
Falrfield (07006)
Hamilon/Avnet, \#18
10 Industrial Road
(201) 575-3390

TWX: 710-734-4388
FAX: 201-575-5839
Falrfield (07006)
Marshal industries
(201) Fairfleld Road

TWX: 710-989-7052
FAX: 201-882-0095
Mt. Laurel (08054)
158 Gaither Dr. ' Unit 100
609
(215)
234-9100
$627-1920(\mathrm{NJ}$ (PA)
FAX: 609-778-1819
Pinebrook (07058)
45 Route 46
(201) 575-3510

TWX: $710-734-4382$
FAX: $201-575-3454$
NEW MEXICO
Albuquerque (87123)
Bell Industries
11728 Linn N.E
FAX: 505-275-2819
Albuquerque (87106)
2524 Baylor Drive S.E.
(505) $765-1500$

TWX: 9100-989-0614
FAX: $505-243-1395$
NEW YORK
Binghamton (13904)
69 Corporate Dr
(607) 722-9300.
FAX: 607-722-9562

Buffalo (14202)
Summit, Inc.
916 Main Street
(716) $887-2800$
TWX: 710-522-1692
FAX: 716-887-2866
East Syracuse (13206)
Hamilton/Avnet, HO8
103 Twin Oaks Dr
(315) 437-2642
FAX: 315-432-0740

U.S. Distributors (Continued)

OHIO
Cleveland (44105)
Pioneer Std.
4800 E. 131 st Street

(216)
FAX:
$216-587-3600$

Dayton (45459)
Hamilton/Avnet, \#64
954 Senate Drive
(513) $439-6700$
tWx: $810-450-2531$

FAX: $513-439-6711$
Dayton (45414)
3520 Park Center Dr
3520 Park Center Dr
(513) 898-4480

FAX: $513-898-9636$
Dayton (45424)
4433 Interpoint Blva.

FAX: $513-236-8133$
Dayton (45414)
Zeus Components
3500 Park Center Drive
(513) $454-1225$
FAX:
$513-454-0494$

Solon (44139)
Hamilton/Avnet, \#62
Ho325 Bainvridge Rd., Bldg. A
(216) 349-3838

Solon (44139)
Marshall industries
30700 Bainbridge Rd. Unit A
(216) 248-1788

TWX: 810-427-2701
FAX: $216-248-2312$
Westerville (43081)
Hamilton/Avnet, H79
777 Brooks Edge Boulevard
(614) 882-7004
FAX: $614-882-8650$

OKLAHOMA
Tulsa (74146)
Hamiliton 51 st St., Sulte 102
(918) 252-7297

Tulsa (74146)
Quality Components
(918) 664-8812

OREGON

Beaverton (97005)
Marshall Industries
8333 S.W. Cirrus Dr.
FAX: $503-646-8256$
Hillsboro (97124)
Wyle Laboratories-EMG
5250 N.E. Elam Young Parkway
Sulte 600
(503) 640-6000

503-640-5846
Lake Oswego (97034)
Hamilton/Avnet, ${ }^{227}$
Bldg. C. Suite 10
(503) C. $635-8836$

TWX: $910-455-8179$
FAX: $503-636-1327$

Canadian Distributors

BRITISH COLUMBIA
Burnaby (V5M 3Z3)
2550 Boundary Rd., Ste. \#115
(604) FAX: $604-6667-1206$

Burnaby (V5G 4J7)
ITT Multicomponents
3455 Gardner Cour
HWX: 610-929-3065
FAX: 604-291-1227

PENNSYLVANIA	Richardson (75083) Wyle Distribution	
Horsham (19044) Pioneer Tech. 261 Gibralter Road (215) 674-4000 TWX: 510-665-6778 FAX: 215-674-3107	1810 N. Greenville Avenue	
	FAX: 214-644-5064	
	Zeus Components	
	1800 N . Glenville Drive	
Pittsburgh(15222) ${ }_{\text {Hamilton/Avnet, }}$	Sulte 120 ${ }_{\text {(214) }}$ 783-7010	
(412) $281-4150$ TWX: 710-670-1127	FAX: 214-234-4385	
	Stafford (77477)	
FAX: 412-281-8662	Hamilton Avnet, \#1	
	4850 virignt foad isu	
Pittsburgh(15238)	FAX: 713-240-0582	
259 Kappa Drive	Sugarland (77478)	
(412) $782-2300$	Quality Component	
TWX: 710-795-3122	1005 Industrial Rd.	
FAX: 412-963-8255	(713) 240-2255	
	FAX: 713-240-6988	
TEXAS	UTAH	
Quality Components	Salt Lake City (84119)	
4257 Kellway Circle		
(214) $733-4300$	1585 West 2100 South	
FAX: 214-250-0216	FAX: ${ }^{\text {(801) }}$ 872-2800 ${ }^{\text {a }}$	
Austin (78758) Hamilton/Avnet, \#26 1807A W, Braker (512) 837-8911 FAX: 512-330-6232	Salt Lake City (84115) Marshall Industries 466 Lawndale Dr., Ste. \#C (801) 485-1551 FAX: 801-487-0936	
Austin (78754) Industries S04 Cross Park Dr (512)FAX:512-832-91910		
	West Villey City (84119) Wyle Laboratories-EMG 1325 W. 2200 S.	
Austin (78758)	$\begin{aligned} & 084-995 \\ & \text { FAX: } 801-972-2524 \end{aligned}$	
1826D Kramer Lane		
FAX: 512-835-9829	WASHINGTON	
Austin (78758) Quality Components 2120-M W. Braker Lane (512) 835-0220	Bothell (98011) Marshall Industries 11715 N, Creek Pkwy, South Sulte 112 (206) 486-5747 FAX: 206-486-6964	
Austin (78758) Wyle Distribution 2120-F W. Braker Lane (512) 834-9957 FAX: 512-837-0981		
	Redmond (98052) Hamilton/Avnet, HOT 17761 N.E. 78th PI.	
	FAX: 206-867-0159	
Carrollton (75006)		
Marshall Industries		
$\begin{aligned} & (214) \\ & \text { FAX: } 214-7200 \\ & \text { 2170-0675 } \end{aligned}$	Wyle Distribution Group 15385 N.E. 90th Street	
	FAX: 206-881-1567	
Dallas (75244) Pioneer Std. 13710 Omega Road (214) 386-7300 FAX: 214-490-6419		
	WISCONSIN	
HoustonMarshall(77040)Industries	Milwaukee (53214) Marsh Electronics, Inc.	
	1563 South 101st 'Street	
Marshall Industries	TWX: 910-262-3321	
FAX: 713-462-6714		
Houston (77036)	Waukesha (53186)	
oneer Std. 5853 Point West Drive		
	Bell W 227 N 913 W . Mound Dr.	
$\begin{aligned} & (713) \\ & \text { FAX } \\ & 713-985-1732 \end{aligned}$	(414) 547-8879 FAX: 414-547-6547	
Houston (77478) Wyle Distribution 11001 S. Willcrest, Ste. 100 (713) 879-9953 FAX: 713-879-6540	Waukesha (53186) Hamiliton/Avnet, \#57 20875 Crossroads Clr, Ste. 400 (414) FAX: 414-45-784-9509	
Irving (75062) Hamilton/Avnet, \#16 2111 W. Walnut Hill Lane (214) 550-6111 TWX: 910-860-5929 FAX: 214-550-6222	Waukesha (53186) Marshall industries 20900 Swenson Drive (414) 797-8400 FAX: 414-797-8270	

Vancouver (V5K 4X7)
Future Electronics
1695 Boundary Road
FAX: 604-294-1206

Richardson (75083)
1810 N. Greenville Avenue
(214) $\begin{aligned} & \text { 235-9953 } \\ & \text { 214-644-506 }\end{aligned}$

Richardson (75081)
1800 N. Glenville Drive
(214) 783-7010

FAX: 214-234-4385
Stafford (77477)
4850 Vírigne Road 190
FAX: 713-240-0582
Sugariand (77478)
Qua5 Components
(713) 240-2255

UTAH
Salt Lake Clty (84119)
1585 West 2100 South
(801) 972-2800 $801-977-9266$

Salt Lake Clty (84115)
466 Lawndale Dr., Ste. \#C
(801) 485:1551 $801-487-0936$

West Valley City (84119)
1325 W .2200 S

FAX: 801-972-2524

Marshall Industrie
11715 N. Creek Pkwy, South
Sulte 112
AX: 206-486-6964
Redmond (98052)
Hamilton/Avnet, \#07
17761 N.E. 78 th PI.
(206) 881-6697

Redmond (98052)
15385 N.E. 90th Street
(206)
FAX:
$281-1150$
$206-881-1567$

WISCONSIN
Marsh Electronics
1563 South 101st 'Street
(414). 475-6000

FAX: 414-771-2847
Bell
W227N913 W. Mound Dr.
(414)
547-8879
FAX: 414-547-6547
20875 Crossroads CIr, Ste. 400
(414) 484-4510

Waukesha (53186)
20900 Swenson Drive
FAX: 414-797-8270

ONTARIO
Downsview (M3J 1Z3)
82 St . Regis Crescent N .
(416) $638-4771$
FAX: $416-638-2936$

Ottawa (K2C 3P2)
Future Electronics
Baxter Centre
1050 Baxter Road
(613) $820-8313$
FAX: $613-820-3271$

Rexdale (M9W 5×6)
Marshal industries
83 Galaxy Blvd, \#\#

ALBERTA

Calgary (T2E 6Z3)
2816 21st Street N.E.
(403) 250-9380

FAX: 403-250-159

QUEBEC
D.D.O. (H9B 2A2)

3869 Sources Rd.
Pointe Claire (H9R 5C7)
Future Electronics
(514) 694-7710

TWX:
FAX:
$510-414-695-3707$

European Representatives/Distributors

GERMANY

Ditronic GmbH
Jullus-Hoelder Str. 42
7000 Stuttgart 70
TEL: (071 1) 720010
FAX: 7255638 (0711) 7200132
EBV Elektronik GmbH
申berweg 6
D-8025 Unterhaching
TEL: 089-61105-1
TLX: 524535
FAX: 089-61105-230
EBV Elektronik GmbH
Welmarstr 48
7000 Stuttgart 1
TLX:
FAX:
2722711
$(0711) 613750$
EBV Elektronik GmbH
Viersener Strasse 24
Viersener Strasse 24
4040 Neuss
TEL: (02101)530072
TEL: $(02101) 530072$
TLX: 8517605
FAX: $02101-593087$
EBV Elektronik GmbH
EBV Elektronik
3006 Burgwedel 1 Hannover
TEL: (05139) 80870
TLX: 923694
EBV Elektronik GmbH
Schenckstr 99 , 90
TEL: (069) 785037
FAX: 413590
FAX: (069) 7894458
Ing. Büro Rainer König
Königsbergerstrasse 16A
D. 1000 Berlin

EL: 030-772-8009
ng. Büro K.H. Dreyer
Albert Schweitzer-Ring 36
2000 Hamburg 70
TLX: 2164484
Ing. Büro K.H. Dreyer
Flensburger Strasse 3
TEL: (04621) 24055
Ultratronik GmbH
Gewerbestr, 4
3036 Herrsching
TEL: (08152) 3709-0
AX:

ITALY
Dott Ing. Gluseppe De Mico
.P.A
0060 Cassina de Pecch
Via Vittorio Veneto 8
Milan
TEL: (02) 9308.20 .551
FAX: (02) 9522227

NETHERLANDS

Koning en Hartman
Elektrotechnlek BV
O. Box 125

NL-2600 AC Delft
TEL: $015-609906$
FAX: 015-619194

NORWAY

A/S Kjell Bakke
$\phi_{\text {vre }}$ Raelingsvei 20
P.O. Box 24

N -2001 Lillestrøm
TEL: (06) 832000
FAX: (06) 831455

PORTUGAL

Cristalonica Lda
$25 \mathrm{r} / \mathrm{C}$ Dto.
1100 Lisboa
TEL: (1) $534631,540314,561755$

SPAIN
Redislogar S.A.
Corazon de Maria, No. 7-BIS
28002 Madrid
TEL: (91) 4139111
FAX: (91) 4161971
Redislogar S.A
Aragon 208-210
TEL: (93) $2549048 / 49$
FAX: (93) 3234803
SWEDEN
Komponentbolaget NAXAB
Komponen
Sox 4115
TEL: 08-985140
FAX: 08-7645451
SWITZERLAND
Abalec A.G.
Grabenstrasse 9
8952 Schlieren
TEL: 01-730-0455
FAX: 01-730-9801

TURKEY

Türkelek Electronic Co. Ltd.
Hatay Sokak No. 8
Ankara
Ankara (4) 1189483
TLX: 44580

UNITED KINGDOM
Abacus Electronics Ltd
Abacus House
Bone Lane
Newbury, Berkshire RG14 5SF
TEL: (0635) 33311
FAX: (0635) 38670
TLX: 847589
Abercorn Electronics Ltd.
Suite 1A
17 Waterloo Place
Edinburgh, Scotland EH1 3BG
TEL: 031-557-4700
TLX: 727229
FAX: $031-556-7246$
Barlec-Richfield Ltd
Foundry Lane, Horsham
West Sussex RH13 5PX
West Sussex RH1
TLX: 877222
FAX: $0403-41746$
Farnell Electronic
Components Ltd.
Armley Road
Leeds LS12 2QQ
FAX: 55147

Hartech Ltd.
7 West Pallan
Chichester
West Sussex P019 1TD
TEL: 0243-773511
FAX: 0243-779196
HB Electronics Ltd.
Lever Street
Bolton BL3 6B
TEL: (0204) 386361
FAX: (0204) 384911
Hill Electronics
Belfast, N. Ireland
TEL: 755611
Macro-Marketing Ltd.
Burnham Lane
Slough, Berkshire
TEL: (06286) 4422
TLX: 847945
FAX: $(06286) 66873$

Semiconductor Specialists
(UK) Ltd.
Carroll House
159 High Street
West Drayton
Middlesex UB7 7X
Middlesex UB7 7XB
TEL: (0895) 445522, 446415
FAX: 0895-422044

YUGOSLAVIA
Contact: Belram S. A.
83 Avenue des Mimosas
B-1150 Brussels, Belgium
TEL: $734-33-32,734-26-19$
TLX: 21790

Rest of World Representatives/Distributors

ARGENTINA	Dodwell Industrial Electronics Division
YEL S.R.L	8/F Tal Yau Bldg.
Cangallo 1454,	181 Johnston Road
Piso 8 of. 41	Wanchal
1037 Buenos Alres	TEL: 5-8616200/5-8315700
TEL: 46-2211	TLX: 66623 GILND HX
TLX: 18605	CABLE: DODWELL HONG KONG FAX: 5-8934220
AUSTRALIA	
Anitech 241 Brown Road Noble Park, Victorla 3174 TEL: 61-3-795 9011 TLX: AA31370 FAX: 61~3-795 6818	INDIA
	Consultants Pvt. Ltd.
	P. B. No. 9275
	4. Kurla industrial Estate Narayan Nagar, L.B.S. Marg.
BRAZIL	Ghatkopar, Bombay 400086
Hitech TLX: 011-721 Av. Eng. Luiz Carlos Berrini 801 Con, 111/121	
04571 Brooklin	ISRAEL
Sao Paulo 5-9355	Telsys Ltd.
TEL: (55-11) 531-9355	Atidum Ind. Park, Bldg. 3
TLX: ${ }^{\text {(011) } 53288}$	Dvora Hanevia St.
FAX: (55-11) 61-3770	Neve Sharet
Etek Electronics Corp.	Tel-Aviv 61431 TEL: (3) 492001
	TLX: 032392
	FAX: (3) 497407
Miami, FL 33126 TEL: (305) 593-1188	
TLX: 8083069	JAPAN
FAX: (305) 593-1762	
HONG KONG	Tomen Electronics Corporation 1-1 Uchisaiwai-Cho, 2-Chome
Array Electronics Ltd.	TEL: 03-506-3490
Rm. 2001B Nam Fung Centre	FAX: $506-3479$
	FAX: 506-3479
Tsuen Wan N NT. N	KOREA
TEL: 0-4110083	Buseok Trading Co. Rm. 411 F.K.T.U. Bldg.
CABLE: ARRAYEL	
FAX: 0-4995803	35 Yoldo-Dong Youngdeungpo-Ku
	$\text { Seoul } \text { TEL: (02) } 7824877 / 8$
Atek Electronics Co. Ltd. Unit $1009,10 / \mathrm{F}$ Conic Investment Bidg.	TLX: K28742 KPTRDCO
Conic Investment Bldg. 13 Hok Yuen St.	FAX: (02) 7847702
Hung Hom Kowioon TEL: $3-621833$ TWX: 37119 ATEK HX FAX: $3-7644782$	Tong Baek Trading Co. Ltd.
	Rm. \#201 New Hanil Bldg.
	156-1 Yumri-Dong
	Mapo-Ku Seoul 121
	TEL: (02) 7166625
Century Technology Co. Ltd. Flat $\mathrm{B}-16 / \mathrm{F}$., Tonic Industrial Ctr. No. 19, Lam Hing Street Kowloon Bay, Kowloon TEL: 3-7966683	$\begin{aligned} & \text { TLX: K28569 TBTRACO } \\ & \text { FAX: }(02) 7190818 \end{aligned}$
	MALAYSIA
TLX: 51226 CEPCO HX FAX: 3-7998819 CABLE: CENTURYEPC	GE Industries (M) Sdn Bhd
	334 A-336A (First Floor)
	Jalan Pudu
	55100 Kuala Lumpur
	TEL: 2410403/2488295 TLX: 2412689

MEXICO
Grand Pralirie, Texas (75050)
ion Associates inc.
1504 109th Stree
(214) $647-8225$

Easy: 21nk: 62956328
NEW ZEALAND
Warburton - Frankle
Unit B, 192 Walrau Rd.
Glenfield
TEL: (09) 4442645
PHILIPPINES
Alexan Commercia
812 Elcano Street
Binando
TEL: (3) 402-223
SINGAPORE
Carter Semiconductor (S) PTE Ltd.
$07-03$ Cuppage Centre

SEL: T Ingare
TEL: 7347424 ARSIN
FAX: 734-2449
DOS Eloctronlos PTE Lte.
80 Genting Lane
No. 02 -0. Ganting Block
Ruby ind. Complex
TLL: : ${ }^{7433312}$ RS 35382 DO
FAX: 743-7435
SOUTH AFRICA
Electrolink (PTY) Ltd
P.O. Box 1020

Capetown 8000
TH: $215-350$
T27-7320
IAIWAN
Don Business Corp.
$6 \mathrm{~F}, \mathrm{No.33}$, Alley 24
Lane 251
Nanking East Road Sec, 5
TEL: (02) 7636670/6
TLX: ${ }^{25641}$ DONBC
CABLE: DONBC TAIPE

THAILAND
Dynamic Supply
${ }^{\text {Engineering }}$ R.O.P.
12 Sol Psana 1 Ekaml
Sukhumvit 63
Bangkok 10110
TLX: 82455 DYNAS

VENEZUELA

Pi Ronauldes S. Riliticio
Alo Caribe, Local 9
Caracas

U. S. Sales Offices

Europe Sales Offices

UNITED KINGDOM	WEST GERMANY	FRANCE	ITALY
Silliconlx Ltd.	Siliconix GmbH	Siliconix SARL	Silliconix SRL
3 London Road	Johannesstrasse 27, Postfach 1340	Centre Commerclal de l'Echat	Via Bartolomeo D'Alviano 18
Newbury, Berks, RG13 1JL	D-7024 Filderstadt-1	Place de l'Europe	20146 Mllano
TEL: $0635{ }^{30905}$	TEL: (0711) 70002-0	F-94019 Cretell Cedex	TEL: (02) 473661, 4228026
TLX: ${ }_{\text {FAX: }}(0493573) 34805$	TLX: ${ }_{\text {FAX: }} \mathbf{7 - 2 5 5 5 5 3} \mathbf{(0 7 1 1)} 70002-37$	TEL: (1) 43.77.07.87	TLX: 331837 "Pls Fwd
FAX: (0635) 34805	FAX: (0711) 70002-37	$\begin{array}{ll} \text { TLX: } & 230389 \\ \text { FAX: } & \text { (1) } 43.39 .11 .71 \end{array}$	to Slliconix" FAX: (02) 412.07.54
SCANDINAVIA	Slliconix GmbH Putzbrunner Strasse 19	APPLICATIONS ASSISTANCE	FAX: (02) 412.07.54
Siliconlx Ltd.	8012 TEL: Ottobrunn (089) 6097835	Slliconix Ltd.	
Box 5002 ,	TLX: 528305	Morriston, Swansea, SA6 6NE	
S-175 61 Järfälla	FAX: (089) 6095117	TEL: (0792) 310100	
Sweden 79590		FAX: (0792) 310401	
TEL: 08-7959390			
$\begin{array}{ll}\text { TLX: } \\ \text { FAX: } & 16404 \\ 08989999\end{array}$			

Far East Sales Offices

HONG KONG

Silliconix (H. K.) Ltd.

5 th Floor
Liven House
61-63 King Yip Street Kwun Tong, Kowloon $\begin{array}{ll}\text { TEL: } & 3-427151 \\ \text { TLX: } & 4444951 L X H X\end{array}$ CABLE: Siliconix

JAPAN
Tomen/Nippon Siliconix Inc -1 Uchisalwal-Cho 2-Chome Chlyoda-Ku, Tokyo 100
TEL: 03-506-3490
FAX: $\quad 03-50648$

APPLICATIONS ASSISTANCE

Slliconix (H.K.) Ltd.
5th Floor
iven House
11-63 King Yip Street
Kwun Tong, Kowloon, Hong Kong
$\begin{array}{ll}\text { TEL: } & 3-427151 \\ \text { TLX: } & 44449 \text { SIL }^{2} \mathrm{HX}\end{array}$
CABLE: SIliconix

Manufacturing Locations

UNITED STATES
Slliconix Incorporated
2201 Laurelwood Road
Santa Clara, CA 95054

UNITED KINGDOM
Siliconix Ltd.
Morriston, Swansea SA6 6NE

HONG KONG
Siliconlx (H.K.) Ltd
5/6/7/8th Floors
Liven House
61-63 King Yip Street
Kwun Tong, Kowloon

TAIWAN
Siliconix (Taiwan) Ltd. Kaohsiung

Si Silicanix

2201 Laurelwood Road, Santa Clara, CA 95054-1516, U.S.A.
TEL (408) 988-8000
TW X 910-338-0227
FAX 408-727-5414
Morriston, Swansea SA6 6NE, U.K.
TEL (0792) 310100
TLX 48197
FA X (0792) 310401

[^0]: 1 SOURCE
 2 DRAIN
 3 GATE
 4 CASE

[^1]: 1 DRAIN
 2 SOURCE
 3 GATE
 4 CASE

[^2]: 1 SOURCE 1
 2 DRAIN 1
 3 GATE 1
 4 SOURCE 2
 5 DRAIN 2
 6 GATE 2

[^3]: 1 GATE
 2 DRAIN
 3 SOURCE

[^4]: 1 SOURCE
 2 DRAIN
 3 GATE

[^5]: NOTES: 1. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

[^6]: ${ }^{1}$ These devices feature an internal Zener protected gate.

[^7]: ${ }^{1}$ These devices feature an internal zener protected gate.

[^8]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ This parameter not registered with JEDEC

[^9]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ This parameter not registered with JEDEC

[^10]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^11]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ This parameter not registered with JEDEC

[^12]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^13]: 1 SOURCE
 2 GATE
 3 DRAIN

[^14]: 1 SOURCE
 2 GATE
 3 DRAIN

[^15]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^16]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^17]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Reference case for all temperature testing

[^18]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Reference case for all temperature testing

[^19]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Reference case for all temperature testing

[^20]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Reference case for all temperature testing

[^21]: ${ }_{2}^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Reference T_{C} for all temperature testing

[^22]: ${ }^{1}$ Pulse width limited by maximum junction temperature.

[^23]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^24]: ${ }^{1}$ Pulse width limited by maximum junction temperature.
 ${ }^{2}$ Absolute maximum ratings have been revised.

[^25]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Absolute maximum ratings have been revised from previous data sheet

[^26]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Absolute maximum ratings have been revised from previous data sheet

[^27]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Absolute maximum ratings have been revised from previous datasheet

[^28]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Reference case temperature for all testing
 ${ }^{3}$ Absolute maximum ratings have been revised from previous datasheet

[^29]: 1 DRAIN
 2 SOURCE
 3 GATE

[^30]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Features internal gate-source Zener diode

[^31]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Reference case for all temperature testing

[^32]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ This parameter has been revised from previous datasheet

[^33]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Absolute maximum ratings have been revised from previous data sheet

[^34]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^35]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^36]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^37]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^38]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^39]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Features internal gate-source zener diode

[^40]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^41]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^42]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^43]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Reference case for all temperature tests

[^44]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^45]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Reference case temperature for all tests,

[^46]: ${ }_{2}^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Reference T_{C} for all tests

[^47]: ${ }_{2}^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Reference case temperature for all testing
 ${ }^{3}$ Absolute maximum ratings have been revised

[^48]: ${ }_{2}^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Reference case temperature for all testing
 ${ }^{3}$ Absolute maximum ratings have been revised

[^49]: ${ }^{1}$ Pulse width limited by maximum junction temperature
 ${ }^{2}$ Reference case for all temperature testing

[^50]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^51]: ${ }^{1}$ Pulse width limited by maximum junction temperature.

[^52]: ${ }^{1}$ Pulse width limited by maximum junction temperature.

[^53]: ${ }^{1}$ Pulse width limited by maximum junction temperature

[^54]: ${ }^{1}$ Pulse width limited by maximum junction temperature.

[^55]: Cathode is backside contact

[^56]: GEOMETRY DIAGRAM

[^57]: * Both $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ (for PMOS) and $\mathrm{V}_{\mathrm{GS} \text { (off) }}$ (for N -channel JFET are negative voltages
 V_{-}is defined as positive supply voltage
 V_{+}is defined as negative supply voltage

[^58]: ${ }^{1}$ The chip geometry is such that non-identical behavior occurs when the source and drain terminals are reversed in a circuit.

[^59]: ${ }^{1}$ The value for $t_{\text {OFF }}$ shown is that defined by the original data sheet.

[^60]: ${ }^{2}$ This is the correct switching terminology. What the original data sheet identifies as $t_{\text {OFF }}$ is really t_{f}.

[^61]: ${ }^{3}$ To observe these rise and fall times requires an oscilloscope with a bandwidth of at least 500 MHz .

[^62]: *This device has other common names, such as maintenance termination unit and remote disconnect unit.

